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Abstract. The identification and application of druggable pockets of targets play a key role in in silico drug
design, which is a fundamental step in structure-based drug design. Herein, some recent progresses and
developments of the computational analysis of pockets have been covered. Also, the pockets at the protein–
protein interfaces (PPI) have been considered to further explore the pocket space for drug discovery.We have
presented two case studies targeting the kinetic pockets generated by normal mode analysis and molecular
dynamics method, respectively, in which we focus upon incorporating the pocket flexibility into the two-
dimensional virtual screening with both affinity and specificity. We applied the specificity and affinity (SPA)
score to quantitatively estimate affinity and evaluate specificity using the intrinsic specificity ratio (ISR) as a
quantitative criterion. In one of two cases, we also included some applications of pockets located at the dimer
interfaces to emphasize the role of PPI in drug discovery. This review will attempt to summarize the current
status of this pocket issue and will present some prospective avenues of further inquiry.
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INTRODUCTION

The binding of a protein to many molecules occurring at
different binding pockets of a protein’s surface represents its
various biochemical functions. These diverse pockets of a protein
are particularly useful for target-based drug discovery as the
detection of these binding pockets is considered as a premise of
structure-based drug design. The most important task of a drug
designer is to search for small drug-like molecules blocking these
pockets on particular proteins related to some diseases. Further-
more, the identification and characterization of these binding
pockets is of critical importance to understand the nature of
molecular recognition and to enable functional annotation for
orphan proteins (1).

Here, we reviewed the recent advances and applications
with respect to the study of binding pockets, including binding

pocket identification, binding pocket characterization, binding
pocket druggability prediction, comparing different binding
pockets, as well as binding pocket flexibility. Due to the ever-
increasing concerns of pockets at the protein–protein interface
(PPI), we also highlighted recent progress in characterizing PPI
in drug discovery. The pocket characterization issue has been a
very active field of research over the past two decades. There are
many excellent reviews to address the binding pockets problem
(1–5). Here, we only reviewed some applications of computa-
tional analysis methods of binding pockets. Additionally, we
ended this review with two case studies to illustrate the
applications of some of current methods.

Pocket Identification

The identification of binding pockets is considered as an
initial step for structure-based drug discovery, after which a more
rigorous description of the pocket is sought (4). Intuitively, pockets
are surface concavities of proteins where a substrate might bind,
whereas the concept of “druggable” pockets refers to target
proteinswhere small drug-likemolecules have been shown to bind
(6–10). Other descriptions/definitions of binding pockets include
novel binding site centric chemical space (4), the establishment of
relationships across different target class (11), static pockets,
transient pockets, dynamic pockets (12,13), monomeric pockets,
as well as multimeric interfacial pockets (14–16). In summary, our
categorization, description, and understanding of binding pockets
is quickly evolving and is paving the way to the development of
novel therapeutics and improved treatment of human disease.

During the past two decades, along with advances in our
descriptions of binding pockets, many methods have been
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developed to improve their detection and quantitative charac-
terization, more than 30 different methods to date. They can be
mostly classified into two categories: geometry-based and
energy-based (for a detailed overview, see refs. 4,5).

Geometry-Based Methods

Binding pockets for ligands are usually clefts or cavities of a
protein. Laskowski et al. (17) have found that the ligand is bound
in the largest cleft in over 83% of the single-chain enzymes. Thus,
in many cases, the likely binding sites of an enzyme can be
identified solely according to geometrical criteria. The conclusion
is the underlying basis of geometry-based methods, and many
have subsequently been developed (for a recent review, see ref. 5).

Recently, Voss and Gerstein (18) have released the Voss
Volume Voxelator (3V) web server, which can help researchers
investigate the volumes of large macromolecules, especially the
internal volumes. In contrast to CAVER (19), 3V requires no
starting point. Furthermore, users can fine-tune the radius of the
probe to adapt to the size of any structure and its channels.
However, the CAVER method can be used to detect channels
on molecular dynamics (MD) trajectories or conformational
ensembles of a protein.

Huang and colleagues have further developed their
previous work (20) by incorporating four more methods with
improved predictive success. The new method MetaPocket
2.0 (21) exhibits a better performance over the previous
version for the common datasets. Specifically, it correctly
predicts >74% drug binding sites on protein targets from the
newly constructed dataset at the top 3 prediction.

Energy-Based Methods

There is no rule without an exception and not all binding
sites are the largest pockets or clefts of a protein. Energy-based
methods of binding pocket identification have addressed this
problem using changeable probes to detect the different binding
pockets (5). There are some energy-based methods that have
been developed to identify and characterize the binding pockets
(for a recent review, see ref. 4).

Laurie and Jackson (22) have proposed an approach to
identify the regions of a protein usually corresponding to
binding sites according to the interaction energy between the
protein and a simple van derWaals probe. Recently, Ghersi and
Sanchez (5) have emphasized the advantages of energy-based
methods over geometry-based ones. These energy-based meth-
ods can provide maximal flexibility to discriminate different
types of binding sites using the various chemical probes.And the
authors described the important characteristics of the combined
tools (EasyMIFs and SiteHound) and provided case studies for
use with these tools to illustrate binding site identification and
characterization. Recently, Yingjie et al. (23) have released the
SiteComp sever, which performs detailed ligand binding site
analysis with respect to the contributions of individual residues
with a pocket as well as the identification of subsites.

Schmidtke et al. (24) have compared the performance of
energy-based methods with geometry-based ones. For the
holo structures, all four algorithms including SiteFinder (25),
fpocket (26), ICM-PocketFinder (27), and SiteMap (28)
correctly identified around 95% of pockets, though they

performed with varying success when presented with the apo
structures.

In summary, geometry-based methods have some advan-
tages over energy-based methods, such as their computational
efficiency, their insensitivity to the input, as well as their
computational tractability (24). However, geometry-based
methods are not suitable to discriminate different types of
binding sites, and these methods tend to fail where the largest
pockets did not correspond to the binding sites. Undoubtedly,
each approach has advantages and disadvantages, and the
final decision on how to implement a method or which
method to be applied depends on the purpose at hand.

