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Interactions of Everolimus and Sorafenib in Pancreatic Cancer Cells
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Abstract. Everolimus targets the mammalian target of rapamycin, a kinase that promotes cell growth and
proliferation in pancreatic cancer. Sorafenib inhibits the Raf-mitogen-activated protein kinase, vascular
endothelial growth factor, and platelet-derived growth factor pathways, thus inhibiting cell growth and
angiogenesis. Combinations of these two agents are under evaluation for therapy of several cancers. This
study examined the effects of everolimus and sorafenib on proliferation of the pancreatic cancer cell lines
MiaPaCa-2 and Panc-1. Cell growth inhibition was evaluated in vitro for a range of concentrations of the
drugs alone and in combination. Maximum inhibition capacity (Imax) and potency (IC50) were
determined. The data were analyzed to characterize drug interactions using two mathematical analysis
techniques. The Ariens noncompetitive interaction model and Earp model were modified to
accommodate alterations in the inhibition parameters of one drug in the presence of another. Sorafenib
alone inhibited growth of both cell lines completely (Imax01), with an IC50 of 5–8 μM. Maximal inhibition
by everolimus alone was only 40% (Imax00.4) in both cell lines, with an IC50 of 5 nM. Slight antagonistic
interaction occurred between the drugs; both analytic methods estimated the interaction term Ψ as
greater than 1 for both cell lines. The in vitro data for two pancreatic cancer cell lines suggest that a
combination of these two drugs would be no more efficacious than the individual drugs alone, consistent
with the drug interaction analysis that indicated slight antagonism for growth inhibition.
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INTRODUCTION

Pancreatic cancer is the fourth leading cause of cancer-
related deaths in the USA (1). Gemcitabine-based chemo-
therapy is the standard of care for this disease, and erlotinib
(Tarceva®) was shown recently to improve survival slightly
when added to gemcitabine therapy (2). Pancreatic cancers
display numerous genetic mutations; 90% of tumors show
activating mutations in the Ras–Raf signaling pathway (3),
leading to activation of downstream signaling such as the
mitogen-activated protein kinase (MAPK) (4,5) and PI3k-
Akt-mammalian target of rapamycin (mTOR) pathways (6–
9), which promote cell proliferation, angiogenesis, and
survival. Sorafenib (Nexavar®, BAY 43-9006) is a multi-
kinase inhibitor that has activity in vitro and in vivo against a
variety of solid tumors (10,11). It inhibits the MAPK, vascular
endothelial growth factor, and platelet-derived growth factor
pathways, and has shown anti-proliferative and pro-apoptotic
activity in pancreatic cancer cell lines (12). Everolimus is an
inhibitor of mTOR, which regulates cell proliferation and

apoptosis (13,14). It has anti-proliferative activity in vitro and
in vivo in pancreatic cancer models (15,16).

The MAPK and PI3k-Akt-mTOR pathways demonstrate
cross-talk, in that inhibition of one can result in compensatory
responses in the other (17–19). The combination of MAPK
inhibitors with inhibitors of the PI3k-Akt-mTOR pathway in
solid tumors has been speculated as a viable option and has
proved effective in human melanoma and hepatocellular
carcinoma (20–23). Our hypothesis is that concurrent inhibi-
tion of the compensatory pathways will lead to a synergistic
effect in pancreatic cancer cells. We tested this hypothesis by
investigating the in vitro anti-proliferative capacity of ever-
olimus and sorafenib on pancreatic tumor cell lines MiaPaCa-
2 and Panc-1 and quantified the interaction between them.

