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Abstract
Micro-/nanoscale technologies such as lithographic techniques and microfluidics offer promising
avenues to revolutionalize the fields of tissue engineering, drug discovery, diagnostics and
personalized medicine. Microfabrication techniques are being explored for drug delivery
applications due to their ability to combine several features such as precise shape and size into a
single drug delivery vehicle. They also offer to create unique asymmetrical features incorporated
into single or multiple reservoir systems maximizing contact area with the intestinal lining.
Combined with intelligent materials, such microfabricated platforms can be designed to be
bioadhesive and stimuli-responsive. Apart from drug delivery devices, microfabrication
technologies offer exciting opportunities to create biomimetic gastrointestinal tract models
incorporating physiological cell types, flow patterns and brush-border like structures. Here we
review the recent developments in this field with a focus on the applications of microfabrication in
the development of oral drug delivery devices and biomimetic gastrointestinal tract models that
can be used to evaluate the drug delivery efficacy.
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1. Introduction
Oral delivery remains the preferred route of drug administration due to its non-invasive
nature and improved patient compliance. With advances in molecular biology and
biotechnology, the repertoire of therapeutic compounds has extended beyond small
molecular weight compounds to include proteins, peptides, large biological macromolecules,
supramolecular structures, nanomedicine, and even whole cells. However, many of these
biological therapeutics have poor oral bioavailability due to formidable barriers posed by
gastrointestinal (GI) tract and are therefore rarely used for oral drug delivery. Oral
administration of such compounds with improved bioavailability requires effective drug
delivery systems before successful use in humans. The design of such systems requires an
understanding of intestinal physiology and the mucosal microenvironment.

The GI tract acts as a compartmentalized mechano-chemical processing center for ingested
food. Its lining also acts as a formidable barrier to pathogens and the byproducts of
digestion. Nutrients extracted from food are absorbed primarily in the upper small intestine
through specific transport pathways. The high surface area and plethora of absorptive
mechanisms available in the small intestine make it the primary target site for enhancements
in drug absorption. The wall of the intestine, known as the brush border, is covered
primarily with epithelium organized into circular folds. Molecular transport across this
epithelium occurs through two routes, either between cells (paracytosis) or through the cells
(transcytosis) [1, 2](Fig. 1). Transcytosis can be further delineated into either carrier
mediated, diffusive, or endocytotic transport. A small fraction, <1% of the brush border
possess lymphatic properties. These discrete areas are known as Peyer’s patches. The lumen
of the small intestine also contains pancreatic enzymes, bile salts, and a thick mucus layer.
Such typical physiology of GI tract leads to poor bioavailability due to several factors
including low mucosal permeability and/or degradation of a drug before absorption.

Therapeutic agents may be classified in four classes (Biopharmaceutics Classification
System (BCS) according to their permeability and solubility [3]. Therapeutic agents such as
proteins, DNA or RNA are considered BCS class III compounds, highly soluble yet poorly
permeable. These compounds are generally the most susceptible to degradation in the GI
tract. The transport of larger compounds, such as nanoparticles, can be restricted by the layer
of mucus that lines the GI tract. Furthermore, the epithelial lining of the intestine has poor
non-specific permeability for most water soluble macromolecules. The transport of small
molecular weight compounds can be limited by poor mucosal permeability and solubility,
such as BCS class IV compounds. Up to 70% of new molecular entities currently under
development have poor aqueous solubility [4].

Several controlled drug delivery strategies have been proposed to overcome barriers to oral
drug absorption of peptide, protein and macromolecular drugs. These include modification
of intestinal epithelium through the use of permeation enhancers, modification of drug itself
to improve its permeability/solubility characters, use of protease inhibitors to curb the
proteolytic degradation, encapsulation techniques using micro/nanoparticles, and use of
intelligent polymers and hydrogels. These approaches have been reviewed in detail in
various articles [1, 2, 5–8].
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Another emerging approach in the field of oral drug delivery is the use of microfabricated
systems. Microfabrication techniques were originally developed in the microelectronics
industry. Microelectronic process engineering is a discipline that developed due to the rapid
growth of the integrated circuit (IC) industry. Traditionally, microelectromechanical systems
(MEMS) have been used to produce functional devices on the micron scale, such as sensors,
switches, filters, and gears, from silicon, the dominant material used throughout the IC
industry. Micro/nanofabrication techniques have enabled development of miniaturized
diagnostic tools and high throughput screening assays for drug discovery and tissue
engineering [9–13]. Although in their infancy, microfabrication technologies are being
explored for oral drug delivery. They have significant potential to overcome some of the
barriers of oral drug delivery through fabrication of asymmetrical devices with precise
control over size and shape. Apart from drug delivery devices, microfabrication approaches
can also enhance the field of oral drug delivery by designing biomimetic in vitro GI tract
model systems that can aid in better prediction of drug absorption in vivo. In this review, we
will focus on the general methods of microfabrication and their applications in the
development of oral drug delivery system and in vitro cell culture models that can be used to
evaluate the drug delivery efficacy.