Recently, other approaches to identifying binding pockets
have been proposed. Fukunishi and Nakamura (29) have
developed a new approach called MolSite to predict the binding
sites of proteins bymolecular docking. TheMolSite method was
applied to 89 bound and 20 unbound structures for testing and
could correctly identify binding sites in 80–99% of the cases,
when only the single top-ranked site was considered. Ngan et al.
(30) have described a binding site identification method called
FTSite. This algorithm does not require any evolutionary or
statistical information but can correctly identify the binding sites
in over 94% of apo proteins from commonly used datasets
applied by other methods.

Pocket Characterization

Proteins interact with many molecules via the diverse
binding pockets to fulfill their biological function. In order to
understand the physicochemical principles underlying these
interactions, a thorough analysis of the binding pockets should
be a precondition for further study. In addition, shape and
chemical complementarity are the determinant factors of
molecular interaction and recognition. Then, following the first
step in identifying and predicting binding pockets, the detailed
analysis and characterization of these pockets will further
contribute to understanding molecular recognition and design-
ing optimal ligands with both high affinity and specificity. To
date, many properties and descriptors of binding pockets have
been developed and refined to characterize the pockets.

Accurately characterizing the binding pockets is the corner-
stone of pocket analysis. But there are still no gold standards to
delineate pockets of interest (4). Herein, we cover only some
applications of some of the various factors of binding
pockets rather than providing a broad overview of all available
properties, and most properties of binding pockets have been
reviewed in detail in Henrich et al. (3) and Pérot et al. (4).

Seco et al. (31) have incorporated hydrophobic and
hydrophilic interactions into MD simulations by the mixture of
isopropyl alcohol and water molecules. The authors can identify
the likely binding sites of the protein through the modified MD
simulations and find the desolvated regions. Due to the intrinsic
property of the isopropyl alcohol probe containing hydrophilic
and hydrophobic parts, this current approach can characterize the
polar and nonpolar properties of molecules by estimating the
maximal affinity. Søndergaard et al. (32) have made further
predictions concerning the pKa shifts relating to ligand binding
site residues and the corresponding ionizable ligand groups in the
PROPKA3.1 according to the improved empirical rules, which
are the extensions of the rules from the PROPKA3.0 software
package (33). The authors have included the predictions of ligand
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pKa value in the context of multiligand complexes, with
covalently coupled intraligand and noncovalently coupled
interligand interactions. In addition, a novel algorithm has
been proposed to identify the knotty pKa predictions concerning
noncovalently coupled ionizable groups. The new version 3.1 of
PROPKAwill contribute to better delineating and characteriz-
ing the binding pockets according to the prediction of pKa

property.

Pocket Druggability Prediction

The assessment and prediction of protein druggability
has been a hot topic in the pharmaceutical community for the
past decade. Due to the high attrition rate and failure rates in
drug discovery and development (34), the pharmaceutical
industry has an urgent need to prioritize suitable drug targets
based on solid and validated criteria in early stages of drug
discovery. Hopkins and Groom (9) made the first review on
chemical tractability by defining the term “druggability” as
the ability of modulating a protein related to a specific disease
by small molecules. Although druggability is still a debatable
concept (35), it is currently a hot topic in the review literature
(1,3,4,9,36).

After the characterization of binding pockets of a typical
druggable target using the diverse physicochemical and geo-
metric descriptors or properties favoring binding with high
affinity and specificity, the next step is to examine whether the
identified pocket is druggable. By assessing these properties or
descriptors in the context of the known druggable targets, the
quantitative criteria of druggability will be trained out to build a
model for further druggability predictions. Most approaches to
predicting druggability conform to the previously mentioned
flow (28,37–41). For example, Volkamer et al. (41) have
developed a druggability metric called DoGSiteScorer consid-
ering both the global properties of pockets and local similarities
shared between pockets. They found that the trained support
vector machine model from global descriptors can correctly
identify the druggability of a target of interest. But global
properties are subject to binding site flexibility and the way
pockets are defined. Therefore, they proposed a subpocket
prediction approach taking local pocket properties into account
in terms of a nearest neighbor search. Then, the authors further
confirmed that DoGSiteScorer can provide qualitatively and
quantitatively valuable data for druggability assessment accord-
ing to global and local measures. Furthermore, they also found
that size, shape, and hydrophobicity as the global pocket
descriptors are indeed important to automatically predict
druggability. Additionally, incorporating subpocket properties
for the assessment of druggability is of particular importance to
subpocket similarity detection. Recently, Perola and Herman
(42) have developed a novel algorithm to discriminate the
characterized binding pockets of protein targets. After a
comparative analysis between the binding pockets of 60 targets,
where approved drugs are bound, and a collection of 440 ligand
binding pockets, the authors obtained a set of simple rules
covering five key properties (volume, depth, enclosure, per-
centage of charged residues, and hydrophobicity) to assess the
chemical tractability (druggability) of prospective targets. Fur-
thermore, a preferred property space has been proposed based
on the previously mentioned five properties. Different from
some other methods (28,31,35,37,39,41,43) in pursuit of the

specificmeasure of druggability, the derived “druggability rules”
are simple and physically interpretable.

Currently, there are still no gold standards for character-
izing binding pocket properties and what constitutes a pocket
(4). Likewise, there is no unique definition of druggability
and its measure (1). However, these did not hamper the
applications of “druggability”. Palomo et al. (44) have applied
the fpocket algorithm (39) to carry out an extensive search
for druggable sites on glycogen synthase kinase 3 in
pursuit of the allosteric potential binding sites for further
drug discoveries.

Pocket Similarity

The hypothesis that homologous proteins typically have
similar sequences, three-dimensional (3D) structures, and
biological functions has promoted the elucidation of bio-
chemical functions of newly characterized proteins. However,
comparison of the overall protein sequences, folds, and
structures tend to fail to address the problem. Proteins with
dissimilar sequences or structures can also show similar
biological functions. As a rule, not all residues on a protein’s
surface are involved in molecular recognition; rather, binding
occurs at the binding pockets (45). So, focusing on the
comparison between local binding sites of a protein rather
than global sequences, structures, and folds provides an extra
opportunity to detect similarities of binding sites among
remotely relative, even heterogeneous, proteins for biofunc-
tional annotations.

