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Abstract Members of the nonmuscle myosin-2 (NM-2)

family of actin-based molecular motors catalyze the con-

version of chemical energy into directed movement and force

thereby acting as central regulatory components of the

eukaryotic cytoskeleton. By cyclically interacting with

adenosine triphosphate and F-actin, NM-2 isoforms promote

cytoskeletal force generation in established cellular processes

like cell migration, shape changes, adhesion dynamics, endo-

and exo-cytosis, and cytokinesis. Novel functions of the

NM-2 family members in autophagy and viral infection are

emerging, making NM-2 isoforms regulators of nearly all

cellular processes that require the spatiotemporal organiza-

tion of cytoskeletal scaffolding. Here, we assess current

views about the role of NM-2 isoforms in these activities

including the tight regulation of NM-2 assembly and acti-

vation through phosphorylation and how NM-2-mediated

changes in cytoskeletal dynamics and mechanics affect cell

physiological functions in health and disease.
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Introduction

Nonmuscle myosins constitute one of the most abundant

and versatile group of molecular motors in eukaryotic cells.

Their name is a misnomer as NM-2 isoforms are also

present in cardiac, skeletal, and smooth muscle cells,

though in much smaller quantities than the sarcomeric

myosins. Both during embryonic development and in

mature multicellular organisms, NM-2 isoforms act as

important regulators of the highly flexible and adaptable

actin cytoskeleton [1, 2]. In response to extra- and intra-

cellular cues, the motor activity of NM-2 isoforms

contributes to the spatiotemporal organization of the local

actomyosin network resulting in contractility and pattern-

ing. NM-2 isoforms contribute thus in a critical way to the

cell’s ability to respond to changing requirements in order

to carry out physiological functions [3].

NM-2 isoforms are conventional members of the myosin

superfamily of actin-based molecular motors, one of the

largest and most diverse protein families in eukaryotes. The

members of the myosin family have been assigned to 35

classes, 12 of them are produced in humans [4]. Conven-

tional or class-2 myosins comprising the so-called skeletal,

smooth, cardiac, and nonmuscle isoforms form the largest

subfamily [4].

NM-2 is a collective term defining three distinct iso-

forms in vertebrates; nonmuscle myosin-2A (NM-2A), -2B

(NM-2B), and -2C (NM-2C). The corresponding heavy

chains (NMHC) are encoded by different genes (MYH9,

MYH10, MYH14), which are located on three different

chromosomes [5–8]. NM-2 isoforms exhibit 60–80 %

sequence identity at the amino acid level. Phylogenetic

analysis indicates a closer relationship between NM-2C

and smooth muscle myosin than between NM-2C and the

other NM-2 isoforms (Fig. 1) [5]. Despite a high level of

sequential and structural conservation, NM-2 isoforms

comprise distinct enzymatic properties and subcellular

localizations, suggesting that the isoforms serve specialized

cellular functions, even though some cellular functions are

interchangeable [9–12].

As downstream effectors of numerous signaling path-

ways, NM-2 isoform activity and assembly state are tightly
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regulated. Aberrant regulation and functional impairment

of NM-2 isoforms has been associated with the onset and

progression of malignancies, including cancer and altered

immune response. The prominent role of NM-2 aberrations

in disease processes emphasizes the protein’s role in

maintaining mammalian homeostasis [13].

Current knowledge about the function of conventional

myosins in nonmuscle cells is in part derived from model

organisms such as Dictyostelium discoideum, Caenorhab-

ditis elegans, Drosophila melanogaster, and Xenopus

laevis. Dictyostelium and Drosophila express a single

NM-2 gene, Dd mhcA and Dm zipper, making them well

suited for genetic analysis and biochemical studies on gene

expression, function, and regulation [14, 15]. However, the

production of three NM-2 isoforms in vertebrates creates

the need for studying NM-2 function and regulation in

more complex systems such as mouse models. As outlined

below, ablation of NM-2 isoforms in murine models pro-

vides the opportunity to study NM-2 isoforms in a tissue-

specific and developmentally dependent context and serves

as a model system for NM-2-related diseases.

Structure

NM-2 is a hetero-multimeric protein complex consisting of

a NMHC homodimer that is non-covalently associated with

two sets of myosin light chains. At the amino acid level, the

NMHC is structurally and functionally characterized by an

asymmetric modular organization, containing a N-terminal

motor domain, an intermediate neck domain and a C-ter-

minal tail domain (Fig. 2) [16].

The catalytic motor domain harbors the nucleotide

binding site as well as the actin binding region and couples

the allosteric interplay between ATP hydrolysis and actin

interaction, leading to unidirectional movement to the plus-

end of F-actin. Vertebrate cells increase the diversity and

complexity of the NM-2 proteome by alternative splicing

of single pre-mRNA transcripts of MYH10 and MYH14 [5,

17]. Splice variants are produced by introducing one or two

alternative exons in the mRNA region encoding the myosin

motor domain. One alternative exon called B1 or C1, in

NM-2B and -2C, respectively, is spliced into the 25- to

50-kDa junction (loop-1) near the nucleotide-binding site

[5, 17]. A second exon cassette called B2 or C2 expands

the 50- to 20-kDa junction (loop-2) within the actin binding

region [17, 18]. All combinations of alternatively spliced

exons are possible [5, 17, 19]. The sequential alterations of

the myosin motor domain result in the production of

kinetically and functionally distinct splice variants in a

tissue-specific and developmentally dependent manner.

The neck domain contains two conserved IQ-motifs,

which bind accessory light chains. The first IQ motif is

occupied by the essential light chain (ELC), and the second

Fig. 1 Phylogenetic tree of the

myosin-2 subfamily in humans

according to Golomb et al. [5].

The numbers adjacent to the

nodes define the overall identity

of the myosin heavy chains at

amino acid level. The myosin-2

family is grouped into skeletal

and cardiac myosins as well as

smooth and nonmuscle myosins.

NM-2C constitutes a distinct

branch in latter group and shows

an evolutionary closer

relationship to smooth muscle

myosin than its isoforms

NM-2A and NM-2B

2 S. M. Heissler, D. J. Manstein

123



by the regulatory light chain (RLC). The ELC stabilizes the

NMHC, whereas the RLC has stabilizing and modulating

functions. Alternatively spliced ELCs and RLCs were

identified, but it is currently not known if there is any

isoform-specificity to a given NMHC. Myosin light chains,

especially the RLC, constitute an attractive tool to track

NM-2 in cell biological studies. The ELC binds to various

non-myosin proteins as well as different classes of myosin

heavy chains (-2, -5, -6, and -7), whereas the RLC binds to

the myosin heavy chains of classes -2 and -18 [20, 21].

This makes the use of antibodies against the RLC to track

NM-2 in immunofluorescence studies questionable in tis-

sues that produce myosin-18 along with NM-2. Moreover,

Kondo et al. [22] have shown that di-phosphorylated RLC

localizes independently from NM-2 and mono-phosphor-

ylated RLC to the midzone during cytokinesis, raising the

possibility that tracking of NM-2 via its RLC is misleading.

The tail domain consists of an alpha-helical coiled-coil

motif, which terminates in a short nonhelical tailpiece

(NHT). The coiled-coil region provides the structural basis

for the homodimerization of two NMHC leading to the

formation of a rod-like structure. NM-2 homodimers

assemble into higher order filaments by patterns of alter-

nating charge distributed along the coiled-coil [23]. NM-2

generally functions as a part of minifilamentous structures,

comprising *28 molecules [24, 25]. By comparison, thick

filaments of smooth and skeletal muscle are up to 30-fold

bigger. Different from skeletal muscle myosin, NM-2

undergoes dynamic filament assembly/disassembly transi-

tions. The equilibrium is modulated through

phosphorylation events, as outlined below. Besides phos-

phorylation, F-actin appears to directly promote NM-2

filament assembly. Accelerated filament nucleation in the

presence of F-actin has been observed for the related Dd

NM-2, suggesting the spontaneous formation of actomyo-

sin contractile fibers via myosin assembly [26]. Bipolar

arrays of NM-2 show directed and processive movement

along F-actin, pulling actin filaments of opposing polarity

against each other, thereby generating local contractile

forces and promoting actin-crosslinking.

It is not fully investigated if NM-2 isoforms form het-

erotypic filaments. However, the intermolecular assembly

of NM-2A and NM-2B rod fragments suggests the for-

mation of heterotypic filaments in vitro [27, 28]. In support,

fluorescence spectroscopic studies demonstrate a dynamic

exchange of rod fragments between preformed NM-2

homo-assemblies in an isoform-independent manner [28].

Studies from Beach and Egelhoff [29] report NM-2A and

NM-2B heterotypic filaments at the contractile rings of

dividing cells even though homotypic filaments might be

the predominant pool in live cells [30, 31].

Regulation

NM-2 motor activity, activation, and assembly state are

determined by the reversible phosphorylation of both the

NMHC and the associated RLC (Fig. 3). Regulation of

NM-2 activity differs between higher and lower eukaryotes.

