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Abstract Innate and adaptive immune responses in neu-

rodegenerative diseases have become recently a focus of

research and discussions. Parkinson’s disease (PD) is a

neurodegenerative disorder without known etiopathogene-

sis. The past decade has generated evidence for an

involvement of the immune system in PD pathogenesis.

Both inflammatory and autoimmune mechanisms have

been recognized and studies have emphasized the role of

activated microglia and T-cell infiltration. In this short

review, we focus on dendritic cells, on their role in initi-

ation of autoimmune responses, we discuss aspects of

neuroinflammation and autoimmunity in PD, and we report

new evidence for the involvement of neuromelanin in these

processes.
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Theories on initiation of autoimmunity

Autoimmunity refers to the immunological destruction of

the own cells and tissues due to the failure of the organism

to recognize these as self. Autoimmune diseases cover a

great variety of symptoms reaching from diffuse inflam-

matory symptoms involving components of the innate

immune system to highly antigen-specific T- and B-lym-

phocyte responses. Both types of autoimmunity can appear

restricted to defined structures in local tissues or systemi-

cally (McGonagle and McDermott 2006). Genetic predis-

position to overshooting immunity either by a loss of

tolerance to self-antigens (e.g. by deficit of thymic selec-

tion, regulatory T cells) or increased sensitivity thresholds

(e.g. by increased immune receptor signaling) may explain

why some but not all individuals develop autoimmunity at

one point of their life time. However, it cannot explain why

the symptoms start at a certain time point. Therefore,

additional environmental factors such as noxes, injury or

infections have been discussed to trigger the loss of self-

tolerance and thereby the onset of disease (Bach 2005;

Chervonsky 2010). The same recognition system respon-

sible to initiate anti-microbial immune responses against

foreign antigens may then be triggered in a bystander

fashion against harmless auto-antigens or the infectious

environment may modify auto-antigens into chemically

altered self-antigens that then appear as foreign antigens.

Evolutionarily conserved pathogen-associated molecu-

lar patterns (PAMPs) on microbes or danger-associated

molecular patterns (DAMPs) released after tissue damage

are recognized by different families of immune receptors,

summarized under the name pattern recognition receptors

(PRRs), with the toll-like receptors (TLRs) as their most

prominent representatives (Mills 2011). Self-antigens may

also bind PRRs under certain circumstances. First, genetic

alterations in such receptors or other immune-related genes

could lower the threshold for immune activation against

harmless self-antigens. Second, cross-reactivity of micro-

bial structures with self-antigens (molecular mimicry) may

occur (Chastain and Miller 2012) and, finally, exogenous

noxes or infections by viruses (Bianchi et al. 2007; Ferri

et al. 2008; Lunemann and Munz 2007; Munz et al. 2009),

bacteria (Root-Bernstein et al. 2009) or fungi (Romani

2008) may be responsible for chronic inflammatory
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processes promoting auto-aggression via bystander acti-

vation or epitope-spreading (Delogu et al. 2011; Kamradt

and Mitchison 2001).

Glycolipids as a source of autoantigens

More recent data indicate that proteins may in fact repre-

sent only a minor source of antigens that contribute to

molecular mimicry. With the increasing identification of

C-type lectin receptors as PRRs for sugars and lipids, their

role as auto-antigens turned into the center of attention

(Buzas et al. 2006). Probably the best example for

molecular mimicry comes from glycolipid recognition in

the Guillian–Barré syndrome (GBS). Antibodies against

Campylobacter jejuni gangliosides cross react with some

human gangliosides, mostly GM1 and GD1 (Hughes and

Cornblath 2005; Nores et al. 2008).