Unearthing similarities between binding pockets should
also facilitate a fuller understanding of the chemical basis for
side effects. Several approaches and databases have been
developed for the functional annotation of proteins and
detection of similarity among binding pockets (see Table 2
in ref. 4). For example, the SitesBase database (46) can be
used to study the functions of the protein and generalize the
pharmacophores from the known small molecules. Further-
more, the database contains the precalculated similarities
between protein–ligand binding sites for easy retrieval and
the further classifications of binding sites.

As in the case of pockets druggability prediction, pocket
similarity prediction methods also conform to a basic flow:
identifying the binding pocket feature, scanning the similar
pockets, and assessing them (1). These methods use various
features to represent the binding pockets, from the intuitive
atom, residue, surface dots, etc., to abstract structural or
numerical descriptors of binding sites. Herein, we present
only some representative methods and the databases to
illustrate the applications for future drug discovery (for a
detailed overview of methods, see ref. 1).

Yeturu and Chandra (47) have developed the PocketMatch
program to compare the binding sites of proteins, which
employs the lists of sorted distances to encode the shape and
chemical nature of the sites of interest. The final similarity score
for pairs of sites derives from these lists aligned by an
incremental alignment approach. The sequence order–indepen-
dent profile–profile alignment (SOIPPA) (48) translates the
concrete 3D structures of proteins into the abstract 3D graphs
encoding the geometric and evolutionary information of binding
sites. These graph representations are then aligned using a
sequence order–independent alignment method for binding site
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comparisons. Subsequently, this approach was continuously
adopted for drug discovery (49–51).

Recently, Sael and Kihara (52) have developed the
Patch-Surfer approach to predicting the binding of a ligand
to a query protein. A binding pocket is considered to consist
of various segmented surface patches represented by a set of
properties, such as geometric shape, electrostatic potential,
hydrophilicity or hydrophobicity, etc. Then, these properties
of surface patches are described using the 3D Zernike
descriptor. The following comparisons between two binding
pockets are performed according to a modified weighted
bipartite matching algorithm.

The databases generated along with the binding site
comparison are expected to be useful for the annotation of
protein functions and rapid drug screening against targets related
to some diseases. And these databases can also provide valuable
information that will help determine possible side effects of the
drugs which can bind to multiple targets. In drug discovery,
finding a potential chemical entity binding to a target of interest
with high affinity and specificity is the core issue of drug design.
An appropriate and traditional approach is to retrieve a set of
related binding sites from homologous and nonhomologous
targets. Currently, these binding sites can be easily and rapidly
retrieved from the binding site databases (see Table 2 in ref. 4).
Then, one can discriminate the differences of binding affinity
modulated by ligands binding for high specificity.

Meslamani et al. (53) have released the sc-PDB database,
which is an archive of binding sites with functional annotations
based on the PDB database. It currently contains 3D structures
of 9,877 protein–ligand complexes (entries) consisting of 3,034
different proteins and 5,339 different ligands in total. The
selected complexes are chosen according to their corresponding
properties, such as ligand molecular weight, chemical structure,
buried surface area, etc. This database includes the comprehen-
sive information for proteins, ligands, and binding modes of
complexes. In addition, the sc-PDB can be used to perform
classifications of targets by binding site similarity. This will
facilitate ligand-based and structure-based drug design.

The PoSSuM database (54) houses a much larger
number of known binding sites compared to SitesBase (46).
Additionally, this database also contains potential ligand
binding regions predicted by the GHECOM program (55).
As of March 28, 2012, PoSSuM has stored 3,361,043 known
and putative binding sites from the PDB database. These
authors have developed an ultrafast method (56) based on
molecular fingerprinting (57) to perform the exhaustive
similarity search for over one million binding sites in a
reasonable time frame. The ligand binding sites are first
encoded as feature vectors according to their physicochemical
and geometric properties. Then, a fast neighbor search
method called SketchSort (58) is employed to enumerate
similar pairs in a huge number of binding sites. Finally, over
24 million similar pairs of binding sites were discovered based
on the current binding sites stored in this database.

Furthermore, Medvedeva et al. (59) have extended the
scope of binding sites into the gene field and developed a new
database, SitEx, which includes information on positions of
functional site amino acid in the exon structure of the
encoding eukaryotic genes. The authors have studied the
relationship of the exon–intron structure of the genes to the
protein functional sites by searching the sequential–structural

similarity among polypeptides encoded by single exons. This
resource incorporates projection of protein domains, func-
tional sites, and exon boundaries on proteins and coding gene
sequence. Currently, the database includes 9,994 functional
sites from 2,021 different proteins.

Pocket Flexibility

Putting protein flexibility into structure-based drug
design is a challenging task. Likewise, a vexing problem in
pocket characterization is dealing with a protein’s inherent
flexibility. How to account for the dynamic behavior of a
protein in the pocket field is of utmost importance to pocket-
based drug design. Although some bound complexes still
satisfy the “lock and key” model and Luque and Freire (60)
have revealed that the local regions with low structural
stability and regions with high stability coexist in the binding
sites, it is not always convincing to rely on a single rigid
conformation of a protein for further study. Eyrisch and
Helms (61) have found that the binding pockets can
frequently last some lifetimes in the context of protein
flexibility. However, these binding pockets have not been
identified in the crystal structures of the unbound protein,
whereas the native binding sites were clearly identified from
the bound structures when the corresponding ligand was
manually removed. Based on induced fit or conformational
selection theory (62), the interplay between the protein and
the ligand will significantly change the characteristics of the
binding sites upon binding. Hence, the collections regarding
the conformations of proteins will be useful for the analysis
and prediction of protein binding pockets. These conforma-
tions can be derived from experimental technologies includ-
ing crystallography and NMR or computational methods, e.g.,
MD, normal mode analysis (NMA), and graph-theoretical
approaches (12,13).