2. Microfabrication methods
Numerous lithographic techniques can be used for the preparation of microfabricated
devices and fundamentals of these methods can be found in the review by Xia et al [14]. In
general, microfabricated devices are manufactured by the repeated application of unit
process steps such as thin-film deposition, photolithography, and etching. In a simplified
process, a two-dimensional (2D) feature layout is created utilizing computer-aided design
(CAD) software and printed into a photomask. The pattern is transferred to a substrate via
photolithography. During photolithography, a substrate is coated with a photosensitive
polymer layer and exposed to UV light from a mask aligner through the photomask. During
development, photoresist crosslinked to the substrate surface remains, while uncrosslinked
or cleaved photoresist areas are washed away. While standard photolithography has a
resolution of approximately 0.5–1 μm, it is possible to achieve sub-100 nm using methods
such as E-beam, ion beam, and dip-pen lithography. The pattern can then be transferred into
the substrate material using a wet or dry etch process. Though typically performed on silicon
or glass, other materials, including polymers, are amenable to this fabrication process.

Hard patterned substrates (such as silicon) can be used as a master mold in the process
known as soft lithography to create a robust inverse replica in a soft elastomer poly(dimethyl
siloxane) (PDMS). Given the fidelity of this process, both the master mold and PDMS mold
can be used for a large number of replication rounds. Therefore, by utilizing
microfabrication processes such as soft lithography in combination with various replica
molding techniques, such as spin-assisted solvent casting, micromolding, hot embossing,
and nanotemplating, devices can be structured precisely, simply, rapidly, into biocompatible
materials at low-cost and without the further use of specialized microfabrication equipment
[14, 15].

3. Applications in drug delivery
Over the past several years, microfabrication technology has been applied to the successful
development of a variety of health care-related products. Although research on
microfabricated devices for biomedical applications, particularly in diagnostics, has rapidly
expanded in recent years, relatively few researchers have concentrated on therapeutic
applications of microfabrication technology, such as drug delivery. However, the use of
microtechnology offers a number of advantages which may revolutionize the field of
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controlled release. These include localized delivery, delivery on demand, controlled release
kinetics, programmable dosing, sequential delivery, and diagnostic feedback dispensing.
Several review articles are available regarding trends in microfabricated systems for drug
delivery, with a few examples outlined here [16–20].

3.1 Programmable Drug Delivery
Microfabrication technology has been used to fabricate programmable devices as a new
class of controlled release systems for drug delivery. These devices are particularly
intriguing due to their small size, potential for integration with microelectronics and their
ability to store and release chemicals on demand [21, 22]. The first experimental
demonstration of a microchip with potential application in drug delivery was described by
Santini et al [23]. The ultimate goal of this approach is to develop a microfabricated device
devoid of moving parts, but with the ability to store and release multiple chemical
substances [21, 23–25]. Drugs stored within reservoirs were sealed either with active or
passive coatings. For example, in the original work the reservoirs were sealed with a thin
layer of gold and released upon application of an applied electric potential that dissolved the
coating. Subsequent version also included fully degradable polymeric systems with plastic
seals.

Other approaches can also be used to sense and release drugs. For example, the use of
“artificial muscle,” a chemo-mechanical actuator, valves in conjunction with silicon
micromachined drug release structures can render a microchip responsive to a patient’s
therapeutic requirements and deliver certain amount of a drug in response to a biological
stimulus [21]. By electroplating these polymers onto electrodes, reservoirs can be opened or
closed, and the drug compound released or retained, via the swelling and shrinking
processes of the polymer system in response to electrochemical actuation [21].

Programmed drug delivery can also be achieved by incorporation of microscale pumps to
deliver drug solutions, or suspensions containing solid formulations. The advance of
microfabrication for microfluidics has enabled fluid handling devices which can dispense
nano- to picoliter volumes. Piezo-actuated pumps, shape-memory alloy actuated pumps, and
electrokinetic pumps based on electrophoretic and electro-osmotic mechanisms offer a wide
range of methods for precision delivery of drugs [19, 26]. Additionally, electronically
controlled devices provide for precise control of delivery volumes, multiple therapeutics,
and timed sequence programmable flow [27].

3.2 Particulate Systems
As their scale decreases, microfabricated devices can be delivered by ingestion (<1 mm),
intra-tissue injection (<200 μm), inhalation (<100 μm) or released into circulation (<10 μm)
[18]. Microfabrication methods, because of their ability to control microarchitecture and
feature size, have been used successfully to develop novel nano/microparticles for
applications in drug delivery. Silicon particles have been used as multistage drug delivery
systems [28] and for intravenous delivery [29]. Several methods, including soft lithography
[30–33], particle replication in non-wetting templates (PRINT) [34, 35], hydrogel templating
[36, 37], imprint lithography [38], and in situ photopolymerization in microfluidic channels
[39] have been developed to prepare homogeneous particles in polymers. Microstructures
with complex geometries can influence anisotropic interactions with biomolecules and cells
[35, 40, 41].