The antibodies found are IgG type produced only after

the isotype switch of B cells (Yuki and Odaka 2005), which

strictly require CD4? T-cell help. T-cell activation of

dendritic cell (DC) can occur by C. jejuni gangliosides, but

presentation of the glycolipids on MHC class II molecules

is not possible (Kuijf et al. 2010). How can IgG antibodies

then be generated against glycolipids that are not presented

on MHC II molecules to differentiate T helper cells? NKT

cells recognize glycolipids and can produce similar cyto-

kine patterns as CD4? T cells that are involved in B-cell

cytokine switches (Brigl and Brenner 2004). They may be

substitute the classical CD4? T-helper cells as shown after

injection of mice with a-galactosylceramide, a prototype

glycolipid antigen for NKT cells (Lang et al. 2006) and

thereby help to generate glycolipid-specific IgG antibodies

without antigen-specific CD4? T-cell help. Alternatively,

soluble factors present in the supernatant of the glycolipid-

activated DCs may directly be able to circumvent both

T cell and NKT cell help (Kuijf et al. 2010).

Oxidized glycolipids as altered self-antigens

Despite the fact that the CNS is the target organ for auto-

reactive T cells in multiple sclerosis (MS), the T-cell

priming event is postulated to occur in peripheral tissues

(Goverman 2009). Whether these primed T cells and sub-

sequently B cells have been primed directly against CNS

antigens is unclear, although there is some evidence

(Obermeier et al. 2011). It is also conceivable that they

responded to a virus infection, where specific viruses

gained access to the CNS. Plasma cells may then enter the

CNS. Especially for EBV, higher IgG antibody titers had

been measured in cerebrospinal fluid as compared to

peripheral blood (Haahr and Hollsberg 2006), potentially

indicating that a cerebral infection would be target also for

a T-cell response. The intrathecal demonstration of

oligoclonal IgG bands from MS patients by electrophoretic

profiling can be used for diagnosis. However, the simul-

taneous increase of IgGs against different viruses may

rather indicate a generalized inflammatory reponse,

because infections enhance only monospecific IgGs direc-

ted against the pathogen (Boucquey et al. 1990; Sindic

et al. 1990). In fact, binding of these antibodies to viral

target structures in the CNS has not been demonstrated.

Nevertheless, indirect microbial promotion of autoimmu-

nity is highly evident, as, for example, impressively shown

by clear influence of intestinal tract commensals on

experimental autoimmune encephalomyelitis (EAE), a

murine model for the early inflammatory stages of MS

(Berer et al. 2011). Together, a definitive proof, which

directly links virus infections with CNS autoimmunity, is

still lacking.

More recent data indicate that cerebrospinal fluid of MS

patients also contains increased levels of selected glyco-

lipids such as sulfatide and, interestingly, oxidized cho-

lesterol and phosphocholine as well as asialo GM1 when

compared to healthy controls (Kanter et al. 2006). Sulfatide

has been shown to associate with CD1d antigen-presenting

molecules of mice (Zajonc et al. 2005) and to enhance the

severity of EAE (Kanter et al. 2006). Thus, also in MS

rather glycolipids than proteins might represent targets of

autoimmune attack, especially when oxidation of glyco-

lipids converts them to altered self-antigens.

Relevance of dendritic cells (DCs) in autoimmunity

DCs are heterogenous antigen-presenting cells of the

immune system that play an important role in the initiation

of innate and adaptive immune responses. From one side,

DCs are being considered as inflamers of immune response

against microbial pathogens but also unwanted organ graft

rejection and autoimmunity, on the other side they are

supposed to induce and even maintain tolerance to antigens

(Morelli and Thomson 2007; Steinman and Nussenzweig

2002). Tolerogenic or immunogenic functions of DCs

depend on their stage of differentiation/maturation but are

independent of hematopoietic origin or subset classification

(Thomson and Robbins 2008). Some authors claim that the

endogenous environment itself may generate factors, which

decide for an immune response initiated by the DCs or the

maintenance of tolerance (Matzinger 2002). Although

immature mDCs capture and process antigens to present

them to naı̈ve T cells to low extends, effector T cells are

not generated by them and rather tolerogenic mechanisms

such as T-cell anergy or induction of regulatory T cells

dominate to downregulate immune responses. These DCs

can inhibit alloantigen-specific T-cell responses, reverse

autoimmune diseases in murine models and induce
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antigen-specific T-cell tolerance (Thomson and Robbins

2008). In contrast, following a powerful immunological

stimulus (such as contact with transplants or allergens,

products associated with microbes or inflammation)

immature DCs become mature and migrate to the respec-

tive lymph node, prime and stimulate expansion of antigen-

specific T cells, and present intact proteins to B cells

for their activation and subsequent antibody production

(Cravens and Lipsky 2002). Activated T cells and anti-

bodies are carried by blood to affected tissues. In autoim-

mune responses, these attack host proteins.