RLC phosphorylation increases the enzymatic activity of

Dd myosin-2 in vitro, but is dispensable since an unpho-

sphorylatable RLC mutant fully rescues the phenotype of

Dictyostelium RLC null cells [32]. In worms, flies, and

mammals, RLC phosphorylation activates the enzymatic

Fig. 2 Domain structure and composition of the NM-2 holoenzyme.

The NMHC (230 kDa) consists of a N-terminal motor domain, a neck

domain, and coiled–coiled domain that terminates in a nonhelical

tailpiece (NHT). Two NMHC form a homodimer mediated by the

formation of the coiled-coil domain within the tail fragments. The

enzymatically active motor domain harbors the ATP binding site and

the F-actin binding region. The neck domain of each NMHC binds

two sets of light chains, the essential (ELC, 17 kDa) and the

regulatory (RLC, 20 kDa) light chain. Tryptic cleavage fragments the

NM-2 holoenzyme into the single-headed subfragment-1 (S1),

double-headed heavy meromyosin (HMM) and light meromyosin

(LMM)
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activity of the NM-2 holoenzyme and triggers the assembly

in higher order filaments and hence actomyosin-mediated

contractility [33]. At the amino acid level, the highly con-

served residues S19 and T18 of the RLC constitute the

primary and secondary phosphorylation site, respectively.

In vitro, mono-phosphorylation of S19 enhances myosin

ATPase activity, motor activity, and filament assembly [34–

37]. This is discussed in greater detail below. Simultaneous

di-phosphorylation of T18 and S19 further enhances the

actin-activated ATPase activity and filament assembly [38,

39]. The activation of NM-2 by phosphorylation of the

associated RLC controls assembly and activation of the

holoenzyme to produce force on F-actin and serves as an

indicator for active NM-2 in cellular studies.

RLC kinases include Rho effector and myosin light

chain kinases (MLCK) [33, 40–42]. Regulated by respec-

tive upstream signals, phospho-signaling cascades

converge either in Ca2?/calmodulin- or Rho signaling. The

former activates MLCK [33], while the latter activates

downstream effectors of the Rho family of guanosine tri-

phosphatases (GTPase). The small GTPases RhoA and

Cdc42 mediate the activation of Rho kinase (ROCK) and

related effector kinases such as citron kinase, as well as the

myotonic dystrophy kinase-related Cdc-42-binding kinase

(MRCK) [43–45]. In contrast to MLCK, all other RLC

kinases identified so far are not RLC-specific and act on a

subset of cellular targets.

Protein kinase C (PKC) phosphorylates residues S1, S2,

and T9 of the RLC. Phosphorylation of these sites

decreases both the actin-activated ATPase activity and the

affinity of MLCK for the RLC, thereby preventing NM-2

activation [46, 47]. Whereas the inhibitory S1/S2 phos-

phorylation is associated with mitotic arrest and stress fiber

disassembly in live cells, inhibitory triple-phosphorylation

of the RLC is not regarded as an important regulatory

mechanism [48, 49].

RLC dephosphorylation is exclusively accomplished by

myosin light chain phosphatase (MLCP). MLCP itself is

highly regulated by numerous signaling loops including

RhoA-ROCK signaling. RhoA-ROCK activity enhances

RLC phosphorylation, both by inhibiting MLCP activity

through the inhibitory phosphorylation of its regulatory

myosin-binding subunit (MYPT) and direct RLC phos-

phorylation [50]. In agreement with the absence of RLC-

phosphorylation as an important regulatory mechanism in

Dictyostelium, no apparent orthologs of RhoA, ROCK, or

MYPT have been identified [33].

Several reports implicate NMHC phosphorylation to

regulate filament dynamics. Isoform-specific phosphoryla-

tion sites span the coiled-coil region and the NHT [51–53].

In vitro, kinases involved in NMHC phosphorylation

include PKC, casein kinase 2 (CK2), and the ion channel

kinases TRPM6 and TRPM7 [52, 54, 55]. Specific NMHC

phosphatases have not yet been identified.

Studies with recombinant NM-2A and -2B tail domains

suggest that NMHC phosphorylation inhibits filament for-

mation by shifting the monomer-filament equilibrium

towards the monomeric pool [56]. CK2-dependent

Fig. 3 Regulation of mammalian NM-2 enzymatic activity and

assembly state. RLC kinases promote the conformational change of

the inhibited (10S) to the extended NM-2 conformation (6S). The

inhibited conformation is assembly-incompetent, the extended con-

former assembly-competent. MLCP activity shifts the equilibrium

towards the inhibited conformation. The transition to the extended

conformation triggers the activation of NM-2 ATPase activity and

promotes the assembly of NM-2 homodimers into bipolar filaments.

NMHC phosphorylation or binding of the calcium-binding protein

Mts1 promotes NM-2 filament disassembly. NMHC phosphorylation

impairs Mts1 binding. Mechanisms underlying NMHC dephospho-

rylation are unknown
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phosphorylation of S1943 of NM-2A inhibits binding of

Mts1 (also known as S100A4), a metastasis-associated

protein. Mts1 promotes the disassembly of NM-2 filaments

in an isoform-specific manner by sequestration of NM-2A

in the disassembled state [56, 57]. In vitro, spectroscopic

studies indicate that Mts1 promotes NM-2A rod fragments

to disassemble from preformed hetero-assemblies of NM-2A

and NM-2B [28].

Live cell studies on human carcinoma cells producing

phosphomimetic NM-2A mutants S1943E and S1943D

reveal increased migration rates, cell protrusions, and focal

adhesions, when compared to wild-type NM-2A or the non-

phosphorylatable NM-2A mutant S1943A [58]. Moreover,

NMHC-2A phosphorylation during epithelial–mesenchy-

mal transition (EMT) promotes enhanced motility and

invasiveness of mesenchymal cells, possibly by a redistri-

bution of NM-2 from posterior to anterior regions [59]. A

phosphorylation-dependent turnover from distal to anterior

regions of the lamellum has been reported for mutant

NM-2A, either lacking the NHT or carrying the S1943A

mutation [51]. NMHC phosphorylation hence prevents

over-accumulation and mislocalization of NM-2 isoforms.

The phosphorylation-dependent NM-2 turnover is required

for its intracellular redistribution and the well-organized

spatial and temporal controlled formation of local con-

tractile actomyosin modules [51, 60–62]. Even though

NM-2 filament formation in live cells is less well under-

stood, NMHC phosphorylation appears to form a viable

basis for the local fine-tuning of filament formation.

Autoinhibition

Another regulatory mode of controlling NM-2 activity is

mediated by the protein’s intrinsic ability to adopt an

autoinhibitory conformation [63, 64]. This feature seems to

be conserved among conventional myosins since it has also

been described for smooth, cardiac, and skeletal muscle

myosin [63, 65]. However, the molecular mechanism

underlying the conversion of the inactive state to the active

state remains to be resolved. Electron microscopic studies

of unphosphorylated NM-2A homodimers reveal intramo-

lecular head-to-head as well as head-to-tail interdomain

interactions, bringing the two motor domains in close

proximity [63, 65]. This conformation establishes contacts

between the actin binding region of one head (blocked

head) with the converter region of the second head (free

head). This conformation impairs actin binding to the

blocked head. In turn, contacts between the blocked head

and the converter region of the free head inhibit the cata-

lytic activity of the free head by blocking the nucleotide

binding site. This double-negative feedback mechanism

inactivates the enzymatic activity of both heads [63]. This

structural model is supported by kinetic studies that dem-

onstrate the autoinhibitory conformation to be

enzymatically inactive, hence preventing constitutive

activation [66, 67]. RLC-phosphorylation relieves the

autoinhibited conformation, thereby promoting the adap-

tion of a kinetically active and assembly-competent

extended NM-2 conformation (Fig. 3). Sedimentation

assays attribute faster sedimentation velocities to the

compact conformer (10S) and slower sedimentation coef-

ficients to the extended molecule (6S) [68]. The 10S

conformer is proposed to constitute an assembly-competent

NM-2 pool in equilibrium with NM-2 filaments [69]. The

strictly regulated interconversion between the 10S con-

former and filaments possibly reflects the spatiotemporal

control of myosin-mediated contractility [69].

Kinetic and mechanical properties

A detailed kinetic analysis of NM-2 isoforms can be per-

formed with recombinant constructs typically produced in the

baculovirus/Sf9 system. Constructs comprising the motor

domain or fusions of the motor domain with an artificial lever

arm are well suited for studying the kinetic properties. These

myosin fragments are constitutively active and display the

enzymatic properties of the phosphorylated holoenzyme [70].

Mechanical parameters like load dependence and proces-

sivity were determined using HMM fragments that require

RLC phosphorylation for full activation [71, 72].