4. Microfabricated Oral Drug Delivery Systems
Microfabrication also offers great opportunities to enhance the oral delivery of
pharmaceuticals by allowing for precise control over shape, size, and geometry of delivery
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devices. Microfabricated devices can also increase drug loading capacities and provide
better control over drug release. One approach for inducing greater levels of absorption and
stability at the intestinal epithelium is the use of a multilayered patch system. Patches are
designed with layers of thin, flexible membranes: an impermeable backing, a drug reservoir,
a rate-controlling membrane, and an adhesive. When the patch is applied, the drug begins to
flow through the skin into the bloodstream at a rate regulated by the membrane, pre-
programmed to keep the drug at an effective level. These properties are ideal for oral dosage
forms intended for delivery to the intestinal mucosa. Microfabricated patch systems
designed for oral drug delivery are capable of three main functions: (i) bioadhesive
properties for retention of the dosage form, (ii) release drug in a controlled fashion, and (iii)
provide unidirectional release towards the intestinal epithelium [42].

4.1 Micropatch Fabrication
The size of orally delivered particles has a great impact on their transit through the GI tract.
Larger particles can get trapped in the mucus layer protecting the epithelium, resulting a
relatively short residence time. Certain types smaller micro- and nanoscale particles are
known to permeate the epithelium [43], but the uptake is largely restricted to Peyer’s
patches, which take up a small fraction of the brush border and lead to lymphoid tissue. This
pathway carries the risk of toxic accumulation and poor biodistribution. Microfabricated
patch systems are alternative to standard particulate delivery systems, such as microspheres.
They are designed small enough to travel in between intestinal villi, maximizing the large
absorptive surface area of the intestinal folds, but wide enough to prevent cell uptake. In
contrast to particulate systems, micropatches are designed flat and thin to maximize contact
area with the intestinal lining. At the same time, this flat design minimizes the side areas
exposed to the constant flow of liquids through the intestine. The devices can be
microfabricated to incorporate single or multiple drug reservoirs which can be loaded with
any number of drugs/biomolecules of interest. These reservoirs, unlike multi-directional
release from a spherical delivery system, allow for unidirectional release of the drug.
Furthermore, regions of the device can be surface modified in order to incorporate cell
targeting mechanisms which localize the vehicle at a specific site of action. Modification of
microspheres is performed uniformly over the entire surface area, which increases instability
and may induce rolling when exposed to flow. However, selective surface modification on
only the reservoir side allows micropatches to stably anchor in an orientation which permits
the released drug to follow the shortest diffusional pathway towards the intestinal
epithelium. Fabrication processes for creating oral micropatches have been developed based
on standard MEMS fabrication techniques including photolithography, etching, and thin
film deposition, as well as soft lithography [20, 33, 42, 44–47].

Standard materials such as porous silicon [44] and silicon oxide [45] have been successfully
used for microfabricated-based drug delivery systems. Although silicon and glass are the
materials of choice for electronic and mechanical devices, it is not clear if these materials
are necessarily appropriate for all applications in biology and medicine [48]. Polymers allow
for shorter fabrication times and potential large scale fabrication of complex drug delivery
vehicles. In one such demonstration, poly(methyl methacrylate) (PMMA) microdevices
were fabricated using an off-wafer process [49, 50]. Microdevices were also fabricated from
SU-8, a chemically amplified, epoxy-based negative photoresist typically used for producing
ultra-thick resist layers. The use of SU-8 as a device material eliminates the need of a
secondary patterning material and the dry etch procedure. Instead, multi-level processing
can be used to create features in multiple layers. Repeated, aligned photolithography was
used to define the backing, reservoir, and supplementary feature layers [46, 47, 51, 52].
Asymmetrical microparticles were also fabricated from biodegradable polymers poly(DL-
lactide-co-glycolide) (PLGA) and gelatin using soft lithographic techniques [46]. In this
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manner, several batches of asymmetrical microparticles may be generated from a single
master. The height of the resulting devices is determined by the height of the features in the
PDMS master and the concentration of polymer in solution. Lateral resolution is determined
by the features of the PDMS master and the solvents used. Guan et al. were able to combine
methods of dip-coating, microcontact hot-printing and soft lithography to produce
microdevices containing single-reservoir and multiple-reservoir systems as well as sustained
release microcapsule depots in PLGA (Fig. 3A, B, C) [32].