The nature and extent of drug interactions are usually
evaluated using computational approaches. Mathematical
modeling is particularly important in oncology because drugs
are often given as combinations. In many situations, there is
insufficient pharmacological detail to support mechanistic
mathematical models. In these cases, empirical models based
on Loewe additivity have been used widely. Another
commonly used technique is isobologram analysis (24), which
evaluates the nature of interaction between two drugs at any
given effect level (e.g., IC50 or IC90). Curve-shift analysis is a
technique that provides visual analysis of drug combination
data, the concentration–response curves of drugs alone and in
combination plotted to reveal a shift in the IC50 (25). These
methods are two-dimensional techniques used to facilitate
analysis of combination data obtained in vitro. Three-
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dimensional analysis approaches have also been developed,
as proposed by Greco et al. (26) for in vitro data, wherein the
isobologram analysis is adapted to allow all the data from
combination studies to be fitted into a single equation and to
provide a statistical summary parameter describing the nature
and extent of interactions.

Where possible to apply, mechanistic models are superi-
or for characterizing drug interactions from in vivo studies. A
simple model based on the assumption that two drugs exert
their effect by interacting competitively with enzymes or
receptors was given by Gaddum (27). A noncompetitive
interaction equation was developed by Ariens and Simonis
(28). Chakraborty et al. adapted these competitive and
noncompetitive interaction models to provide a quantitative
summary as a three-dimensional interaction surface using a
single interaction parameter Ψ (29). The Ψ value signifies the
degree to which cell sensitivity increases or decreases when
one drug is combined with another. The three-dimensional
surface also allows for visual inspection of the drug combina-
tion data. Drug interactions relevant to indirect response
models were explored by Earp et al., who explored numerous
scenarios depending on the mechanisms of combined drug
action (30). The Earp et al. mechanistic models can be used
for data obtained in vitro by modifying them for steady-state
conditions. In this study, we have modified and evaluated two
mechanistic methods to quantify the nature and extent of
interaction.

METHODS

Reagents and Cell Lines

Everolimus and sorafenib p-toluenesulfonate salt were
purchased from LC Laboratories (Woburn, MA). Stock
solutions of the drugs were prepared in dimethylsulfoxide
(DMSO) and stored at −20°C. The prepared everolimus stock
was 2.08 mM, and the sorafenib stock was 20 mM. When
diluted to the final working concentrations in experiments,
the DMSO concentration was below 0.1% v/v, which did not
perturb cell growth. The pancreatic adenocarcinoma cell lines
MiaPaCa-2 and Panc-1 were obtained from American Type
Culture Collection and maintained in Dulbecco’s Modified
Eagle’s Medium (Cellgro, Manassas, VA) supplemented with
10% heat-inactivated fetal bovine serum (Atlanta Biological,
Lawrenceville, VA).

In Vitro Growth Inhibition Assay

Panc-1 cells were plated in 24-well plates at 2.0×104 cells
per well in a volume of 1 mL, and MiaPaCa-2 cells were
plated at 1.0×104 cells per well. After overnight incubation at
37°C to permit cells to adhere, cells were treated with drugs
in triplicate. Cells were exposed to everolimus at final
concentrations of 0.01 to 1,000 nM and to sorafenib at final
concentrations of 0.1 to 20 μM. Drug interaction experiments
included at least 14 different combinations of drug
concentrations spanning the entire range of relevant
concentrations. Controls included cells incubated in drug-
free medium, as well as cells incubated with DMSO at a final
concentration of 0.1% (v/v), which exceeded the final DMSO
concentration in any drug-treated wells. Drug exposure was

48 h for MiaPaCa-2 cells and 72 h for Panc-1 cells, after which
cells were washed with Dulbecco’s phosphate-buffered saline
(Sigma-Aldrich, St. Louis, MO), removed from the plates
with 1% trypsin–0.53 mM EDTA, and counted using a
Coulter Counter (Beckman Coulter, Hialeah, FL).

Pharmacodynamic Analysis

The cell counts obtained for each drug concentration
were normalized relative to the growth of control (vehicle-
treated) cells using:

Percent growth0
final cells� initial cells

control cells� initial cells
&100 ð1Þ

where final cells is the cell count per well after drug exposure,
initial cells is the average number of cells per well at the start
of drug exposure, and control cells is the average cell count
for wells containing drug-free medium. All model parameters
were fitted to the individual cell numbers for each of the
triplicate wells exposed to each drug concentration.