Some valuable protocols (63,64) have developed in order to
deal with the issue of flexibility. They usually generate conforma-
tional ensembles using MD and select some relevant conforma-
tions according to a set of criteria for further study using virtual
screening or molecular docking. These methodologies are useful
for capturing transient binding pockets or transient potential
binding sites. Eyrisch and Helms (61) have proposed the EPOSBP

approach to investigating the flexibility of pockets, which
identifies the transient pockets on a sequence of MD frames
using the geometry-based PASS pocket detection algorithm (65)
and clusters these pockets using the generated pocket-lining atoms
(PLA) and tracks their dynamic behaviors in a conformational
ensemble. Recently, Schmidtke et al. (66) have released a free
open source tool called MDpocket, allowing easy extraction of
binding pockets and gas migration channels from conformational
ensembles extracted from MD trajectories. Compared with
EPOSBP, MDpocket represents the pockets using a continuous
descriptor rather than splitting them into subpockets according to
clustering rules. However, the most important drawback of
MDpocket is the initial superimposition. Such a superimposition
frequently results in errors on conformational ensembles. Thus,
local structural alignment is more acceptable when using the
MDpocket package. Craig et al. (67) have also reported a novel
approach called PocketAnalyzerPCA; for the selection of the
representative pockets, the authors tried to address the problemof
how to prune conformation ensembles of a protein down to a
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subset with the substantially distinct binding pockets. Remarkably,
Kufareva et al. (68) have successfully constructed the Pocketome
database, which is regarded as an encyclopedia concerning the
experimental conformational ensembles of druggable binding
sites. The Pocketome includes a detailed classification of the
binding pockets within each conformational ensemble. The
current release of the Pocketome encyclopedia (August 2011)
contains 988 entries. This comprehensive resource will
tremendously facilitate progress in the fields of binding pocket
characterization, molecular dockings, as well as virtual screenings.

Pockets at the PPI

PPI are becoming fascinating and promising targets as a
consequence of their pivotal role in a large number of biological
pathways and networks related to diseases. Drug discovery
targeting PPI has become a hot topic in the scientific and
industrial communities (69). However, compared with proteins,
the applicability of PPI to drug design is hindered by the intrinsic
properties of protein–protein interaction interfaces. The binding
site of a protein often corresponds to the large or deep pocket on
the protein surface, whereas most PPIs are intrinsically disor-
dered and shallow, and these PPIs are mostly not continuous
regions consisting of multiple “hot spots”. Although the
identification of these noncontiguous “hot spots” will signifi-
cantly contribute to the understanding of protein–protein
interactions, those insignificant-seeming non-hot spots may be
associated with specificity. Furthermore, another hurdle is the
more extensive range of structural flexibility of PPIs relative to
single protein binding pockets. Some reviews have provided
detailed insights into the PPI (4,14,70–72). Herein, we only give
a brief overview of recent efforts directed towards PPIs for drug
discovery.

Recently, Gao and Skolnick (16) have reported the
distribution of ligand binding pockets at PPI, assisting in
understanding the underlying interplay between PPI and
protein–ligand binding pockets. The authors scanned 1,611
representative protein–protein complexes to detect the poten-
tial ligand binding pockets. The results show that these identified
ligand binding pockets are mostly located within 6 Å of PPI.
Ligands are spatially closer to the PPI compared with a random
surface patch from the same solvent-accessible surface area. The
authors further investigated the ligand distribution around
domain–domain interfaces in 1,416 nonredundant representa-
tive two-domain protein structures and obtained similar results.
This study gives a key underlying formation mechanism of the
ligand binding pocket, which lies in the packing surrounding PPI
or domain–domain interfaces. This work provides a clue to the
detection and identification of ligand binding pockets. Mysinger
et al. (73) have performed comparative virtual screening against
the homology model and the newly released crystal structure of
CXCR4, a typical PPI target, for novel PPI inhibitors, respec-
tively. The different performances of two virtual screenings
demonstrate the significant influence of structures on structure-
based drug design. The results show that only one antagonist
with low specificity and high similarity with known ligands was
identified using the homology model, whereas four compounds
with novel scaffolds and high specificity were discovered based
on the crystal structure. This further confirmed that the crystal
structure as a starting point for structure-based drug design is
more reliable and useful for PPI discovery. And among the four

novel compounds, one compound with 306 nM has a ligand
efficiency of 0.36. Thus, it rationalizes structure-based attempts
to discover leads for chemokine G protein-coupled receptors.
Gautier et al. (74) have performed virtual screening against the
vascular endothelial growth factor receptor (VEGFR) D2
domain, which has a very flat PPI and is a promising target for
antiangiogenic treatments. The authors have identified 20 active
compounds that each has an IC50 in the micromolar range and a
common thiophene unit. Further investigation revealed that the
most active compound can effectively inhibit theVEGF-induced
VEGFR-1 transduction pathways. The findings suggest that this
optimal hit may provide a promising chemical scaffold consti-
tuting a potent probe against cancer and other VEGFR-1-
dependent diseases; these results support structure-based PPI
drug discovery efforts even for very flat interfaces.

Case Study: Targeting the Binding Pockets on Ras Protein
Surface and Interfaces for Lead Generation

The release of the complete 3D crystal structure of H-Ras
“state 1” with two stable surface pockets (75) provides new
insights into the underlyingmechanism for the state transition of
the Ras protein and facilitates structure-based drug design. The
structural determination of the complexes (1wq1:Ras-GAPs
(76); 1nvw:Ras-GEFs (77); 1gua:Ras-Raf (78); 1he8:Ras-PI3K
(79); 1lfd:Ras-RalGDS (80)) also support the development of
PPI inhibitors targeting their interfaces. In our previous study,
we had performed some investigations regarding the Ras
protein using computer-aided drug design (CADD), which
focused on one Ras-GTP intermediate state (a transient surface
pocket of the H-Ras protein) for the potential inhibitors (81). In
this review, we further investigated the Ras-GTP “inactive”
state 1 targeting a series of transient states (surface pockets) of
H-Ras protein through the ensemble-based virtual screening
method for potential inhibitors. Furthermore, due to Ras
protein’s key role in the signaling pathway, modulating its
biological functions by blocking pockets at the interfaces will aid
in finding PPI inhibitors. Thus, we have also performed a series
of virtual screenings against these pockets. We have presented
the corresponding schemes of two case studies in this review
(Fig. 1).

Case Study: Targeting the Potential Allosteric Pockets on Src
Kinase for Lead Generation

The notorious flexibility of kinase enormously hampers
the development of structure-based drug design against the
whole kinase family. Currently, the ensemble-based virtual
screening technology taking the conformation changes into
account was proposed to attempt to address the problem of
protein flexibility (63,64). Shan et al. (82) have performed
comprehensive MD to capture the process of ligands binding
to the native binding site of Src kinase, and a potential
allosteric site was found during the process of binding. The
discovery of this novel allosteric site opens up an exciting new
avenue for the discovery of novel Src kinase inhibitors.
Furthermore, information concerning the dynamics of the
ATP-binding site and the allosteric site gives us a clue to
probe into the problem of pocket flexibility. With the aim of
identifying multitarget or multipocket drugs, we employed
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two ensemble-based virtual screenings to find hits against the
ATP-binding site and the allosteric site concurrently.