4.2 Micropatch Loading
Micropatch systems offer some advantages in drug loading over conventional solid dosage
forms. They can contain reservoirs which can be loaded by microinjection with pico- to
nanoliters of a polymeric solution. Water quickly evaporates from these reservoirs leaving
behind the drug contained in a timed-release polymer plug. Intimate contact between the
micropatch and intestinal epithelium would provide a short diffusion distance, potentially
negating the need for excipients to aid in dissolution. Using a specific type of polymer
reservoir would predetermine the time and rate of release of drug from the reservoir; for
example, a hydrogel that swells in response to a specific pH, solvent or temperature or a
polymer with a known dissolution rate. Different polymers with various dissolution rates
could then be used in separate reservoirs to obtain controlled release of several compounds
[45]. By capitalizing on surface-liquid interactions, it is also possible to utilize discontinuous
de-wetting as method for bulk filling of reservoirs [32].

Micropatch reservoirs can also be filled using photolithography. For example, after
microdevice development, a photosensitive hydrogel precursor solution, consisting of a
crosslinker, photoinitiator, poly(ethylene glycol) dimethacrylate (PEGDMA) and drug, can
be spun into the empty reservoirs. Using a mask aligner, only the hydrogel within the
reservoir is exposed to UV light and subsequently developed in water and isopropanol.
Using repeated application and crosslinking, microdevice reservoirs can be loaded with
multilayered hydrogels for sequential delivery of therapeutics (Fig. 2) [51, 52]. In the case of
soft lithographic methods for fabrication of particles, drugs may be added to the prepolymer
solution and incorporated into the device during the transfer process [46].

4.3 Bioadhesion
As an alternate way to overcome short gut residence times and poor mucosal contact,
increasing interest has been placed on bioadhesive systems that can delay the transit and
prolong their residence at a specific site of delivery, thus enhancing the drug absorption
process [53, 54]. These mucoadhesive devices can protect the drug during the absorption
process in addition to protecting it on its route to the delivery site. This in turn increases the
drug concentration gradient due to intense contact. The general concepts and mechanisms of
mucoadhesion have been reviewed in detail [54–56]. In general, bioadhesion can be
achieved through chemical or physical approaches.

4.3.1. Chemical approaches—The use of adhesion promoters such as linear or tethered
polymer chains to promote bioadhesion during oral drug delivery has been well documented
[57–62]. Mucoadhesion depends largely on the structure of the synthetic polymers used in
controlled release applications and has been reviewed by Serra et al [55]. Another strategy
utilizing immobilization of lectin as targeting molecules for enhanced adhesion and
specificity to intestinal epithelial models has been previously described [63–67]. Post-
fabrication chemical modification may be performed to immobilize bioactive targeting
molecules to the surface of microdevices [45, 47, 49, 50, 52].
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In vitro studies were performed using the Caco-2 cell line to measure the cytoadhesive
properties of lectin-conjugated microdevices. The binding characteristics of microdevices
modified with two types of lectin (tomato, known to agglutinate Caco-2 cells, and peanut, an
unrelated lectin non-specific to Caco-2 cells) were observed as a function of time. Although
both lectin conjugates produce a higher degree of binding (approximately 2–4 fold greater)
than the pristine microdevices, a marked difference still remained between the peanut and
tomato lectin conjugates (approximately 2-fold) [49, 50]. Tomato-lectin modified
microdevices and microspheres were also studied in order to compare the effect of a tailored
microdevice shape versus a traditional spherical shape on adhesion stability. It was found
that the percent of microdevices remained consistently bound (~68% of total applied) over
consecutive washes while microspheres significantly decreased to approximately 17% [33].
Although microspheres have a larger surface area, or more importantly a larger lectin-
modified surface area, than the micropatch systems, microspheres appeared to be less stable
when subject to consecutive removal. The stability may be in part associated with the small
fraction of the surface area which is directly in contact and anchoring to the cell monolayer
at any given time. This suggests that the larger modified contact area of the flat micropatch
device may provide a more stable interface. Additionally, studies have shown that these
micropatch systems promote stable adhesion in the presence of mucin [42], as well as under
shear flow conditions [52].

4.3.2. Physical approaches—Using microfabrication techniques, microdevice bodies
can be designed to contain precisely shaped microneedles and microposts. These features
may allow for the particle to more firmly adhere to the mucosa, potentially increasing drug
permeability.

Microneedle systems were originally developed as an approach to enhance the poor
permeability of the skin by creating microscale conduits for transport across the stratum
corneum for transdermal drug delivery [68]. The microfabrication of microneedles that are
long and robust enough to penetrate this layer of skin, but short enough to avoid stimulating
nerves, has the potential to make transdermal delivery of drugs more effective [68–70].
Microneedle platforms have been fabricated in silicon, and also transferred into
biodegradable carboxymethylcellulose, amylopectin, poly(lactic acid), poly(glycolic acid),
and PLGA [71–74]. Tapered, needle-like structures have also been scaled down into the
submicron range to provide adhesion and drug delivery in wet environments for potential
applications in surgical, wound, and internal bandage systems [75]. Microneedles, in
combination with infusion methods such as pressurized reservoirs and electrically controlled
systems, have also been utilized for drug delivery [76–78]. Furthermore, by modifying
needle dimension and design to incorporate multiple channels and ports, optimized
microhypodermic needles and microprobes have also been developed for cellular, local
tissue, or systemic delivery [70, 79].