Analysis of Single Drug Effects

The concentration-dependent growth inhibition response
R of cells for each drug concentration was modeled using the
sigmoidal Hill function:

R0R0& 1� Imax&Cg

ICg
50 þ Cg

� �
ð2Þ

where R0 is the cell number when no drug is present, Imax is
the maximum possible inhibition caused by the drug, C is the
drug concentration, IC50 is the drug concentration causing
50% of the maximum effect, and γ is the Hill coefficient.

Analysis of Combination Drug Effects

Drug combination effects were analyzed by two
approaches. One pharmacodynamic model used was pro-
posed originally by Ariens and Simonis (31,32) for noncom-
petitive interaction and later modified to express the intensity
of possible interaction as a drug potency term (Ψ) (29). A
value of Ψ<1 signifies synergism, Ψ01 indicates additivity,
and Ψ>1 denotes antagonism. The equation assumes R0

percent growth as percent of control in the absence of the
drug, which was estimated from the data rather than fixing it
to a value of 100.
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where R is the cell count, CE and CS are concentrations of
everolimus and sorafenib, and IC50,E and IC50,S are the drug
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concentrations producing 50% of the maximum inhibitory
effect for each drug.

The second pharmacodynamic model employed was a
previously described mechanistic model (30), which combines
the indirect effect of the drugs on the growth process in order
to evaluate interactions of the drugs according to the
mechanisms of action of each. The drugs used in this study
exert their effects on cells by inhibiting the processes that
control their growth. Therefore, a form of the model
indicating inhibition of cell growth by both drugs was used.
The original model assumes the Hill coefficient γ to be 1, and
it also assumes the baseline growth to be 100% of the control
growth. The γ reflects the steepness of the concentration–
response curve. We modified the previously described
equation (30) to account for γ values other than 1 and also
estimated the baseline growth of cells (R0) rather than fixing
it to 100%. For combinations, one drug might alter the
actions of the other, thus exerting either antagonism or
synergism. We introduced the term Ψ, which expresses
alterations in the IC50 or Imax of either drug when given in
combination. The modified equation for noncompetitive
interactions between two drugs that exert inhibitory effects is:

R
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where R is response at steady state, R0 is the response when
no drug is present, and Imax, IC50, and γ have the same
meaning as above. Values for these parameters are obtained
from the analysis of single drug effects. The Css is the drug
concentration to which cells are exposed. The equation was
fitted to the data obtained from drug combination experi-
ments to obtain the values of R0, and the results from this
method of analysis were compared to the other methods.

Model fitting and parameter estimation was performed
using ADAPT 5 (33) with the maximum likelihood method.
Naive-pooled data from all replicate studies were used in the
analysis with a linear variance model:

Vi0 σ1 þ σ2Y t1ð Þð Þ2 ð5Þ
where Vi is the variance of the response at the ith time point
(ti), and Y(ti) represents the response at time ti predicted from
the model. Variance parameters σ1 and σ2 were estimated
together with system parameters during fittings. The good-
ness-of-fit criteria included visual inspection of the fitted
curves, the sum of squared residuals, Akaike Information
Criteria (AIC), Schwarz Criterion (SC), and Coefficients of
Variation (CV%) of the estimated parameters. All results
were expressed as estimates along with their CV%.