Comparative analysis of the kinetic parameters of fully

activated mammalian NM-2 isoforms reveals subtle differ-

ences in the rate and equilibrium constants that determine the

ATPase cycle (Table 1) [9–11]. These differences are

responsible for the distinct enzymatic properties of NM-2

isoforms, reflecting their functional divergence and cellular

roles. General features of NM-2 isoforms are a slow actin-

activated ATP turnover and a low degree of coupling between

the actin and nucleotide binding sites. Moreover, NM-2A and

-2B show apparent second-order rate binding constants for

ATP that are much smaller in the presence of F-actin [9–11].

An important functional property of NM-2 isoforms is that

ADP binds to actin-bound NM-2 heads several times faster

than does ATP [the ratio of the second-order ADP and ATP

binding rate constants (k1AD/K1k12) is approximately 20 in

NM-2A, 10 in NM-2B, and 2.5 in NM-2C]. This feature

provides a basis for efficient substrate inhibition by ADP, thus

modulating the duty ratio and sliding velocity of NM-2 iso-

forms. NM-2 isoforms are amongst the slowest myosins

characterized, in terms of the velocity at which they trans-

locate actin filaments in the in vitro motility assay. NM-2A

propels actin filaments 2–3 times faster than NM-2C or -2B

[11, 73, 74]. The duty ratio is isoform-dependent: whereas

NM-2A shows a low duty ratio similar to smooth and skeletal
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muscle myosins, NM-2B and NM-2C show slightly higher

duty ratios [9–11]. Additionally, at least the duty ratio of

NM-2B and NM-2C can be modulated by physiological

changes in the concentration of ADP and free Mg2? ions

[9, 11]. Biochemical studies suggest that NM-2A and -2B

dimers can bind to adjacent actin monomers in a two-headed

conformation, a property typically associated with high duty

ratio myosins [9, 72, 75, 76].

Three-bead optical trap assays show processive stepping

along F-actin for a chicken NM-B HMM construct, sup-

porting a model in which NMIIB can readily move in both

directions at stall, which may be important for a general

regulator of cytoskeleton tension [71, 75]. As suggested by

Norstrom et al. [71], this property may provide a mecha-

nism for disassembly of fascin-actin bundles. NM-2

activity can fluidize actin networks under conditions pro-

moting filament sliding or by directly inducing disassembly

of F-actin bundles [60]. The NM-2 mediated disassembly

of actin bundles is a two-step process consisting of the

unbundling of F-actin bundles into individual filaments and

depolymerization of the latter [77].

All NM-2 isoforms assemble into bipolar structures that

are considerably shorter than those formed from skeletal

muscle myosin. In the context of NM-2 bipolar filaments,

the effective duty ratio of the array is high enough to allow

the continuous interaction with neighboring actin filaments,

allowing processive movement along F-actin. Load further

regulates and coordinates the interaction between F-actin

and NM-2 isoforms [72]. Especially NM-2B shows a

pronounced load-dependent product release. Under forward

load, NM-2B accelerates the cycle of interaction with

F-actin. Resistive load increases the duty ratio. Hence,

NM-2B behaves like a cross-linker and prolongs tension

generation on F-actin [72].

As reviewed by Lecuit et al. [60], cross-linked actin

networks can stiffen when strained by internal or external

forces. Rheologic studies suggest that NM-2B efficiently

promotes cross-linking of F-actin in viscoelastic networks

that display stress stiffening. Creep tests show that

acto�NM-2B�ADP networks undergo viscous deformation

and shear thicken at high stresses [78]. In contrast, short-

lived interactions between NM-2B and F-actin in the

presence of ATP restrict efficient cross-linking [78].

The motor function of all NM-2 isoforms can be

selectively inhibited by the small molecule inhibitor

blebbistatin in vivo and in vitro [79–81]. Structural studies

using the Dd myosin-2 motor domain show blebbistatin to

bind at the apex of the large cleft that divides the 50-kDa

domain and close to the ATP binding pocket [82]. Kinetic

studies indicate that blebbistatin binds with a high affinity

to the myosin�ADP�Pi complex. The resulting slow phos-

phate release step inhibits formation of strong actin-

binding states [79, 80]. As uncompetitive inhibitor,

blebbistatin neither interferes with nucleotide binding nor

the interaction with F-actin [79]. In the absence of ATP and

the presence of ADP, blebbistatin appears to stabilize a

strong actin-binding pre-powerstroke myosin intermediate

[83].

Phalloidin binding to F-actin was shown to perturb the

interaction of some NM-2 isoforms with F-actin. Phalloidin

and fluorescently labeled phalloidin conjugates are com-

monly used in imaging and in vitro applications to

visualize F-actin and to investigate actomyosin interac-

tions. Kinetic and functional studies indicate that

phalloidin perturbs the interaction of NM-2A and -2C with

F-actin, whereas the interaction between NM-2B and

F-actin appears less affected [84]. Therefore, isoform-

specific interactions between actin filaments formed from

a, b or c actin and NM-2 isoforms are best studied in the

absence of phalloidin and its conjugates.

Table 1 Kinetic constants and mechanical properties of human

noninserted NM-2 constructs

Parameter NM-2A

[10, 73]

NM-2B [9] NM-2C

[11]

Steady-state ATPase activity

Basal (s-1) 0.013 ± 0.004 0.007 ± 0.001 0.06 ± 0.01

kcat (s-1) 0.17 ± 0.005 0.13 ± 0.01 [0.23a

KATPase (lM) 72 ± 4 59 ± 3 [140

ATP binding to myosin and actomyosin

K1k?2 (lM-1s-1) 1.03 ± 0.14 0.65 ± 0.06 0.37 ± 0.01

K1k12 (lM-1s-1) 0.14 ± 0.003 0.24 ± 0.02 1.02 ± 0.01

ADP binding to myosin and actomyosin

k?D (lM-1s-1) 0.55 ± 0.06 0.81 ± 0.23 0.54 ± 0.02

k1AD (lM-1s-1) 2.72 ± 0.16 2.41 ± 0.13 2.56 ± 0.06

k1AD/K1k12 &20 &10 &2.5

ADP release from myosin and actomyosin

k-D (s-1) 1.12 ± 0.13 0.48 ± 0.11 0.42 ± 0.01

k-AD (s-1) 1.72 ± 0.38 0.35 ± 0.03 0.78 ± 0.01

ADP affinity

KD (lM) 1.5 ± 0.4 0.65 ± 0.3 0.85 ± 0.12

KAD (lM) 0.8 ± 0.2 0.15 ± 0.03 0.19 ± 0.07

F-actin affinity

KA (nM) \10 \3 &4.5

KDA (nM) &20 \1 &19

Duty ratiob &0.29 &0.1 &0.34

in vitro sliding

velocity (nm s-1)

&300c \100d &90c

Kinetic parameters in the presence of F-actin are highlighted in bold.

Subscripts A and D refer F-actin and ADP, respectively
a The value given at 140 lM F-actin
b Calculated from kcat/k2AD

c Temperature = 30 �C
d Temperature = 25 �C, Gg NM-2B HMM [74]
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Development

NM-2 isoforms display a vast tissue distribution and most

cells express a set of isoforms, but no consistent expression

and intramolecular localization pattern has emerged [5, 31,

85]. Certain cell types predominantly or exclusively

express one particular NM-2 isoform. For example, plate-

lets and spleen produce exclusively NM-2A [85, 86],

whereas neuronal tissues such as the cerebellum and the

spinal cord are enriched in NM-2B [86, 87].

Their functional divergence allows NM-2 isoforms to

assume distinct roles at specific developmental stages, as

seen in mouse models. Germ line ablation of NMHC-2A

causes embryonic death by day E6.5 due to defects in cell–

cell adhesion, visceral endoderm formation, failure to

organize normal germ layers, and the resulting impairment

of the embryo to undergo gastrulation [12, 88]. Caused by

cardiac and brain defects, NMHC-2B ablation results in

embryonic lethality between day E14.5 and birth [89, 90].

Possibly due to the delayed MYH14 expression in mouse

embryonic development starting at day 10.5, NMHC-2C

knockout mice show no obvious phenotype and survive to

adulthood [86]. Mass spectroscopic analysis of adult mouse

tissues reveals that overall most tissues produce signifi-

cantly less NM-2C than NM-2A and -2B [86]. In contrast,

NM-2C forms 15–45 % of the total NM-2 pool in trans-

formed cells and cell lines such as the monkey kidney

fibroblast cell line COS-7 and the colon adenocarcinoma

cell line HT29 [86]. The simultaneous production of rela-

tively low amounts of NM-2C along with high amounts of

NM-2A and NM-2B in murine tissue and organs, such as

the adult cerebellum, the cerebral cortex, the spinal cord,

and kidneys, raises the question to what extent NM-2 iso-

forms can functionally replace each other [86]. Three

factors—the total NM-2 content in the tissue, their motor

activity, and scaffolding properties—appear to determine

the extent to which one isoform can substitute for another

[12]. Comparison of various phenotypes of genetically

modified mice models suggests that isoform-specific

enzymatic properties are less susceptible to substitution

than tail domain-mediated scaffolding properties, indicat-

ing the capacity for partial compensation [12].