METHODS

Construction of the Focused Library for Ras and Src Kinase
Protein

For theRas protein, compounds in the ZINC (83) database
using the Tanimoto score of 0.8 as a threshold for the potential
inhibitor (81) were selected, and de novo design based on the
scaffold of the potential inhibitor (see Fig. 6 in ref. 81) has been
carried out using the autogrow package (84) according to the
default parameters to find its derivatives. The ADME/Tox
Filtering was carried out via the online FAF-Drugs2 tool (85).
Finally, we have obtained 90 chemical entities for the subse-
quent screenings. Under the same protocol as the Ras system,
for the native binding site and the potential allosteric binding
site (one pocket labeled “a” in ref. 82), we have also performed
de novo design using the autogrow package to obtain the PP1
derivatives. We also got the chemical compounds similar to the
PP1 according to the same criterion as Ras protein. The 25
chemical entities have been chosen for further calculations.

Generation of Conformational Ensembles for the Flexible
Pockets

In the Ras protein case study, we applied the EN.NMA
approach developed by Rueda et al. (86) to generate
conformational ensembles. The method is simple to use
without any a priori knowledge concerning the structures of
interest. Additionally, this method is fast and generally
represents the equilibrium dynamics of various structures
without any further refinements. The crystal structure of the
H-RAS (1XCM (87)) was used as a template. One hundred
frames were obtained for the following pocket analysis.

For Src kinase, MD is more suitable to the Src kinase
system possessing apparently tremendous conformational
changes. The MD trajectories of the Src–PP1 system have
been obtained from Shaw’s group (82), for which they have
applied the all-atom model MD to capture the binding
process of PP1 binding to the ATP-binding site. In this case
study, we have chosen two types of conformations (according
to Fig. 2A in ref. 82): (1) where the PP1 has been bound to
the ATP-binding site steadily and (2) where the PP1 was
located in the predicted allosteric site.

Flexible Pocket Analysis

As previously mentioned, we have reviewed some pack-
ages for the analysis and detection of the transient pockets on
static structures or conformational ensembles of a protein.
Here, we applied the EPOSBP method to complete the task,
some geometric and physicochemical pocket properties
(volume, polarity, and depth) are calculated for each
conformation. Two output files, the “patch file” and the
“pocket-lining atom (PLAs)” are then generated, the former
is used to calculate the pocket volume and identify the PLAs
and the classification of the binding pocket of each
conformation are performed based on the latter (PLAs).
The resultant analysis result will contain the information
concerning the properties and clusters of binding pocket in
the conformation ensembles. Instead of clustering by
conformation, we have carried out the clustering by pocket.
Hierarchical clustering of the specific pocket ensembles based
on the corresponding properties of binding pockets, such as
volume and depth, was performed using MATLAB’s
Clustergram algorithm (88,89). Thus, we can achieve the
aim of reducing the conformational ensembles into a subset
according to the pockets, which contain the representative
pockets for the subsequent calculations.

Ensemble-Based Virtual Screenings for the Kinetic Pockets
of Ras and Src Kinase Protein

Next, we have performed a series of virtual screenings
against the transient pockets located between switch I and GTP
in the Ras protein extracted from the obtained conformational
ensembles. The GNP and the cofactor Mg2+ were retained for
the screenings; and the water molecules interacting with the
magnesium ion were also retained. The other cofactors, water
and sugars, were discarded. The side chains and termini protons
were assigned using the corresponding protonation states at
pH 7.0 as a template. The initial preparation regarding the
conformations and the cofactors retained is determined by the
AutoDock Tools (90). All docking calculations were performed
with the AutoDock package (91) to sample the conformation
space of the ligands for further specificity and affinity (SPA)
score and intrinsic specificity ratio (ISR) calculations. The
compounds from the focused library were docked into each of
the four representative pockets of the ensembles generated by
simulation tools.

The Autogrid, with 60×60×60 grid size and value of
0.375 Å spacing centered on the special position in the
binding pocket, was prepared using the AutoDock tools (90).
Dockings were performed based on the empirical free energy
function (the AutoDock4.2 score function) and Lamarckian

Fig. 1. The scheme of two case studies in this review
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genetic algorithm for sampling. Molecular modeling was
carried out based on the following parameters: the population
size of 100 and the energy evaluation of 100,000 per run with
the maximum number of generations of 27,000. The other
parameters were set at default values. The number of docking
runs was 1,000. The docking results were evaluated according
to the predicted binding energies. And the subsequent cluster
analysis based on the root mean square deviation (RMSD)
value of <2.0 Å was carried out. The same protocols have
been carried out on the Src kinase system targeting the native
site and the potential allosteric site.

PPI-Based Virtual Screening for the Pockets at PPI
for the Ras Protein

In order to discover the potential PPI inhibitors, the PPI
involving SOS and GAPs as well as the primary downstream
factors Raf, RalGDS, and PI3K were chosen to construct the
target library. Fuller et al. (14) indicate that the methods of
binding pockets identification will be a promising tool for drug
design and discovery targeting the PPI in the context of known
structures. So, the potential pockets at the interfaces involving
five proteins have been detected by MetaPocket (20,21), which
have currently included eight different pocket detectionmethods
for higher accuracy (see the “Pocket Identification” section),
with the centers of the pockets predicted by the different
methods shown as colored spheres. The series of virtual screen-
ings have been performed under the same protocols as the
ensemble-based virtual screening part, making interactions
between the different binding pockets located on the interface
regions and the focused chemical library constructed previously.
The downstream effectors (RalGDS, PI3K, and Raf) interact
with the conserved region of the Ras protein through the Ras
binding domain. However, the interactions involving GAP and
SOS occur at different regions of the Ras protein surface.