The same microneedle/micropost design principles can be applied to oral drug delivery to
increase the retention time of the microfabricated devices in the GIT. Using microfabrication
techniques, oral microdevices can be designed to contain precisely shaped microposts/
microneedles. These features may penetrate the mucus layer leading to anchorage of the
particles/microdevices. For example, Guan et al [31, 32] used similar approach to fabricate a
bilayered system of a poly(EGMA-co-EGDMA) and crosslinked chitosan microparticles
with self-folding arms. It is expected that by penetrating into the mucus layer, the arms may
anchor microparticles, providing increased resistance to surface erosion of the mucus layer
[32]. This mechanism may also provide a means to “grab” the intestinal villi, also
potentially leading to a longer retention time of the device (Fig. 3D, E). In addition, the
presence of microposts on oral microdevices may shed mucosa to increase the uptake of
compounds into the blood vessels of the submucosa [46]. Combined with the current
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chemically driven targeting mechanism, these microposts may provide a mechanically
driven controlled release feature [46].

Another physical method to enhance bioadhesion is the use of a particularly promising class
of gecko-inspired or nanostructure-based adhesives. Under nano-adhesive conditions, as the
number of adhesive elements per surface area increases, the surface area to volume ratio
increases and van der Waals adhesion is predicted to increase [80, 81]. The microvilli
present on the surface of the mucosal epithelia dramatically increase its surface area.
Therefore, by creating a nanostructured microdevice to target the microvilli-coated intestinal
epithelium, it may be possible to generate strong bioadhesive forces due to geometric
features alone. A standard vapor-liquid-solid method for synthesizing silicon nanowires on
flat wafer surfaces has been used in order to achieve growth of size-specific nanowires on
microdevice surfaces [82]. Nanowire-coated devices were found to adhere to Caco-2 cells at
a frequency five times greater than non-coated devices under static conditions, and when
tested under flow conditions, a median survival shear (the shear at which 50% of the devices
detach) of 9.15 dynes/ cm2 was reported. Additionally, devices both chemically (tomato
lectin) and physically (nanowire) modified for bioadhesion adhered as well or slightly better
than unmodified devices under static conditions. However, under flow conditions and in the
presence of mucin, these dually modified devices were found to be disadvantageous in terms
of adhesion, with a median survival shear of 3.60 dynes/cm2. As lectins bind to both cells
and mucus, adding a mucin layer introduces competition between these elements for binding
to the lectin-modified nanowires, which may explain reduced adhesion. Therefore,
geometry-based adhesion may offer distinct advantages over mucoadhesive chemistry in
terms of mucosal tissue adhesion.

5. Microfabricated in vitro models
Development of physiologically relevant three-dimensional (3D) in vitro models is another
area where microfabrication can advance the field of oral drug delivery. The drug
development process is a long and expensive process with only one out of ten drug
candidates in clinical trial reaching final FDA approval stage. The number of new molecular
entities that are approved by the FDA is also declining with 53 approved in 1996 and only
19 approved in 2010 [83]. The main reason for this low success rate is poor prediction of
drug efficacy and toxicity in preclinical testing. The current drug testing paradigm is based
on 2D cell monolayers and in vivo animal models before clinical trials in humans. Although
2D cell monolayer-based assays are routinely used for drug efficacy and toxicity testing,
such systems often fail to recapitulate microenvironmental context and in vivo biological
complexity. Such systems are static and do not mimic the exchange of metabolites between
the tissues, physiological shear stress, fluid flow dynamics as experienced by cells in vivo
[84]. In vivo animal models allow testing drug distribution, efficacy and toxicity under
physiological conditions; however, there are differences in animal and human physiology
making extrapolation of animal data to human difficult. Animal studies are also expensive,
time consuming and ethically controversial. Better in vitro model systems are necessary to
accurately predict drug efficacy and toxicity. Microfabrication approaches have been
proposed recently to develop physiologically relevant, in vitro 3D tissue models to reduce or
replace animal studies including ‘organ-on-a-chip’ [85] ‘body-on-a-chip’ [86], ‘lung-on-a-
chip’ [87] and ‘perfused multi-well liver tissue’ [88].