RESULTS

Cell Growth Inhibition by Everolimus and Sorafenib

Growth Inhibition as Single Agents

The concentration–growth inhibition response curves of
the MiaPaCa-2 and Panc-1 pancreatic cancer cell lines to
everolimus and sorafenib as single agents are shown in Fig. 1,
along with the fit to the data of Eq. 2. The fitted parameters

for analysis of the single drugs are listed in Table I. Overall,
the Panc-1 cell line was slightly more sensitive to the drugs
compared to MiaPaCa-2. The IC50 for sorafenib was 8.29 μM
in MiaPaCa-2 and 6.58 μM in Panc-1 cells, whereas the IC50

for everolimus was 4.51 nM in MiaPaCa-2 and 3.87 nM in
Panc-1 cells. At the highest concentrations, sorafenib was
more efficacious (Imax01) than everolimus, as the latter did
not suppress cell growth completely (Imax00.4), thus leaving a
nonresponsive cell population. The γ for everolimus was 1.52
in MiaPaCa-2 and 2.53 in Panc-1 cells, whereas for sorafenib,
γ was 3.3 in MiaPaCa-2 and 2.1 in Panc-1cells.

Growth Inhibition of Combined Agents

Cells were exposed to a range of concentrations of the
two drugs in order to investigate the cell growth inhibitory
effects of drug combinations. Model-fitting approaches were
used to determine the nature and intensity of the interactions
between the two drugs. Two analysis approaches were
applied to the drug combination data. Figure 2 shows the
observed data for MiaPaCa-2 cells along with a three-
dimensional response surface based upon analysis of the
combination data using the Ariens–Chakraborty equation
(29). The analysis yielded a Ψ value of 1.20 for MiaPaCa-2
and 1.01 for Panc-1, with good precision (Table II). Because
the Ψ value is slightly greater than 1, it suggests the drugs are
modestly antagonistic. The response surface is created using
the final estimates for IC50, Imax, γ, and Ψ. The response
surface shown in Fig. 2 represents the three-dimensional
model prediction for a Ψ value of 1.20 with MiaPaCa-2 cells.
The 95% confidence interval for Ψ in MiaPaCa-2 cells is 1.09–
1.29, and for Panc-1 cells, it is 0.95–1.2. Therefore, the
estimates of Ψ are significantly different from 1.0 for
MiaPaCa-2, but not for Panc-1.

Both drugs decrease growth of cells by inhibiting
proliferative pathways. Therefore, the Earp equation can be
modified to indicate alteration of IC50 or Imax of either drug
when cells are exposed to a drug combination. We evaluated
models in which IC50 of either drug was altered due to the
presence of the other drug. Figure 3 shows the three-
dimensional response surface predicted for the drug combi-
nation as analyzed and predicted using the modified Earp
equation (Eq. 4). The estimate of Ψ, indicating the effect of
sorafenib on the IC50 of everolimus, was 1.48 for MiaPaCa-2
and 1.06 for Panc-1 cells. The estimate of Ψ, representing the
effect of everolimus on the IC50 of sorafenib, was 1.2 for
MiaPaCa-2 and 1.1 for Panc-1 cells (Table II). The surface
shown in Fig. 3 represents the model prediction of response
with a value of Ψ of 1.48 for MiaPaCa-2 cells. The fitting with
the modified Ariens–Chakraborty model was better than
obtained with the modified Earp model, as was evident both
visually and based upon the AIC, SC, and r2 values.

DISCUSSION

There exists a dire need for effective therapy of
pancreatic cancer, as the majority of the patients have limited
treatment options. Numerous molecularly targeted agents
have been developed and are in clinical evaluation for
treatment of cancers having genetic aberrations that may
confer vulnerability to interdiction of specific signaling
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pathways. However, molecularly targeted drugs often have
shown disappointing clinical activity as single agents, owing to
the lack of sufficient “pathway addiction” to the signaling axis
that is inhibited, as well as the development of compensatory
mechanisms (17–19). Therefore, the combination of molecu-
larly targeted agents that are mechanistically complementary
in order to overcome resistance to monotherapy may
represent a more effective strategy. The Ras–Raf–MAPK
pathway, which is activated in 90% of pancreatic cancer
patients, is involved in cell growth and angiogenesis. There-
fore, sorafenib, an inhibitor of this pathway, was selected for
investigation. Everolimus was chosen here as a mechanisti-
cally complementary agent. It inhibits mTOR, which is
involved in cell growth, proliferation, and apoptosis. Inter-
actions between these signaling pathways are known
(17,19,34), so simultaneous molecular targeting would be
expected to provide a synergistic action, thereby overcoming

resistance. The combination of sorafenib and everolimus (or
its analog rapamycin) has shown synergistic activity in vitro
and in vivo against melanoma (20,21) and hepatocellular
carcinoma (22).