Rescoring and Specificity Evaluation for Hits

Although affinity has been quantified and studied
intensively, the quantification of specificity is far less
addressed. We developed a novel scoring function called
SPA to quantify specificity in addition to affinity (92). Each
sampled docking pose was rescored with the SPA scoring
function to predict the corresponding affinity and the native
structure pose discriminating against others. SPA is based on
our energy landscape theory of biomolecular recognition, in
particular, docking, with the aim of simultaneously optimizing
the ISR and the affinity predicted.

Conventional definition of specificity is the discrimination of
a ligand against all available receptors. In otherwords, in order to
judge whether or not a compound is specific to a receptor target,
one has to explore the whole universe of receptors in order to see
whether the affinity of this ligand–receptor pair has a discrimi-
nation against all the others. This is impossible to realize in
practice since not all the receptor proteins are known and not all
the known ones have determined structures. Our approach is
based on a thought experiment (see Fig. 2). Imagine we connect
all the receptors by linkers (for example, connecting the N
terminus of a protein and the C terminus of another by glycines),
and then the whole universe of receptors now becomes one giant
protein. The discrimination of ligand binding to a specific

receptor against the rest of the others becomes the discrimination
of ligand binding to a specific (native) pocket or binding site
against the rest of the other binding sites. Therefore, under the
assumption that the receptor protein is large enough, specificity
can be quantified by discrimination of the affinity of the native
pose against the rest of the other non-native binding poses of this
ligand binding to this receptor.We term this specificity as intrinsic
specificity to differentiate this specificity from the conventional
definition of specificity.We see under the assumption of receptor
protein being large, the two definitions are equivalent. The
quantitative issue is how large the protein should be in order to
see the approximate equivalence. Since the protein folds have
been estimated to be on the order of a thousand, the actual
number of interactions of the ligandwith the receptors is finite. In
other words, one does not have to go through the whole universe
of proteins to quantify specificity. Or in other words, a large but
finite size protein may already contain most of the interactions
encountered for ligand binding. Obviously, searching for all the
binding sites or poses of a particular finite size protein for
quantifying specificity is far easier than searching for the whole
universe of the receptors for quantifying specificity in the
conventional way. For this, we have tested the ligand binding
with Cox2 enzyme receptors. The preliminary results show the
strong correlation between conventional specificity and intrinsic
specificity.

Intrinsic specificity can be quantified by a dimensionless
ratio, called ISR. It was defined as dE

E
ffiffiffiffi

2S
p . According to the

energy landscape theory, the conformation or the pose of the
ligand–receptor complex with the lowest binding energy is
considered as the native one (in practice, there will be an

Fig. 2. Illustration of the relationship between intrinsic specificity and
conventional specificity as well as the corresponding energy spectrum. a
The conventional definition of specificity is the difference(s) or
discrimination(s) in affinity of the target receptor against other receptors
binding to the same ligand; b the definition of intrinsic specificity is the
difference(s) or discrimination(s) in binding energies of native (lowest)
binding mode or site against other non-native binding modes (pockets)
for a ligand binding to a receptor. The giant receptor here can be
considered as the combination of many smaller receptors connected by
certain linkers. When the giant receptor is large enough to cover all the
possible ligand–protein interactions, the definition of intrinsic specificity
is equivalent to the definition of conventional specificity. The receptors
are colored blue; the yellow ball represents the ligand
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ensemble of native binding states) and the binding energies of
the rest of the non-native conformations or binding modes
are statistically distributed. Then, δE is defined as the energy
gap between the conformation of the native binding complex
and the average of the non-native ones, ΔE is the energy
dispersion or the square root of the variance of the non-
native conformations, and S corresponds to the configura-
tional entropy. A large ISR corresponds to a high discrimi-
nation of the native conformation against the others,
therefore a high intrinsic specificity. As mentioned, we have
demonstrated that the intrinsic specificity correlates with the
conventional specificity. Therefore, ISR provides a quantita-
tive measure of specificity independent of the prior knowl-
edge regarding all the other receptors (the receptor universe)
against a specific drug.

The SPA scoring function developed by us based on the
intrinsic specificity previously discussed shows the best perfor-
mance against 16 other popular scoring functions on both affinity
prediction and the ability to reproduce the X-ray crystal pose.We
demonstrated that it is possible to classify the small molecule
compounds into the marked drugs and the random small
molecule library, even into the selective drugs and the nonselec-
tive ones only using the SPA score function alone. Thus, the SPA
can be employed as a new score function for lead compound
discovery. Then, the compounds ranked as the top 5 with SPA
were selected out to build a hit library for each binding pocket.
Filtering for specificity by ISR (93,94) was carried out for
screening the number of hits for further testing. We are applying
SPA with the quantification of both affinity and specificity to
several other targets for uncovering the lead compounds.

RESULTS

For the Ras protein, firstly, the top5 results were selected
out for the individual virtual screening. Our aim is to find the
multitarget drugs affecting multiple relevant targets in a parallel
fashion. In this case, the multiple targets include the Ras protein
and the relevant proteins along the signaling pathway and
biological process related to Ras. Thus, we have obtained two
multitarget hits (Fig. S1) against the transient binding pockets of
multiple conformations of theRas protein and the five predicted
binding pockets at the interfaces involving SOS, GAPs, and
downstream effectors, namely, PI3K, RalGDS, and Raf, with
high affinity and specificity. Herein, we have rescored the decoys
generated by the AutoDock package using the SPA score for
affinity and evaluated specificity by ISR. For the Src kinase
system, according to the same protocol as the Ras protein, two
hits (Fig. S2) have been discovered simultaneously targeting the
ATP-binding site and the allosteric site predicted by the MD
simulation. The experimental validations of these potential hits
presented herein are currently underway.