NM-2B and NM-2C exist in the form of several splice

variants. All three NM-2B splice forms are produced in

adult mouse brain in a spatially restricted manner [91]. The

importance of their spatial and temporal splice heteroge-

neity is reflected by the neuron-specific expression of

NM-2B1 and -2B2 during rodent brain development [19].

NM-2B1 ablation causes the abnormal migration of facial

neurons and is associated with the development of hydro-

cephalus during mouse embryogenesis [91]. NM-2B

mRNA is predominantly detected in various regions of the

embryonic and neonatal brain, whereas the NM-2B2

mRNA level is low. Postnatal up-regulation of NM-2B2

mRNA is observed during dendritogenesis and synapto-

genesis in cerebellar Purkinje cells [19, 92]. NM-2B2

ablation results in abnormal maturation of Purkinje cells in

the developing mouse cerebellum, as manifested by a

motor impaired phenotype [91]. The available kinetic and

mechanic data for baculovirus-expressed constructs of

NM-2B1 indicate enhanced actin-activated steady-state

ATPase activity and in vitro translocation of actin fila-

ments, when compared to the noninserted splice form

NM-2B. Both NM-2B and NM-2B1 are regulated by RLC

phosphorylation [74]. In contrast, NM-2B2 appears to lack

actin-activated ATPase activity, motor activity, and regu-

lation by RLC phosphorylation [93].

Both the noninserted and the C1 inserted splice variants

of NM-2C are ubiquitous in their tissue distribution,

whereas the expression of the C2 inserted gene product is

confined to neuronal tissues [5, 94]. The unbalanced

splicing of NMHC-2C with the prevalent production of the

noninserted NM-2C splice form in human myostonic dys-

trophy type (DM1) muscle, in combination with the down-

regulation of both the MYH14 transcript and protein levels,

promotes the development of DM1 histopathological fea-

tures [95]. NM-2C1 is the only splice variant found in

tumor cell lines [94]. Comparisons of numerous human

tumor and nontumor cell lines, which were derived from

the same tissue, indicate increased levels of NM-2C1

production in tumor cells [18, 94]. In the human A549 lung

tumor cell line, small interfering RNA (siRNA) silencing

of NM-2C1 delays cell proliferation by interfering with a

late step in cytokinesis [94]. Reintroduction of NM-2C1

can rescue the phenotype. The noninserted splice form

NM-2C can partially compensate the decreased prolifera-

tion rate, while NM-2A or -2B overproduction is

ineffective [94].

In contrast to the equivalent NM-2B splice variant,

recombinant HMM constructs of NM-2C2 with an expan-

ded loop-2 are constitutively active and do not require RLC

phosphorylation [18].

Cell adhesion and morphogenesis

Morphogenesis involves the translation of biochemical

signaling pathways into forces that move cells. NM-2-

mediated contraction and adhesive forces control embry-

onic epithelial morphogenesis and organogenesis.

Moreover, NM-2 motor activity is at least in part respon-

sible for the cytoskeletal reorganization during epithelial

morphogenesis that determines cell intercalation, invagi-

nation, shape, and rotation [96].

Gastrulation in Drosophila encompasses active cell

shape changes that lead to the formation of ectoderm,
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endoderm, and mesoderm layers. Gastrulation is followed

by germ-band extension, which leads to an anterior–pos-

terior axis elongation of the epithelial layer that forms the

thorax and the abdomen of the embryo. All stages of gas-

trulation in Drosophila require the polarized distribution of

NM-2 and adhesion remodeling [96]. Before gastrulation,

the embryo forms a single layer of cells arranged in a

cylindrical shape and NM-2 localizes to the inner surface.

At the beginning of gastrulation, RhoA signaling leads to

an accumulation of NM-2 to the apical sites of the con-

stricting cells, and actomyosin-mediated compression

pushes the inner portion of the cells inwards, thereby cre-

ating a furrow that invaginates [97]. During dorsal closure

of the epithelium, a late event in gastrulation, NM-2

localizes to the leading edge where it creates a tension

force that pulls adjacent cells together as it contracts.

Studies by Franke et al. [97, 98] suggest that NM-2, in

either the leading edge cells or the underlying layer, is

sufficient for dorsal closure. Germ-band extension in

Drosophila is realized by the NM-2-driven disassembly of

adherens junctions and planar junction remodeling, pro-

cesses required for cell intercalation and hence anterior–

posterior axis elongation [99]. Deletion of zipper, the gene

encoding the Drosophila NM-2 heavy chain, is lethal

because of failure in dorsal closure [97]. In analogy to the

function of zipper in the model organism Drosophila,

NM-2A knockout mice die because of defects in the vis-

ceral endoderm development and the failure of the embryo

to undergo gastrulation [1]. NM-2B ablation causes spe-

cific defects in cardiac and brain organogenesis [90, 91].

Neural tube formation in vertebrates and Xenopus

depends on cell shape changes via the apical positioning of

actomyosin in neurepithelial cells [100, 101]. The actin

binding protein Shroom3 localizes to the apical tip of

adherens junctions and the apical junction complex (AJC)

and directs the spatial recruitment of ROCK as well as the

assembly of an actomyosin network associated with the AJC.

ROCK-induced actomyosin contractility further mediates

the Shroom3-induced apical constriction [100, 101]. Inter-

estingly, ROCK is activated by the small G-protein Rap1 and

not RhoA, which suggests the Rho-ROCK complex and

Shroom3 work in separate pathways that converge to

mediate constriction [100, 101]. Furthermore, Shroom3 is a

regulator of the microtubule cytoskeleton, suggesting that

the coordinated activity of the actin and the microtubule

cytoskeleton are essential during epithelial morphogenesis

in the developing vertebrate [102].

The lineage commitment of mesenchymal stem cells

(MSC) and precursor cells is controlled by Rho-ROCK

signaling and NM-2 activity. Regulating factors are

extracellular matrix (ECM) stiffness and cellular conflu-

ence [97]. The mechanical properties of the ECM

significantly determine cell fate: soft matrices are

neurogenic, stiffer matrices are myogenic, and rigid

matrixes are osteogenic [103]. Stiff substrates promote

focal adhesion growth and elongation, and actin assembly

follows the trends in adhesion assembly [103]. NM-2

directly promotes the assembly of focal adhesion and

senses cortical actin structures linked to focal adhesions,

thereby providing force transmission from the cell to the

ECM [104, 105]. Therefore, prominent adhesions of stiff

substrates are correlated to increased cytoskeletal tension

through actomyosin-mediated contractility, which gener-

ates high tension forces that pull on the surface and

promote differentiation towards the osteoblast lineage [97,

103]. Overexpression of either Rho or ROCK stimulates

actomyosin contractility and supports differentiation to

osteoblasts [97]. Chemical inhibition of NM-2 or MLCK

blocks all elasticity-directed lineage specification on any

substrate [103]. NM-2 exerts force through focal adhesions

in mechanisms of matrix sensing, hence contributing to

elasticity-driven lineage specification [103].

Cellular confluence promotes the commitment of precur-

sor cells: sparse MSC densities promote the commitment

towards osteoblasts, whereas confluent MSC differentiate to

adipocytes [106]. Inhibition of actomyosin filament forma-

tion triggers preconfluent human MCS to adipogenesis

instead of osteogenesis [105]. Single MSC plated on small

substrate areas show a round morphology and undergo

adipocytic differentiation. On large substrate areas,

cells retain an elongated shape that triggers osteogenesis

[105, 106].

Cell shape changes are linked to Rho-ROCK signaling

and hence the commitment of MSC. Inactive Rho-GDP is

the predominant Rho species in confluent or rounded MSC

and promotes adipogenesis and chondrogenesis [106]. A

round cell shape decreases the area with a rigid surface and

prevents the cell from generating actomyosin-mediated

tension and contractility [97]. Consistently, constitutively

active Rho inhibits adipocyte differentiation. Overexpres-

sion of Rac, which opposes the actions of Rho-ROCK

signaling, inhibits cytoskeletal contraction and promotes

lineage commitment to adipocytes and chondrocytes [97,

106]. Active Rho-GTP in spread cells activates ROCK and

filament formation. Actomyosin-mediated contractility

inhibits adipogenesis and chondrogenesis and promotes

osteogenesis [97, 106].

Besides the role in differentiation of MSC, NM-2 reg-

ulates the survival threshold of human and mouse

embryonic stem cells (ES) [107]. ES show increased sur-

vival after treatment with Y-27632, an inhibitor of ROCK

[108]. Genetic or pharmacological inhibition of NM-2

enhances the survival and self-renewal of pluripotent stem

cells and is associated with an increased expression level of

self-renewal regulators such as Nanog and Oct3/4 [107].

Similarly, enhanced survival is associated with murine ES
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lacking NM-2A [107]. In contrast, NM-2B-ablated ES

show survival rates comparable to those of wild-type cells,

indicating distinct functions of NM-2 isoforms in ES cell

death [107]. NM-2 also regulates the cell–cell adhesion of

human and mouse ES cells via a Rho-ROCK signaling

pathway [109]. ROCK inhibition reveals that myosin-

mediated cell–cell contacts are dispensable for maintaining

the pluripotent function of ES [109]. In this context, the

cell–cell contact-free growth of ES plated on E-cadherin-

coated plates may account for the modulation of ROCK

signaling, since both proteins mutually control cell adhe-

sion [109].