Multiple mathematical models are available for evalua-
tion of potential drug interactions arising from combination
drug treatments (35). In this study, we modified appropriate
mechanistic models to interpret data obtained for a combi-
nation of two agents that may be mechanistically
complementary.

The data necessary to evaluate the nature of drug
interactions were obtained by measuring the inhibitory effects
of everolimus and sorafenib individually on the growth of two
pancreatic cancer cell lines. These two cell lines contain
activating Kras mutations as well as mutations in the TP53,
CDKN2A, and SMAD4 genes, which are involved in the
regulation of proliferation in normal cells (36). The two

Fig. 1. Cell growth inhibition by everolimus and sorafenib as single agents on two
pancreatic cancer cell lines. Symbols represent experimental data, and lines show fitted
curves

Table I. Parameters for Individual Everolimus and Sorafenib Effects on Pancreatic Cancer Cells

Cell line Drug R0 (%) (CV%) IC50 (CV%) Imax (CV%) γ (CV%)

MiaPaCa-2 Everolimus 95.67 (3.43) 4.51 (32.16)nM 0.39 (12.31) 1.52 (46.31)
Sorafenib 88.31 (4.81) 8.29 (6.25)μM 1.00 (Fixed) 3.3 (20.57)

Panc-1 Everolimus 102.5 (2.85) 3.87 (13.83)nM 0.41 (6.45) 2.53 (27.23)
Sorafenib 100.3 (2.49) 6.58 (5.51)μM 1.00 (Fixed) 2.1 (12.38)
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drugs, individually or in combination, did not exert any anti-
proliferative effects on BXPC-3, a third pancreatic cancer cell
line that lacks the Kras mutation (36) (data not shown).

The analysis of single-agent data provided quantitative
measures of drug potency, steepness of the concentration–
response relationship, and maximal cancer cell growth
inhibition. For combinations of the two drugs, isobologram
analysis (not shown) suggested a slight antagonistic interac-
tion between them. Modeling of the data was used to analyze
the nature of the interaction quantitatively. Previously
published methods do not account for baseline variability;
the baseline plays an important role in pharmacodynamic
analysis, as it contains variability, as do all experimental data
points (37). To address this issue, all data, including that for
drug-free controls, were fitted by the model. This contrasts
with the traditional approach of normalizing data by the drug-
free controls, which obscures the contribution of errors in
baseline data to the drug concentration–response analysis.
Thus, the best-fitted R0 values were obtained by estimation,
as an alternative to normalizing experimental data by an
assumed error-free average of data for drug-free controls.

The results from all methods used to evaluate drug
interaction indicated a slight antagonistic interaction between
the two drugs on the tumor cell lines in vitro. Application of

the equation developed by Earp et al. (30) incorporates
inhibitory effects of each drug. Here, the conceptual incor-
poration of Ψ into the approach enables the determination of
whether combining two drugs results in a change in the
sensitivity of the individual drug effects (IC50 and Imax).
Alterations in IC50 (Table II) and Imax (not shown) of each
drug were investigated. Based upon the known pharmacology
of the two agents, it is difficult to decipher mechanisms of
interactions and which parameters were altered upon combi-
nation of the agents. But, from the parameter estimates and
indicators of model fits, it appears that the model in which an
alteration of IC50 for everolimus is hypothesized provided the
best fit. Nonetheless, all models suggested slight antagonistic
drug interaction.