DISCUSSION

Targeting the Kinetic Pockets on the Ras Protein for Lead
Generation

Conformational changes in proteins modulated by ligands
are a very common phenomenon; obviously, it can impact the
characterizations of binding pockets. Handling pocket flexibility
resulting from the conformational changes of a protein remains

a formidable challenge (see the “Pocket Flexibility” section).
Currently, a number of methods can be used to generate these
diverse conformations of a protein, such as MD and NMA. In
this case study, we have applied the NMA method to generate
conformations of the loop, in which the surface pocket of
interest is located (Fig. 3). In conformational selection theory
(62), for the energy landscape explored by the unbound protein,
the majority of conformations occupy the lowest energy states,
except for the minor higher-energy states. Then, the various
conformations are screened out by various binding partners
among the conformational ensembles to fulfill the biological
functions, whose binding sites undergo the corresponding
changes to fit these partners. For the activated Ras protein
with GTP binding, the NMR structures (95) without the
corresponding protein partner did not present the low-frequen-
cy transient pocket (the potential intermediate bound state
(87)); this experimental information further confirms this theory.
So in order to sample the low-frequency neighboring states
similar to the intermediate, maintaining this open conformation
of the loop will largely reproduce the bound state. Although
Eyrisch and Helms (96) have concluded that the conformations
generated by NMAmethods had the smaller pockets compared
with MD simulations, the NMA method, which can generate
much smaller RMSD from the experimental structures than the
MD methods, is more suitable for this system. The calculated
RMSD values based on the NMA conformations were nearly
constant (Fig. 3), which enables the binding pocket to be
available to biological functions. On the contrary, as a result of
the enhanced conformational sampling of the tCONCOORD
(97), the method generating the pockets comparable to those
observed in MD methods is not suitable for this system, it
generated many different conformations of this loop from the
NMR or crystal structures frequently circumventing the inter-
mediate state (data have not been presented).

Additionally, selection of the relevant conformations
among a pool of conformations suitable for the subsequent
virtual screening is another complication. Cavasotto et al. (98)
have found that the large number of normal modes for
generating the conformations is debatable. However, if the
normal modes only involving the local regions, such as

Fig. 3. Potential ligand binding sites identified on the Ras conforma-
tional ensembles. The site is colored orange, and the GTP is shown as
ball and stick model
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pockets, are applied, the NMA method is acceptable with the
least number of normal modes. Furthermore, Sperandio et al.
(64) have also proposed a new protocol to attempt to address
the problem of generation and selection of conformations. In
this protocol, the authors chose the relevant conformation
according to the properties of global conformations and local
binding pockets. So, in the case study, we employed the
EN.NMA method to generate the conformations in the
context of the binding pocket, which are structurally related
to the crystal conformation (Fig. 3). Next, we explored the
characteristics of binding pockets to cluster the pockets of
conformations to select out the representative conformations
for the virtual screenings (Fig. 4). This step was carried out
using the EPOSBP method, which performs the detection of
binding pockets in each conformation of the conformational
ensembles by the program PASS (65) and calculates the
properties of binding pockets, such as volume, polarity, and
depth, for clustering. As previously mentioned, we have
primarily introduced three methods attempting to address
problems of the dynamical behavior of binding pockets,
including the EPOSBP, PocketAnalyzerPCA, and MDpocket.
Among these methods, only EPOSBP maps the binding pockets
to a set of concrete PLAs. However, the identified pockets with
the other two methods are mapped to a grid representation.
MDpocket can detect the diverse transient binding pockets,
such as druggable pockets and big external pockets; however,
according to the various sets of parameters, to obtain the 3D
structures of the conformations containing the transient binding
pockets of interest corresponding to the calculated grid points,
further conversions are needed but inconvenient. EPOSBP is
enough to deal with specific pockets, though it does not use a
continuous pocket representation. Likewise, an advantage of
PocketAnalyzerPCA compared with EPOSBP is that it directly
applies the pocket shape descriptors rather than a set of atomic
coordinates to represent the pockets. It can avoid some common
problems arising from the methods based on the atomic
coordinates, but using the outputs of PocketAnalyzerPCA as
the starting points of structure-based drug design also needs the
technically detailed explanations. So in the case studies, we
applied the EPOSBP to perform the pocket analysis.
Considering few properties tracked in the EPOSBP, we added

the number of pocket-lining atoms (NPLA) as a rough
descriptor for the pocket size. The analysis and clustering
allowed us to choose four different binding pockets, which
were shown in Fig. 5, respectively. The four pockets as the
starting points provide the structural information for the
subsequent virtual screening.

The focused library we built was docked against these
identified pockets in ensemble-based virtual screening using
the AutoDock package (91). All compounds were able to
bind to all four pockets. Then rescoring was performed to re-
rank the chemical compounds using SPA. Herein, one thing
to point out is that we applied SPA (92) based on the energy
landscape for the following re-scorings. Many score functions
have been developed in the past two decades (for a detailed
overview of the comparisons for score functions beyond the
scope of this review, see ref. 81). The compounds ranked in
the top 5 were selected for the evaluation of specificity to
further reduce the hits’ size.

Targeting the Pockets at PPI for Ras Protein for Multitarget
Leads

Protein–protein interactions play a key role in drug
discovery, and the study concerning the underlying mecha-
nism of their modulation by ligands remains challenging. The
detection and characterization of binding sites located on the
PPI is of upmost importance in structure-based drug design.
The methods of identifying these binding pockets can provide
valuable information for subsequent drug design efforts, such
as molecular docking method and virtual screening technique.
In the case study related to the Ras protein, we have covered
the PPI-based virtual screenings against the pockets at the
different interfaces involving the key players in the Ras-
related pathway and Ras cycling (Fig. 6). Some pockets were
detected using MetaPocket (20,21) and were shown in Fig. 6
as colored spheres, with the pockets located at the interfaces
surrounded by green circles. Herein, it should be stressed that
the MetaPocket (here, MetaPocket 2.0) method was applied
to detect the pockets at the interfaces with a twofold purpose.
First, it is a simple online tool to identify pockets and only
needs the PDB structures or PDB IDs as inputs. It outputs

Fig. 4. The heat map clustering of the binding pocket on the Ras protein. The horizontal axis labels
are colored by properties of pockets (red for volume, green for depth, polarity, and NPLA; for
further details, see the “Methods” section). Major pockets are indicated by the orange labels and
corresponding marginal dendrograms
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the standard PDB files and can be directly downloaded. The
computational performance of MetaPocket is fast (10 to 30 s),
even if all predictions are from eight different prediction
methods. Second, its pocket prediction performance is good
enough (see the “Pocket Identification” section), allowing us
to consider it as the first choice. MetaPocket 2.0 outper-
forms the previous MetaPocket 1.0 and eight individual
prediction methods (for detailed data, see Table 1 or 2 of
ref. 21).

The focused library we built was also docked against
these identified pockets in PPI-based virtual screening using
the AutoDock package (91). Due to the intrinsic properties of
PPIs (see the “Pockets at the PPI” section), these compounds
bind to the different binding pockets in each of the PPIs
(Fig. S3) with different binding modes, but the docking poses
are all within a 6Å distance from protein interfaces. This is in
line with the conclusion in ref. 16.