In contrast, myosin-mediated cell–cell adhesions and

tension generation of NM-2A on actin filaments, which are

linked to the E-cadherin/beta-catenin complex, are required

to maintain the adhesion complex in the developing mouse

embryo [1]. Amongst other abnormalities, NM-2A-ablated

embryos and ES demonstrate a loss in cell–cell adhesion in

combination with a decrease in E-cadherin and b-catenin

localization at cell–cell adhesion sites [1]. The defect in

cell–cell adhesion causes cells to detach from the surface of

embryoid bodies and to migrate out from the cell cluster,

whereas wild-type embryoid bodies retain a cohesive

morphology [1]. Embryonic lethality of NM-2A-ablated

mice may be caused not only by cell–cell adhesion

impairment but also by defects in ES differentiation, as

outlined above [107]. Loss of cell–cell adhesion in NM-

2B-ablated mice is the cause of hydrocephalus [110]. The

absence of NM-2B in the apical border of the cells lining

the spinal canal enable the underlying neuroepithelial cells

to invade the canal, thereby interrupting the cerebral spinal

fluid flow [110].

Cell Migration

Directed cell migration is an essential process in the

development and maintenance of multicellular organisms

and is associated with cellular functions such as immunity,

wound and tissue repair, angiogenesis, and normal and

cancerous motility. Cell migration requires front-back

polarization, membrane protrusion, adhesion formation and

disassembly, cell body translocation, and rear retraction

and is associated with dynamic interactions between NM-2,

F-actin, the microtubule network, and focal adhesions [111,

112]. The coordinated adhesion assembly at the front and

disassembly at the rear between the cell and a substrate is a

prerequisite for cell migration [42]. ECM-cell adhesions

are force-sensing integrin-based assemblies that provide a

mechanical link between the actomyosin cytoskeleton and

the ECM. The formation of nascent focal adhesions is

NM-2 independent, whereas the formation, growth, and

maintenance of mature focal adhesions require NM-2

motor activity and actomyosin contractility [42, 113].

During all stages of the migratory process, NM-2 isoforms

orchestrate the dynamic spatial and temporal reorganiza-

tion of the actin and to a lesser extent microtubule

cytoskeleton [114]. This requires a capacity for local

restricted self-organization, including the simultaneous

performance of discrete sets of tasks in response to external

trigger events during interphase and a distinct precisely

timed and highly synchronized set of functions during

mitosis. At the heart of the ability to perform these inde-

pendent tasks within the cytosolic compartment is the

occurrence of two cytosolic actin isoforms, namely b-cys-

actin and c-cys-actin. Post-translational modifications and

the interaction with actin binding proteins can amplify the

diversity of the cytosolic actin isoforms. Tropomyosin

(Tm) isoforms were recognized to be of particular impor-

tance for the spatial and temporal dynamics of NM-2-actin

interactions in nonmuscle cells. Moreover, it has been

demonstrated that the activity of myosin motor domains are

differentially regulated by the Tm isoform composition of

actin filaments. Thus, elevated production of Tm5NM1 in

neuroepithelial cells was shown to promote stress fiber

formation, cell spreading, and decreased motility.

Increased TmBr3 levels induce lamellipodial formation,

faster motility, and a reduction in the formation of stress

fibers. Incorporation of Tm5NM1 into stress fibers specif-

ically recruits NM-2A into these structures, while NM-2B

becomes enriched at the cell periphery [115].

Migrating cells form actin-based cytoskeletal extensions

consisting of distinct substructures, designated lamellipo-

dium and lamellum. Both substructures differ in dynamic

properties and protein composition. The lamellipodium

contains a dense dendritic actin network and dynamic focal

contacts. The polymerization of actin filaments with their

plus ends oriented towards the plasma membrane is bal-

anced by a myosin-powered, rearward movement of the

lamellum actin meshwork known as retrograde flow. The

lamellum is less dynamic than the lamellipodium and is

characterized by linear actin bundles and mature adhesion

sites [116, 117]. In general, NM-2 promotes F-actin

anterograde flow in the cell body and retrograde flow in the

lamellum [118, 119]. Behind the lamellum, which typically

spans a broad area, actin bundles and meshwork move

towards the cell front to create a ‘convergence zone’,

where retrograde and anterograde actin motions merge and

NM-2 is concentrated (Fig. 4).

Isoform-specific roles become prominently evident in

processes such as the lamellar spreading of MDA-MB-231

breast cancer cells on an extracellular matrix, where NM-2

is recruited to the lamellar margin in a phosphorylation-

dependent manner. Pharmacologic inhibition of either

NM-2 or MLCK is associated with decreased migratory

speed. SiRNA depletion of NM-2A impairs cell migration
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but enhances lamellar spreading. Depletion of NM-2B

decreases both lamellar spreading and cell migration,

highlighting the importance of both isoforms during cell

migration and the preferential role of NM-2B in lamellar

protrusions [120]. Fibroblasts from NM-2B-ablated mice

display unstable and disorganized protrusions, but migrate

with increased speed and decreased persistence, suggesting

that NM-2B directs cell movement by coordinating pro-

trusive activities and stabilizing cell polarity [121].

Rho GTPases play a major role in regulating NM-2

activity during cell migration. The activity of the associ-

ated Rho-dependent kinases that phosphorylate the RLC

and thereby activate the NM-2 holoenzyme is under tight

temporal and spatial control. RhoA is predominantly

implicated in cell body and rear retraction via a ROCK-

dependent mechanism. RhoA-ROCK signaling regulates

the establishment of focal contacts and the organization of

stress fibers by activating NM-2 activity [122]. Cdc42-

dependent activation of MRCK is associated with lamellar

actomyosin contractility, whereas stimulation of the Rac-

MLCK pathway results in lamellipodial contractility [123].

The spatial segregation of the interplay between RLC-

kinases and NM-2 isoforms hence causes symmetry

breaking, leads to front-back polarization, and triggers

directed migration of the cell [124, 125].

Isoform-specific functions of NM-2A and -2B are

described in migrating cells, whereas less information is

currently available on the role of NM-2C in active cell

migration. NM-2A is predominantly found in the anterior

region and in protrusions, but not at the leading edge. NM-

2B localizes mainly to the center and the rear of migrating

cells and is excluded from protrusions [85, 125].

During cell migration, NM-2 activation and the assem-

bly of stress fibers are required for tension exertion on focal

adhesions (Fig. 4). At the protrusive front of the cell, NM-

2A supports dynamic focal contact turnover [125]. At the

lamellum, NM-2-mediated contractility and substrate

adhesion contribute to cell migration [119]. Moreover,

recent data suggest NM-2A to directly mediate the acto-

myosin–microtubule cross-talk during cell migration.

SiRNA-mediated depletion of NM-2A stabilizes microtu-

bules near the leading edge and reduces the number of

focal adhesions and stress fibers. As a consequence, cell

contractility is reduced but cell migration increased. NM-

2A-deficient cells further show increased membrane ruf-

fling and an unusual expansion of microtubules into the

lamellum. Both effects can be explained by the increased

stability of microtubules, which drive membrane ruffling

mainly by exerting force against the membrane in the

absence of NM-2A. This suggests a function of NM-2A in

mediating the cross-talk between the actomyosin and the

microtubule system [112].

At the retracting cell rear, NM-2 is mainly organized

into stress fibers and is involved in symmetry breaking and

actin reorganization [122, 125]. NM-2A initiates the for-

mation of actomyosin proto-bundles. NM-2B incorporated

Fig. 4 Schematic illustration of NM-2 cellular functions in cell

migration, secretion and receptor positioning. During directed cell

migration, actin polymerization and reorganization establish a

protrusive leading edge at the anterior part of the cell. Cell protrusions

are maintained by the contractile actomyosin network and stabilized

by the formation of adhesive complexes (nascent focal adhesions)

with the substratum. NM-2B localizes mainly to the lamellum, where

it drives the retrograde flow. Actomyosin-mediated contractility

posterior to the leading edge drive cell body retraction and

translocation. Both processes coincide with the formation, growth,

and maintenance of mature adhesion complexes (mature focal

adhesions), which are NM-2-dependent. At the retracting rear,

NM-2 is predominantly organized into stress fibers that promote

local contractility. Adhesion complex disassembly causes detachment

of the trailing edge from the substratum and enables cell displace-

ment. NM-2 further mediates the cross-talk between the F-actin and

the microtubule network. Actomyosin interactions further drive

various processes such as vesicle transport, receptor-stimulated

exocytosis of secretory vesicles, and receptor positioning
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into these bundles stabilizes and enlarges them, thereby

promoting the formation of extended rears [126].