Everolimus and sorafenib are cytostatic agents and differ
in their sites of action upon cell cycle progression. Everolimus
inhibits a key enzyme involved in cell growth and prolifera-
tion and arrests cells in the late G1 phase. In contrast,
sorafenib inhibits cells from transitioning into the G1 phase of
the cell cycle. The observed antagonistic effect observed in
vitro could be attributed to drug arrest of cells in one phase,
thereby rendering fewer cells susceptible to the full inhibitory
potential of a second drug that affects drugs in a subsequent
cycle phase.

In vitro testing of oncology drugs provides an opportu-
nity to investigate mechanisms of drug interaction that may
be difficult to identify in vivo. In vitro studies allow for rapid
assessment of the nature and mechanisms of interactions, and
the development of model-based analysis of in vitro results
can provide key quantitative parameters relating to cell-level
drug effects that can be applied to the subsequent analysis of
in vivo drug combination interactions. The results of this
study indicate absence of synergistic interaction between
everolimus and sorafenib on pancreatic cancer cells, and
additional studies that explored the sequence in which cells
were exposed to the drug yielded no evidence of enhanced
effects of the combination (data not shown).

In contrast, in vivo xenograft experiments, in which mice
bearing low-passage, patient-derived pancreatic cancer
explants were treated with combined sorafenib and ever-
olimus, exhibited supra-additive (synergistic) antitumor
effects (D.K. Pawaskar, R.M. Straubinger, G.J. Fetterly,
B.H. Hylander, E.A. Repasky, W.W. Ma, and W.J. Jusko;
Synergistic Interactions Between Sorafenib and Everolimus
in Pancreatic Cancer Xenografts in Mice; unpublished). The
lack of direct synergistic interactions of the two-drug combi-
nation on the rapidly dividing tumor cells observed here in
vitro suggests that in vivo efficacy of the combination may
arise from a significant contribution of drug effects on the
supporting tumor vasculature, tumor stromal cells, and the
tumor microenvironment. This finding not only underscores

Fig. 2. Fitted response surface using the Ariens–Chakraborty method
for drug combination data for MiaPaCa-2 cells. The mesh surface
represents a model fitting for Ψ01.20, which is the value of the
interaction parameter derived from the analysis of the data. The
triangles are data above the surface, and the circles are data below the
surface

Table II. Parameters for Everolimus and Sorafenib Interactions on Pancreatic Cancer Cells

Cell line

Modified Ariens method Modified Earp method

R0 (%) Potency (Ψ ) AIC/SC R0 (%) Potency (Ψ ) AIC/SC

MiaPaCa-2 96.93 (2.29) 1.20 (4.25) 746/755 99.15 (2.54) 1.48 (26.39) 760/770
Panc-1 110.8 (2.33) 1.01 (4.18) 1,135/1,146 109.7 (1.99) 1.06 (15.63) 1,134/1,146

AIC Akaike Information Criteria, SC Schwarz Criterion

82 Pawaskar et al.



the necessity for testing of drug combinations in vivo, but also
suggests that key insights into the interpretation of therapeu-
tic data may be gained by quantitative analysis of drug
interaction data from in vitro studies.

In conclusion, everolimus and sorafenib inhibit distinct
but interrelated signaling pathways and exert their effects in
different phases of the cell cycle. The results suggest that
pharmacological interactions between sorafenib and ever-
olimus in pancreatic cancer cells in vitro are no more than
additive and possibly slightly antagonistic. Modeling was used
to analyze and summarize quantitatively the nature of the
interaction. Similar results were observed for both analytic
methods. The mechanistic model that hypothesized that the
combination alters the IC50 of everolimus was the best fitting.
The results also suggest that tumors in vivo represent a highly
dynamic system, in which drug combinations affect multiple
cellular signaling processes and exert a spectrum of effects in
addition to those upon the tumor cells themselves, such as
inhibition of angiogenesis or modulation of tumor stromal
interactions. The approaches developed here for quantitative
analysis of drug combination effects upon tumor cells in vitro
can yield valuable information for the interpretation of
therapeutic results obtained in preclinical pancreatic cancer
models.
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