With the advent of systems biology, a new way of looking
at drugs in the form of holism is blooming and pathway-based
and network-based drug discovery has become the main-
stream. Drug design efforts focusing simultaneously on
several targets related to a pathway or networks for multi-
target drugs are attracting more and more the attention of big
pharma. In the case study related to Ras, with the aim of
finding multitarget leads with high affinity and specificity, we
employed ensemble-based virtual screening and PPI-based
virtual screening against the kinetic pockets of Ras and the
static pockets at the PPIs, respectively. Finally, we have
theoretically identified two compounds, which are expected
to modulate the interconverting conformations between “inac-
tive” state 1 and “active” state 2 of activated Ras and to disrupt
the interfaces involving the key players in the Ras-related
pathway and Ras cycling (Fig. 6).

Targeting the Kinetic Pockets of ATP-Binding and Allosteric
Binding Sites of Src Kinase for Multitarget Leads

The identification of putative allosteric sites is still a
major challenge, though steady progress in this field is paving
the way for drug discovery. Allosteric sites may provide an

Fig. 5. The binding pockets of four representative conformations of
the Ras protein. The negative image of the pockets formed by the
probes and the PLAs are shown as colored surface on the right; the
Ras protein is shown as surface model containing the GTP (ball and
stick model) and the cofactor Mg2+ (green dot) as well as the water
molecules interacting with the magnesium ion (red dot) on the left.
The orange rectangle indicates the positioning of these binding
pockets on the Ras protein

Fig. 6. The binding pockets at the interfaces of Ras proteins with SOS, GAPs, RalGDS,
Raf, and PI3K, respectively. The cycling between the active and inactive states of the Ras
protein controlled with GEF (SOS) and GAP proteins is described, then the complexes
containing five proteins previously mentioned are shown as a cartoon model (grey) and
placed at the corresponding positions. The GTP on the Ras protein as an indicator is
shown as ball and stick model, the centers of predicted pockets are labeled using the
colored spheres (for further details, see the “Methods” section), the centers of predicted
pockets at the interfaces are highlighted (green circle)
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alternative way to disrupt protein function, especially in cases
where the active sites of related proteins are almost identical,
such as within the kinase family, which is highly conserved at the
ATP-binding site. This potential allosteric site presents a
promising opportunity for further drug design efforts. Shan et
al. (82) have carried out MD simulations to capture the process
of ligand binding to the target in great detail. We have obtained
the corresponding trajectories for further study. As mentioned
in the Ras case, MD can be used to generate the conformational
ensembles. In this case study, we chose the corresponding
frames for constructing the focused conformational ensembles
to address the allosteric sites flexibility problem. The putative
allosteric site and ATP-binding site are shown in Fig. 7.
Compared with the allosteric site, the ATP-binding site is

deeper. We have also selected out the four representative
pockets concerning the ATP-binding site and the allosteric site
using the same protocol as the one in the Ras case study,
respectively (Figs. S4 and S5; Figs. 8 and 9).

The focused library we built for the Src kinase was docked
against the ATP-binding site and the predicted allosteric site in
ensemble-based virtual screening using the AutoDock package
(91), respectively. All compounds target the same pockets in
each of the binding sites. Actually, the allosteric site is a
neighboring pocket of the ATP-binding site, which can be
considered as the ATP-binding site peripheral regions. Thus, it
facilitates further chemical modifications (such as fragment
growing) based on the discovered leads targeting the ATP-
binding site or this allosteric site (Fig. 7).

In the case study related to Src kinase, along the same
line as the Ras case, we employed ensemble-based virtual
screening against the kinetic ATP-binding site and the
allosteric site of Src kinase, respectively, aiming to find the
hits that can bind to two pockets concurrently, with high
affinity and specificity. Finally, two compounds were initially
identified by targeting the allosteric site and the ATP-binding
site of the Src kinase protein (Fig. S6).

It is worthwhile to point out that targeting the PPI to
modulate the biochemical process is also an application of
allostery to some extent, so the pockets at the PPI may provide
us a diverse and potential source for finding the allosteric pockets.

CONCLUSIONS AND FUTURE PERSPECTIVES

The binding pocket issue is a hot field of research with
immense potential. In this review, we have attempted to cover
the key efforts regarding the characterization of binding
pockets applied to CADD, such as the identification of
binding pockets, the comparison of binding pockets, the
characterization of binding pockets, the druggability predic-
tion of binding pockets, as well as to pocket flexibility.

Fig. 7. Potential ligand binding sites identified on the Src kinase
conformational ensembles. The allosteric site is colored green, and the
native ATP-binding site is colored orange. From the structural point of
view, the allosteric site can be considered as a periphery of theATP-binding
site

Fig. 8. The ATP-binding sites of four representative conformations of
the Src kinase. The Src protein is shown as a cartoonmodel, the negative
image of the pockets and PLAs are shown as colored surfaces, and the
corresponding PP1 is shown as a ball and stick model

Fig. 9. The allosteric sites of four representative conformations of the
Src kinase. The Src protein is shown as a cartoon model, the negative
image of the pockets and PLAs are shown as colored surfaces, and
the corresponding PP1 is shown as a ball and stick model
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Functional annotation and identification of binding pockets
are of great importance in the prediction of unknown protein
functions and in drug discovery. The detailed analysis of
binding pockets can give us the insight needed to optimize
leads for higher affinity and specificity. Comprehensive
understanding of the pocket space will also be useful to
identify and avoid serious side effects and any undesirable
“promiscuity” on a system scale. Apart from the self-
development of pocket characterization, the pocket space
can provide a platform to integrate many methods from
several research fields to address a host of problems endemic
in drug discovery. Many significant efforts have been devoted
to describing pocket flexibility and to applying mathematical
modeling to sieve the representative conformations from a
large set. Additionally, targeting the pockets at the PPI is
becoming a more prominent focus in the field of drug
discovery. Undoubtedly, this current review is noncompre-
hensive and has possibly missed many important investiga-
tions regarding the pocket issue, but the recent progress in
the area of pockets is encouraging and should prompt the
drug designer to explore this interesting topic.
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