Conventional approaches to study drug absorption across the intestinal mucosa are classified
into in vivo, in situ and in vitro models and have been reviewed elsewhere [89]. The most
accepted and widely used in vitro absorption model consists of Caco-2 cells seeded on a
polycarbonate membrane in a transwell device [1, 90]. When cultured as a monolayer,
Caco-2 cells differentiate to form brush border microvilli on the upper side of the monolayer
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and contain both tight junctions and brush border associated enzymes. In this model, test
compounds are added on the apical side of the Caco-2 cell monolayer, and compounds
penetrating the cell are monitored at the basolateral side of the monolayer. Although used
successfully to model oral drug absorption [91], this model still has limitations. For
example, low permeabilities have been observed in vitro compared to in vivo data for the
drugs that are transported through paracellular transport route [92]. Similarly, compounds
with low solubility/ dissolution may have less absorption than that predicted by the Caco-2
system since oral absorption may be limited by low solubility. In addition, Caco-2
monolayers are planar in geometry, and does not accurately represent the brush border
topography. Also, the use of a static monoculture neglects the influence of mucus-secreting
goblet cells, and peristalsis on drug absorption. Furthermore, these monolayers cannot be
used to predict the bioavailability of compounds susceptible to hepatic first pass clearance.

Microfabricated devices can potentially better model the GI surface topography and can also
be used to better control the mechanics of cell-cell and cell-substrate interactions. Current
efforts in this field can be divided into three approaches: i) engineered intestinal tissues; ii)
microfluidic-based approaches and iii) microscale cell culture analogs (μCCA).

5.1. Engineered intestinal tissues
The small intestinal epithelium consists of an epithelial monolayer of enterocytes, goblet
cells, and Peyer’s patches resting on a basement membrane. The absorptive surface area is
enhanced through the topographical arrangement of this monolayer into nger-like
projections (villi) and well-like invaginations (crypts). In addition to enhancing surface area,
this spatial arrangement also dictates cell behavior[93]. Wang and co-workers used simple
microfabrication approaches to create biomimetic crypt-like microarchitecture on polymer
substrates [93]. Caco-2 cells seeded on such substrates showed higher metabolic activity and
lower alkaline phosphatase activity compared to the flat substrates signifying influence of
topography on cell phenotype. In a follow-up study, authors patterned type I collagen
membrane using soft lithography to study the synergistic effect of crypt-like topography and
extracellular matrix (ECM) proteins (fibronectin and laminin) on Caco-2 adhesion,
proliferation, differentiation and tight junction formation [94]. It was found that crypt-like
topography had short term effects on cell phenotype whereas substrate chemistry (ECM
protein coating) had more prominent and long term effects on intestinal epithelial cell
behaviors. Insight from such studies can be useful in developing biomimetic in vitro
intestinal models for drug absorption.

Gunawan et al [95] created immobilized physiological protein gradients (laminin and
collagen type I) similar to those found in small intestinal crypts using microfluidic gradient
generator. Results revealed region-specific expression of p27 (pro-differentiation marker)
and proliferating cell nuclear antigen (PCNA; proliferative cells), markers that are linked to
the cell cycle progression, when intestinal epithelial cells were cultured on immobilized
counter-gradients of laminin and collagen I. Such studies are necessary to understand the
role of various ECM proteins on the intestinal epithelial renewal along the crypt-villus axis.

Another emerging approach to engineer biomimetic GI tract models is the use of hydrogels.
Hydrogels have attracted great attention for 3D cell cultures since they mimic the ECM and
can be easily modified to generate tailored microenvironments [96–100]. Additionally,
hydrogels are amenable to various micromolding and soft lithographic techniques for drug
delivery [31, 32] as well as tissue engineering applications [101, 102]. Recently, Sung et al
developed a biomimetic GI tract model using laser ablation combined with sacrificial
molding in microscale collagen hydrogels mimicking actual density and the size of human
intestinal villi (Fig. 4) [103]. Caco-2 cells seeded onto the structure covered the whole
structure in three weeks resembling finger-like intestinal villi covered with epithelial cells.
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Thus, microfabrication approaches can be used to recapitulate in vivo microenvironment to
construct physiologically realistic in vitro models of intestinal villi that can improve the
predictability of drug absorption studies.

5.2. Microfluidic based approaches
The field of microfluidics is gaining popularity in drug discovery, development [11] and
personalized biomolecular diagnostics [10] due to their ability to provide fluid flow in the
physiological range. Micro uidic devices also require minimal samples and reagents, and
promote the effective use of space, while providing potential for multiple assays and
processes in a single device for high-throughput assays [104]. Moreover, micro uidics offers
spatial and temporal fluidic control in a biomimetic environment enabling long-term cell
culture and differentiation [10]. Thus, microfluidics is becoming integral part of the cell-
based assays to predict oral drug absorption.

For realistic prediction of oral drug bioavailability, an in vitro model should incorporate all
major physiological obstacles to the drugs entry into systemic circulation. These include the
transport properties of the epithelium, liver metabolism, and the vascular transport that links
them. Transwell co-culture models have been designed to include apical caco-2 monolayers
along with hepatocytes in the basolateral compartment [105, 106]. However, these models
use large liquid to cell ratios and devoid of circulation of medium. To overcome these
limitations, perfused co-culture system can be designed using microfluidic-based
approaches.