NM-2B forms large and stable adhesion and actomyosin

bundles that locally inhibit protrusions and adhesion turn-

over [125]. NM-2B might not be unique in its ability to

form and stabilize a contractile rear because migrating B16

melanoma cells, which naturally produce NM-2C but not

NM-2B, show normal front-back polarization, suggesting

that the isoforms play analogous roles in creating a cell

back [125].

The interplay between focal adhesion and actomyosin

dynamics result in a specific balance between migration

and adhesion, which determines the migration velocity.

The size and density of adhesions decrease when NM-2

activity is inhibited by blebbistatin and increase upon

MLCP inhibition. Increased NM-2 activity is associated

with increased migratory speed [127]. In addition, early

adhesion-site formation has the same periodicity as myo-

sin-dependent edge retractions, suggesting a mechanical

relationship between edge retractions and early adhesion-

site formation [128, 129].

Experiments on the dynamics of adhesions-associated

NM-2A and -2B filaments indicate isoform-specific func-

tions during adhesion formation, maturation, and turnover.

Actomyosin bundles containing solely NM-2A mediate

initial adhesion maturation. The associated adhesion sites

turn over in parallel with the actomyosin bundle. Incor-

poration of NM-2B into the bundles enlarges and stabilizes

adhesions and abolishes dynamic adhesion turnover [126].

In contrast, NM-2A containing bundles at anterior parts of

protrusions disassemble as the protrusions evolve. Incor-

poration of NM-2B in these bundles stabilizes them,

possibly reflecting the higher actin affinity and duty ratio of

NM-2B compared to NM-2A [126].

Cytokinesis

Cytokinesis begins shortly after the onset of sister chro-

matid separation during the anaphase of mitosis. It

comprises the final events in the cell cycle with the posi-

tioning and constriction of a contractile ring, followed by

abscission, and the cutting of the midbody channel that

forms the final bridge between the dividing daughter cells.

An important role for NM-2 isoforms in these events is

suggested by a large number of results. Deletion of mhcA

in Dictyostelium abolishes cytokinesis [14]. Microinjec-

tions of pan-NM-2 antibodies or siRNA-mediated

knockdowns prevent furrow ingression [130, 131]. NM-2B

depletion in mice leads to defects in myocyte cytokinesis

[90]. Specific NM-2 isoforms play an essential role during

several morphological stages of cytokinesis, with their

action again critically depending on the spatiotemporal

regulation of RLC phosphorylation in higher eukaryotic

cells [20].

The contractile ring that is formed during cytokinesis is

composed of specific NM-2 and actin isoforms as well as

associated regulatory and scaffolding proteins. These pro-

teins assemble in the equatorial cortex after the selection

and positioning of the cleavage plane by the microtubule

cytoskeleton [132]. The contractile ring forms perpendic-

ular and equatorially at the cell cortex to the anaphase

spindle. During interphase, actomyosin-containing stress

fibers disassemble and relocalize to the nascent cleavage

furrow, where they provide the force that drives furrow

ingression and constriction [133, 134]. The contractile ring

is a highly dynamic structure that assembles and disas-

sembles during each cell cycle. Cortical flow has been

implicated in the transport of NM-2, F-actin, and other

proteins to the contractile ring during its formation, with

NM-2 motor activity also providing the force that drives

the flow [135–137]. As suggested by Levayer et al. [138],

actomyosin accumulation at the equator is promoted by

two synergetic mechanisms that result in a centripetal

actomyosin flow: the central spindle-dependent NM-2

activation (RhoA-dependent) promotes the recruitment of

NM-2 at the equator, whereas astral microtubules inhibit

(Rho-dependent) NM-2 recruitment to the cell periphery.

In some cells, NM-2 localizes to the ring prior to

F-actin, suggesting that NM-2 directly contributes to actin

assembly. However, NM-2 enzymatic activity is not

required for the recruitment of either myosin or F-actin to

the contractile ring [81, 139, 140]. Chemical inhibition of

NM-2 motor activity inhibits cytokinesis but does not

interfere with the equatorial localization of either actin or

myosin, even though actin turnover is reduced. However,

actin itself is highly dynamic in the contractile ring and

dissociates from the equator in control cells, whereas it

accumulates in blebbistatin-treated cells, which has been

attributed to the lack in myosin motor activity [141, 142].

These findings indicate that NM-2 enzymatic activity is not

required for the assembly of the equatorial cortex, but is

essential for actin retention and its dynamic turnover [139,

141, 142]. Similarly, the ability of NM-2 to translocate

actin appears not to be required for constriction of the

cleavage furrow. Rather, the role of NM-2 in vertebrate cell

cytokinesis involves the generation of tension to resist

expansion of the contractile ring by binding and cross-

linking of actin filaments [143].

The phosphorylation status of the NM-2 associated RLC

changes during the cell-cycle of higher eukaryotes: Upon

mitotic exit, S19 of the RLC becomes rapidly phosphory-

lated [33, 144, 145]. Phospho-specific antibodies indicate

that the cleavage furrow is enriched in RLC phosphory-

lated NM-2 holoenzymes [146]. Overexpression of a

nonphosphorylatable RLC disrupts cytokinesis by
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producing an abnormal, distorted cleavage furrow, which

leads to a failure to complete cytokinesis [147].

MLCK, MLCP, and the two RhoA-dependent kinases,

ROCK and citron kinase, localize to the cleavage furrow

and regulate NM-2 activity during cytokinesis [148–150].

RhoA activation and its accumulation at the contractile ring

are indispensable for furrow formation and ingression

[151]. Both RhoA activity and the position of the cleavage

furrow are mediated by the central spindle, suggesting a

link between microtubule organization and RhoA activa-

tion at the equator [60, 144]. RhoA activation at the

cleavage furrow leads to the temporal recruitment of its

effector kinases: ROCK is recruited during late anaphase

and stays at the furrow during cytokinesis, suggesting that

the RhoA-ROCK pathway plays a role in contractile ring

formation and cleavage furrow constriction [152]. Citron

kinase colocalizes to the cortex of the cleavage furrow

during telophase and cytokinesis and is involved in the

stabilization of NM-2 binding partners and abscission, as

outlined below [140, 150]. Inhibition studies in Drosophila

suggest that citron kinase is dispensable for initiation and

constriction of the cleavage furrow [153, 154]. Activated

MLCP accumulates at the cleavage furrow and indirectly

enhances the amount of RLC phosphorylation [155].

MLCK is recruited during late anaphase and telophase and

might be involved in both the assembly of the contractile

ring and its constriction [148, 149].

Besides the regulation of NM-2 activity via the phos-

phorylation of its RLC, regulatory and scaffolding proteins

interact with NM-2 at the cleavage furrow and appear to be

involved in its recruitment. Filamentous SEPT2 directly

binds NM-2, which links the former to F-actin [133]. This

interaction is required for NM-2 activation in interphase

and cytokinesis [133]. Disruption of the interaction is

associated with cleavage furrow instability and decreased

RLC phosphorylation. SEPT2-containing filaments possi-

bly form a scaffold that brings NM-2 and its associated

RLC kinases in close proximity, thereby ensuring maxi-

mum NM-2 activation during the final stages of cytokinesis

[133]. Another regulator of cytokinesis, anillin, binds to the

phosphorylated NM-2 holoenzyme, F-actin, and septins

[156]. RhoA activity recruits anillin to the equatorial cortex

early in cytokinesis, where it organizes the contractile ring

[156]. As part of the contractile ring, anillin restricts NM-2

contractility to the cleavage furrow during late stages of

cytokinesis [156]. NM-2 leaves the contractile ring late in

cytokinesis and anillin persists at the contracted furrow,

where it is required for abscission [153, 156].

NM-2C1 is implicated in abnormal cytokinesis in can-

cerous cells and localizes to the midbody, whereas NM-2A

is distributed throughout the cell and concentrated at the

two opposite poles of the dividing daughter cells during the

late stages of cytokinesis [94].

Vesicle transport, endocytosis, and exocytosis

Collective findings suggest NM-2A and -2B to be involved

in intracellular membrane fission of Golgi-derived vesicles

and their transport between different compartments [157–

160]. NM-2A transiently localizes with membranes of the

trans-Golgi network (TGN) during vesicle budding and is

found on a specific subset of Golgi-derived vesicles [161–

163]. Proteolytic cleavage experiments suggest that

NM-2A binds via its tail domain to Golgi stacks. This

interaction is abolished in the presence of NMHC phos-

phorylation by CK2 [164]. These findings indicate that

NM-2A is tethered to the Golgi membrane via its tail,

while its motor domain interacts with F-actin [164]. The

directed movement along F-actin might therefore extend

Golgi membrane tubules or transport vesicles away from

the Golgi complex [164]. This model is supported by

studies showing that NM-2 is involved in retrograde

transport of vesicles from the Golgi complex to the ER

[159]. Recent work by Miserey-Lenkei et al. [157] dem-

onstrates NM-2A and -2B to trigger fission of Rab6

transport carriers from the Golgi complex by interacting

with Rab6 and F-actin. The GTPase Rab6 directly binds to

the coiled-coil of NM-2 in a GTP-dependent manner,

thereby recruiting NM-2 isoforms to the Golgi membrane

[157]. Pharmacological or genetic depletion of NM-2 or

actin polymerization is associated with a phenotype that

produces long tubule stalks that radiate from the Golgi

complex and fail to undergo fission [157]. NM-2A- and

-2B and Rab6 localize to fission sites of these tubular

precursors. Actin is recruited to the assembly sites where it

is required for the detachment of Rab-6 positive transport

cargoes from the stalks [157, 165]. Inhibition of either

NM-2 or Rab6 impairs both the fission of Rab6 cargos from

Golgi membranes as well as the trafficking of anterograde

and retrograde cargo from the Golgi [157].