To generate a biomimetic microenvironment for drug absorption studies, a perfused co-
cultures system was designed using microfluidics that enhanced cytochrome P450 (CYP)
1A1/2 activity [107]. In another study, Mahler et al co-cultured mucous secreting HT29-
MTX goblet-like cells with Caco-2 cells to mimic intestinal cell populations and HepG2/
C3A cell line as liver cell populations [108, 109]. Presence of HT-29 cells resulted in
Caco-2 cell layer covered with mucus when cultured in physiologically realistic ratios [109].

Microfluidics has been used to design a bioreactor system with physiologically meaningful
ow conditions to study various epithelial cell transport processes [104, 110, 111]. Ferrell and
co-workers[112] fabricated a bilayer micro uidic system with integrated transepithelial
electrical resistance (TEER) measurement electrodes to evaluate kidney epithelial cells
under physiologically relevant uid ow conditions. The apical and basolateral uidic chambers
were connected via a transparent microporous membrane. The top chamber contained micro
uidic channels to perfuse the apical surface of the cells whereas the bottom chamber acted as
a reservoir for transport across the cell layer and provides support for the membrane. TEER
electrodes were integrated into the device to monitor cell growth and evaluate cell–cell tight
junction integrity in real time. Such bioreactors can be easily integrated with perfused co-
culture systems that closely mimic GI epithelial barriers along with first pass metabolism
described above.

Kimura et al have developed a micro uidic device embedded with a stirrer-based micropump
to create on-chip perfusion, and an optical ber connection for on-line uorescence detection
for drug screening and toxicity testing (Fig. 5) [113]. In another study, a microfluidic device
containing microhole arrays was fabricated to reduce the Caco-2 culture time [114]. In vivo
permeabilities in the human and rat intestine are highly correlated with those measured by
the micro uidic device. However, the limitation of the device is that tight cell junctions are
not formed since single cells are trapped in each microhole for a short period. Consequently,
this system cannot be applicable for drugs transported through tight junctions; however, it
can still be used for drugs that are transported passively or actively with the aid of transport
proteins [114].
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5.3. Microscale cell culture analogs (μCCA)
A drug’s absorption, distribution, metabolism, and excretion (ADME) is a result of
interaction between various cells, tissues and organs that are interconnected by vasculature.
Physiologically based pharmacokinetic (PBPK) mathematical models that describe an
organism as a set of interconnected tissue or organ compartments based on vasculature have
been designed to calculate the time-dependent distribution of a drug in various tissues [115].
An important advancement in the field of drug screening is to integrate multiple
miniaturized organ model systems into a single device to recapitulate the potential
interaction between different organs in determining the drug’s ADME. The concept of
microscale cell culture analog (μCCA) is a physical representation of PBPK model where
different cell types are cultured in small chambers interconnected by fluidic channels [116].
Such systems offer versatile in vitro models to study drug’s biotransformation, and
interaction between different tissues in determining drug’s response (both efficacy and
toxicity). Fabrication and applications of macroscopic and microscopic CCAs have been
reviewed in detail in recent reviews [84, 86, 117].

Most of the previous work with μCCAs was done to mimic intravenous administration of a
compound as the drug was added directly into the circulating culture medium [118–121].
More recently, GI tract μCCAs have been developed that include digestion, a mucus layer,
and physiologically realistic cell populations to determine oral bioavailability of drugs (Fig.
6) [108, 122]. The GI tract μCCA was used together with a systemic μCCA to demonstrate
absorption, distribution, metabolism and toxicity of a widely used analgesic and antipyretic
drug, acetaminophen [108]. The authors showed that acetaminophen was absorbed and
metabolized by GI cells, then circulated to the liver cell compartment. Liver cells were
capable of metabolizing the drug into reactive metabolite resulting in a dose-dependent
toxicity to the liver cells [108].

Combination of microfabrication with microfluidics has allowed precise control over
microscale structures. In addition, the ability to pattern physiologically relevant cell types, as
well as to manipulate geometry of the substrate in 3D and flow patterns / hydrodynamic
shear stress in the physiological range upon the cells takes us one step closer to creating
whole-body-on-a-chip for efficient screening of drug efficacy and toxicity. Reduction in the
amount of sample, spatiotemporal fluidic control, easy fabrication and reduced cost makes it
more attractive for high throughput drug screening and can further reduce the cost of drug
development if integrated earlier in the drug development process. Potentially, such systems
can be used as an alternative to animal models in drug screening.

6. Conclusions
Microfabrication techniques have been adapted to create physiologically relevant materials
and devices that mimic the scale cells experience in vivo and have found wide biomedical
applications, including drug delivery, tissue engineering and biosensing. In this short review,
we have mainly focused on applying microfabrication techniques for oral drug delivery
applications. Micromachining allows for control over particle size, shape, aspect ratio, and
surface features, which can be engineered to overcome the barriers associated with oral
delivery. For example, the microfabricated oral drug delivery system can be manufactured to
have increased contact with the intestinal wall, while minimizing shear disturbances and
allowing for unidirectional drug release from a protected reservoir to enhance their retention
in the body. This is an exciting emerging field; however, we should acknowledge it is still in
its infancy. Most microfabricated oral drug delivery systems have only been tested mostly
with in vitro or ex vivo models. In vivo considerations such as mechanical forces,
biodistribution and removal from the body have had limited study with regards to
microfabricated implants. In addition to further study in animal models, application in an in
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vivo environment would also require further consideration of material construction and
biodegradability. Furthermore, affordable methods for manufacturing scale-up will need to
be developed in order for these “proof-of-concept” microfabricated devices for oral drug
delivery to move towards commercial reality.
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Fig. 1.
Schematic of the structure of the epithelium. Molecules can be transported across the
epithelial barrier by passive diffusion through transcellular or paracellular pathways, or
actively transported across by membrane-derived vesicles or membrane bound carriers.
Uptake can also occur due to adsorptive endocytosis via clathrin-coated pits and vesicles,
uid phase endocytosis, and phagocytosis induced by M cell antigen sampling. Reproduced
with permission from ref. [123].
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Fig. 2.
A) Schematic of fabrication of multi-layer poly(ethylene glycol methacrylate)-laden SU-8
microdevice; B) A uorescent micrograph composite of a layered hydrogel prepared with
DNP-BSA, FITC-BSA and Texas red-BSA (from the outermost layer to the innermost). The
grey dotted-line box highlights the reservoir area and the red dotted-line box the outer area
of the microdevice; C) A uorescent micrograph of each individual lter for the labeled BSA is
presented for three unique hydrogel- lled microdevices. Reprinted with permission from
[124].
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Fig. 3.
A) Single-reservoir microdevices released in water showing asymmetrical plate-like
geometry with ring-shaped microwell in the center for drug loading; B) Multiple-reservoir
microdevices released in water, each containing 14 closed reservoirs surrounded by a
number of open reservoirs; C) Microcapsule microdevices made from PLGA as sustained
release depots; D) Self-folding polymeric microdevice with enhanced mucoadhesion for
transmucosal drug delivery, E) Folded microdevices grabbing onto pig intestinal mucosa
with stable adhesion even after water rinsing. Reprinted with permission from [32].
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Fig. 4.
Tissue engineering approach to create in vivo-like microenvironments; A) Schematic of
fabrication process of crypt-like microstructures. First plastic mold is created by laser
ablation, from which the PDMS reverse-mold is created. The alginate second mold is made
from the PDMS, and dissolved after the nal hydrogel structure is made. B) SEM image of
the PDMS villi structure; C) Confocal microscope image of the collagen scaffold showing
crypt-like topography. D) Confocal x-y image of Caco-2 cells on the collagen scaffold,
stained for actin (green) and nucleic acid (blue). Reprinted with permission from Sung
[103].
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Fig. 5.
Microfluidic-based approaches to create perfused in vitro models for drug absorption; i)
Fabrication process of the micro uidic device. (a) Prepolymer of PDMS poured over an
SU-8 structure; (b) the PDMS structure is peeled from the mold master; (c) coating CYTOP
inside of microchannel; (d) the semipermeable membrane and magnetic stir-bar are placed
on the PDMS layer for assembly; (e) PDMS layers are bonded. ii) Schematic illustration of
the integrated micro uidic device. Caco-2 cells are cultured only on the semipermeable
membrane in the AP side culture chamber. The stir-bar is driven by motor- controlled
permanent magnets beneath the device. iii) Photograph of the micro uidic device. Reprinted
with permission from [113].
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Fig. 6.
Gastrointestinal tract on a chip to predict ADME after oral drug administration; A) Image of
the systemic μCCA containing liver, kidney, bone marrow, and fat chamber. The channels
connecting compartments were 100 mm deep. The other poorly and well-perfused tissues
were represented by the external de-bubbler, which was a 200 μL reservoir. B) Image of the
systemic and GI tract μCCA experimental set-up. C) A schematic of the ow pattern in the
μCCA system. D) GI tract μCCA device and assembly. i) The Snapwell membrane; ii) The
Snapwell membrane being placed in between the top and bottom pieces of the GI tract
μCCA; iii) The top of the assembled GI tract μCCA; iv) The inlets and outlets on the apical
and basolateral sides of the assembled GI tract. Reprinted with permission from [108].

Sant et al. Page 24

Adv Drug Deliv Rev. Author manuscript; available in PMC 2013 May 01.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text