Recent work by Tang et al. [166] demonstrates NM-2A

to participate in the formation of autophagosomes, organ-

elles that capture cellular components and deliver them to

the lysosomes for degradation. Agt1 kinase plays a crucial

role in the induction of autophagosome formation. In

Drosophila, overexpression of Agt1 results in aberrant cell

morphology and triggers the reorganization of the actin

cytoskeleton, mediated by activation of zipper [166, 167].

The Agt1/Ulk1 signaling pathway activates the kinases

sqa/ZIPK in Drosophila and humans, respectively, which

phosphorylate the zipper or NM-2A-associated RLC during

starvation-induced autophagy. Consequently, knockdowns

of either ZIPK or NM-2A lead to a decrease in the size and

number of autophagosomes [166]. Activated NM-2 con-

trols autophagosome formation by interacting with the

transmembrane protein Atg9, as well as trafficking of

Atg9-containing membranes from the TGN to the sites of
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autophagosome nucleation [166, 168]. This leads to the

speculation that zipper/NM-2A may either act as a

molecular motor that actively shuttles Atg9-containing

vesicles between the TGN and the forming autophagosome

or forms a complex with Rab6 at the TGN that promotes

the fission of Atg9-containing vesicles [166].

During exocytosis, secretory vesicles derived from the

ER or the Golgi network fuse with the plasma membrane

and release their content into the extracellular space.

Recent work has identified NM-2 isoforms to be involved

at different stages of exocytosis. Confocal intravital

microscopy on submandibular salivary glands of live

rodents indicates that the b-adrenergic receptor-stimulated

exocytosis of secretory vesicles is dependent on actomyo-

sin activity [169]. Agonist-induced stimulation recruits

both NM-2A and -2B onto the surface of fusing granules,

where they function as part of the machinery that regulates

the collapse of the granules after fusion with the apical

plasma membrane [169]. In this context, the authors

speculate that F-actin serves as a platform to recruit NM-2

to form a contractile scaffold that generates the force

required for the collapse of the secretory granules [169].

Another example of NM-2-dependent exocytosis occurs in

natural killer cells, which are lymphocytes of the innate

immune system and important for defense against cancer

and viral infection [170]. Natural killer cell cytotoxicity

involves the formation of an immunological synapse

between the natural killer cell and the target cell through

which lytic granules are delivered to the target cells via

exocytosis [171]. NM-2A inhibition or knockout blocks a

step between the formation of mature synapses and lytic

granule fusion with the cell membrane and promotes lytic

granule exocytosis [170, 171].

Activation of the insulin receptor increases glucose

transporter type 4 (GLUT4) vesicle exocytosis in adipo-

cytes via a NM-2A-dependent mechanism. Insulin

stimulates the MLCK-mediated RLC phosphorylation

thereby triggering the translocation of NM-2A to the

plasma membrane. There, the phosphorylated NM-2A

holoenzyme exhibits a dual role in insulin-stimulated glu-

cose uptake by facilitating GLUT4 vesicle fusion and

regulating GLUT4 activity [172]. Insulin-stimulation does

not change the localization of NM-2B, implicating that the

two isoforms have different functions in adipocytes [172].

Collective findings implicate NM-2 isoforms to regulate

the dynamic opening and closing as well as the size of the

fusion pore during exocytosis [173]. Even though the exact

role is not yet established, several studies have demon-

strated NM-2 isoforms to control vesicle cargo-discharge

kinetics by altering fusion pore conductance and gating in

numerous cell types, including pancreatic b-cells (NM-2A-

dependent), chromaffin cells, and neurons [174–176]. After

the fusion of the vesicle with the membrane, actin

polymerizes and coats the vesicle. Vesicle coating is

independent from NM-2 activity and may reflect an early

step in endocytotic recovery in some cells [177]. NM-2A

directly affects post-fusion dynamics by regulating fusion

pore opening and expansion in cells [173, 175, 177].

Chemical inhibition of either NM-2A or MLCK activity

causes the closure of the fusion pore, indicating that NM-

2A enzymatic activity is necessary to maintain fusion pore

opening in pancreatic acinar cells [177]. Concomitantly,

activated NM-2 slows down fusion pore closure upon

cargo discharge during kiss-and-run exocytosis in neuro-

endocrine PC12 cells, possibly by modifying the

subplasmalemmal actin cortex [178]. These findings sug-

gest that NM-2 activity controls the amount of hormone

released from vesicles in neuroendocrine cells by directly

influencing the duration of fusion pore opening [178].

Different from full fusion exocytosis, NM-2 does not

control the expansion of the fusion pore during kiss-and

run exocytosis, where the fusion pore is resealed before

complete dilation and cargo is not completely released

[178].

Besides exocytosis, NM-2 participates in endocytosis

and phagocytosis. Both processes describe the internali-

zation of extracellular material by invagination of the

plasma membrane to create an endocytic vesicle which

enters the endosomal pathway.

The actin cytoskeleton is the key structure during

receptor-mediated phagocytosis and involved in the for-

mation and closure of the phagocytic cup [179]. Even

though the role of NM-2 in this process has not yet been

fully investigated, NM-2 mediated contractile activity is

required during phagocytic cup assembly, squeezing and

closure during the receptor-mediated ingestion [180, 181].

Several studies demonstrate the impact of cell type,

receptor, and engulfed particle on downstream signaling

pathways that recruit a special set of kinases, including

Rho/Rac/Cdc42-dependent kinases to the nascent phago-

somes where they regulate NM-2 activity as well as actin

nucleation [179, 182].

Olazabal and coworkers demonstrated that the Rho-

ROCK-phosphorylated NM-2A holoenzyme is required for

F-actin recruitment to the phagocytic cup in complement

receptor 3 (CR3)-, but not FcgR-mediated phagocytosis

[181, 183]. During FcgR-mediated phagocytosis by mac-

rophages, NM-2-mediated contractile activity promotes

binding between the FcgR and ligands to facilitate the

efficient extension and subsequent closure of phagocytic

cups [180].

During retinal pigment epithelial phagocytosis of pho-

toreceptor outer segments, the receptor tyrosine kinase

Merkt is required for the spatial relocalization of NM-2A

and -2B from the cell periphery to the phagosome [179].

Further, Merkt triggers the assembly and activation of the
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actomyosin complex at the ingestion that promotes the

engulfment of photoreceptor outer segments [179]. NM-2

inhibition by blebbistatin or siRNA depletion of both

NM-2A and -2B leads to a reduction in the number of

ingested phagosomes, suggesting that both isoforms func-

tion in the phagocytic trafficking of photoreceptor outer

segments [179].

Internalization of the chemokine receptor CXCR4 upon

engagement by its agonists is facilitated by NM-2A in

T-lymphocytes [184]. The agonist-mediated receptor

endocytosis is inhibited by overexpression of NM-2A tail

domain [184]. This study favors a model in which NM-2A

serves as an adaptor protein that couples the membrane

receptor to the endocytic machinery, thereby triggering the

formation and uptake of CXCR4-bearing clathrin-coated

endocytic vesicles [184]. NM-2A also mediates the cyto-

kine interferon-gamma-induced endocytosis of tight

junction proteins [185]. In this context, the RhoGEF-

mediated spatial regulation of zipper has been shown to

play a role in the initiation of E-cadherin endocytosis in

Drosophila [186].

Viral infection

Novel roles of NM-2 during several stages of viral infec-

tion emerge. As part of the viral entry machinery, NM-2

functions as herpes simplex virus type-1 (HSV-1) cellular

entry receptor by directly associating with the viral enve-

lope glycoprotein B (gB) on the surface of naturally

permissive target cells [187]. The initiation of HSV-1 entry

induces the cell-surface expression of NM-2 via a MLCK-

dependent redistribution of cytosolic NM-2A [187]. Both

antibody blockage and knockdown of NM-2A in permis-

sive target cells inhibit HSV-1 infectivity whereas the

overexpression of NM-2A in relatively HSV-1-resistant

cell lines causes a high susceptibility to HSV-1 infection

[187]. As a functional gB receptor, NM-2A mediates the

broad HSV-1 infectivity by its ubiquitous expression in

various human tissues and makes it a medicinally relevant

drug target [187]. After HSV-1 entry into the host cells,

viral nucleocapsids move to the nucleus and the viral genes

are transcribed and translated. Late in infection, replicated

DNA is packed in capsids. During viral egress, the capsids

move from the nucleus to extracellular spaces [188].

Studies by Van Leeuwen et al. [189] implicate NM-2A to

play a role in viral transport during herpes virus replication

and viral egress. HSV-1 infection leads to the accumulation

of cytoplasmic NM-2A in a perinuclear cluster, where it

colocalizes with VP22, a major viral tegument protein.

These perinuclear clusters are proposed to be possible viral

assembly compartments where VP22 is incorporated into

assembling virions. Pharmacological inhibition of NM-2A

retards the perinuclear accumulation of VP22 clusters and

the release of virus to the extracellular space with minor

effect on the yield of cell-associated virus. These findings

suggest a role of NM-2A during viral transport and egress

[189]. This idea is supported by the observation that HSV-1

infection induces the formation of long plasma membrane

protrusions that establish contacts with adjacent cells.

NM-2 filaments run through the protrusions, and VP22-

containing particles align and progress along these exten-

sions to accumulate at the extremities of contact forming

adjacent cells [189]. Similar, protrusions such as filopodia

support the viral infection pathway of murine leukemia

virus (MLV). Lehman et al. [190] have shown that an actin

cytoskeleton and NM-2-mediated MLV surfing along fil-

opodia towards viral entry sites at the cell body of

permissive cells promotes MLV infectivity. Consequently,

pharmacological inhibition of NM-2 disrupts viral surfing

and reduces the viral infectivity [190].

Different from HSV1, bleb-associated macropinocytosis

is the predominant mode of Kaposi sarcoma-associated

herpes virus (KSHV) entry in its permissive target cells

[191]. KSHV infection triggers the phosphorylation of

C-Cbl. Phosphorylated C-Cbl associates with NM-2A and

F-actin and is recruited to membrane blebs. The association

with actomyosin leads to the C-Cbl-mediated ubiquitina-

tion of both NM-2A and actin. Actomyosin-mediated

contractility possibly accelerates bleb retraction with the

macropinosomes along with the viral particles. Concomi-

tantly, blebbistatin treatment of the cells or shRNA

knockout of C-Cbl causes defects in myosin-dependent

blebbing and retraction during KSHV entry [191].

Diseases

Mutations, alternative splicing, and misregulation of MYH9

and MYH14 and the associated changes in NM-2A and

NM-2C are linked to the onset and progression of a number

of serious human diseases. In contrast, disease-related

MYH10 mutations have not so far been characterized. Only

indirect links exist between MYH10 expression and disease

processes, such as scar tissue formation following myo-

cardial infarction, demyelination, and the inherited

neurodegenerative disease, juvenile-onset neuronal ceroid

lipofuscinosis (JNCL). JNCL is the most common form

(1:12.500) of a genetically heterogeneous group of rare

disorders known collectively as the neuronal ceroid lipo-

fuscinosis (NCLs), or Batten disease. Classical JNCL,

caused by CLN3 mutation, is a lysosomal storage disorder

with onset between 4 and 8 years of age. The disease is

characterized by accumulation of autofluorescent storage

material and neurodegeneration. Symptoms include sei-

zures, motor and cognitive regression, and progressive
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vision loss leading to complete blindness [192]. A direct

functional and physical interaction between CLN3 and

NM-2B has been linked to the role of CLN3 in mediating

anterograde and retrograde trafficking [193]. The affected

transport pathway connects the Golgi network, endosomes,

autophagosomes, lysosomes, and the plasma membrane.

In neural tissue, the inhibition of NM-2B by blebbistatin

or knock-down of MYH10 by lentiviral shRNA promotes

remyelination. The myelin-forming cells in the CNS are

formed by differentiation of oligodendrocyte precursor

cells (OPC) into myelinating mature oligodendrocytes

(OL). Similar, after a demyelinating insult, remyelination

involves OPC proliferation, their migration into the lesion,

and differentiation into OL [194, 195]. Both migration and

formation of myelin lamellae involve contributions from

cytoskeletal motors [196, 197]. Recent results indicate that

NM-2B critically contributes to these processes [198, 199].

After myocardial infarction, MYH10 expression is

upregulated in myofibroblasts during the early stages of

cardiac remodeling. While invasion of the activated myo-

fibroblasts into the damaged area is beneficial during early

stages, their abundance has been linked to the formation of

non-functional scar-tissue at later stages [200, 201]. The

tight spatio-temporal control of NM-2B activity with the

aid of specific inhibitors of myosin motor function [202,

203] therefore holds the promise that an over-shooting of

the invasion of myofibroblasts can be prevented and an

optimal ratio of myofibroblasts to myoblasts can be

established [204].

A spectrum of autosomal-dominant disorders related to

MYH9 mutations are subsumed under the collective term

MYH9-related diseases. As many as 40 different mutations

have been mapped throughout the motor and the tail

domain of NMHC-2A [205, 206]. Disease phenotype and

genotypes are associated with congenital macrothrombo-

cytopenia and the onset of clinically variable symptoms

like deafness, progressive nephritis, and presenile cataracts

[205]. A large case series of patients with MYH9-related

diseases demonstrates that the site of MYH9 mutation is a

determinant of the clinical symptoms and features of the

disease [205]. Patients carrying mutations within the cat-

alytic NM-2A motor domain (R702C/H) develop severe

thrombocytopenia, nephritis, and deafness before the age

of 40 years [205]. Patients with mutations within the tail

domain (e.g., D1424H/N/Y, E1841 K, R1933X, V1516 M)

show no defects of clinical relevance [205, 207]. As

demonstrated by Zhang and coworkers, studies of mouse

models with MYH9-related diseases manifest similar phe-

notypes as observed in humans and hence serve as a good

model system to study NM-2A and associated diseases

[208].

Mutations in NM-2C are associated with hereditary

deafness (DFNA4) [209]. Genome-wide linkage analysis

identified an autosomal-dominant mutation which causes a

complex phenotype associated with peripheral neuropathy,

myopathy, hoarseness, and hearing loss [210]. Addition-

ally, aberrant splicing of MYH14 and the unbalanced

expression of NM-2C splice-variants contribute to the

molecular pathogenesis of DM1 [95].

Cancer metastasis and invasion require NM-2 mediated

cell migration, contractility and cell adhesion dynamics

[211]. NM-2 is directly and indirectly involved in cancer

cell motility through overexpression and overactivation.

Both mechanisms enhance cancerous cell migration,

thereby contributing to tumor invasion and metastasis [212,

213]. NM-2A overexpression correlates with increasing

numbers of metastatic lymph nodes, poor cancer differen-

tiation, and advanced tumor stages of esophageal squamous

cancer. SiRNA depletion of NM-2A in cancer cell line

KYSE-510 results in increased cell–matrix adhesion,

decreased cell motility, and reduced metastatic behavior

[13].

In different carcinoma cell lines, ROCK overactivation

causes enhanced RLC phosphorylation and direct activa-

tion of NM-2 driven cell migration [42, 214]. Cancerous

breast cell migration and invasion is attenuated after either

blebbistatin treatment or depletion of NMHC-2A and

NMHC-2B [120, 214]. In contrast, non-cancerous mam-

mary epithelial cell lines continue migration when treated

with blebbistatin [112].

As well as overactivation through RLC phosphorylation,

the direct interaction of NM-2A with the calcium-binding

EF hand protein MtsI drives cancerous cell migration.

Upregulation of Mts1 is associated with cancerous cell

migration, metastatic progression, increased angiogenesis,

and tumor invasion in numerous cell types. The direct

interaction between Mts1 and NM-2A at the leading edge

of migrating cells promotes directional motility, possibly

by enhancing the NM-2A filament turnover. The associated

increase in myosin-driven cell motility contributes to the

increased metastatic capacity of cancer cells and highlights

the importance of NM-2 isoforms during physiological

homeostasis [215]. As reviewed by Helfman and cowork-

ers, MtsI has been shown to interact with actin, nonmuscle

tropomyosin, and p53, suggesting a role for MstI in cell

motility and cytoskeletal rearrangements [216].

Conclusion and outlook

The steadily expanding research on NM-2 has elucidated

important functions of the family members in nearly all

aspects of normal and aberrant cell physiology. Pivotal

roles of NM-2 during development have been investigated

and highlight the impact of NM-2 isoforms during

embryogenesis and organogenesis. Tasks of NM-2 during
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cell migration and cytokinesis have been established that

highlight the importance of the spatiotemporal regulation

of the holoenzyme by kinases and phosphatases through

major signaling pathways. In this context, NM-2 functions

need to be addressed in a three-dimensional environment.

New roles of the family members in endo- and exo-cytosis

as well as other intracellular transport processes are

emerging and will be the focus of future research. Despite

our vast knowledge of NM-2 functions in general, many

isoform-specific functions and interactions with partner

proteins remain undefined. Questions that remain to be

addressed include details of the interplay with the micro-

tubule system, membrane interactions, and the cellular

function of arguably the least-characterized family member

NM-2C.
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