Dendritic cells also regulate immune responses against

self-antigens via mechanisms such as differentiation of

T-regulatory cells, T-cell anergy and clonal deletion of

effector T cells which are specific for such antigens (Platt

and Randolph 2010). Autoimmunity happens in environ-

ments where these regulatory mechanisms fail to control

T-cell responses directed against the self-antigens.

Whereas subclinical forms of autoimmunity are frequent

processes, prolonged activation of autoreactive lympho-

cytes is requested for the development of an autoimmune

disease and accompanies ongoing tissue damage (Ludewig

et al. 2001). Although genetic components predispose

people or animals for autoimmune diseases, trauma or

tissue injury further contributes to promote autoimmunity

through DAMPs (Manfredi et al. 2009; van Duivenvoorde

et al. 2006). The onset of autoimmune diseases, however, is

associated with viral and bacterial infections (Regner and

Lambert 2001), which either trigger (Miller et al. 1997) or

accord to relapses in autoimmune diseases (Andersen et al.

1993). Manifested autoimmunity may also depend on the

number of DCs presenting self-antigens and the duration of

antigen presentation by DCs, suggesting a crucial role of

DCs for the development of clinical autoimmune diseases

(Ludewig et al. 2001). The involvement of DCs in auto-

immune diseases includes Hashimoto thyroiditis and

Grave’s disease, Psoriasis, Sjögren’s syndrome, rheuma-

toid arthritis and multiple sclerosis (Cravens and Lipsky

2002).

DCs and CNS autoimmunity

The presence of DCs in the healthy CNS is restricted to the

vascular-rich compartments such as the choroid plexus and

meninges (McMenamin 1999). DCs can also be detected in

the CSF of humans (Pashenkov et al. 2001). Upon local

inflammation of the CNS due to infection, cell death or

autoimmunity, they are found in the CNS parenchyma

(McMahon et al. 2006). There is so far no consensus on

whether DCs in the CNS parenchyma come from the

periphery (Lande et al. 2008; Zozulya et al. 2010) or may

arise from resident microglia (Fischer and Reichmann

2001) and monocytes (Randolph et al. 1998) or whether

they migrate from immature DC in the choroid plexus and

meninges. The problem arises from the common surface

markers on macrophages, microglia and DC subpopula-

tions as well as that they all require the same survival

factors in cultures (McMahon et al. 2006). Whatever the

origin of DCs in brain parenchyma may be, it has been

shown that DCs recruited to the inflammation sites in CNS

maintain their ability to migrate to the periphery with CNS

autoantigens and prime naı̈ve T cells (de Vos et al. 2002;

Karman et al. 2004; Kivisakk et al. 2004).

Involvement of DCs has been described in rodents with

EAE, an animal model that resembles MS in humans,

where they are discussed as the likely candidate for

the initiation and progression of autoimmune reactions by

T cells (McMahon et al. 2006). Studies showed that an

expansion of DCs following Flt3-ligand treatment (Flt3L/

CD135, a growth factor that regulates proliferation of early

hematopoietic cells) is associated with enhancement of

clinical symptoms and increase of T cell and DCs infiltrates

in CNS (Greter et al. 2005). On the other hand, a reduction

of DCs after Flt3-L inhibition has been shown to correlate

with reduction of severity of disease (Whartenby et al.

2005).

Elevated numbers of DCs that secreted pro-inflamma-

tory cytokines were found in peripheral blood of humans

suffering from MS (Huang et al. 1999). Also in CSF,

increased numbers of DCs were observed and correlated

with common factors of CNS inflammation (Pashenkov

et al. 2001). Although active recruitment and accumulation

of DCs into CNS lesions of MS patients (Lande et al. 2008)

as well as alterations in the interaction between DCs and

T cells in MS patients have been reported (Stasiolek et al.

2006), details in the involvement of DCs in MS are so far

unknown.

Autoimmunity in Parkinson’s disease

The destruction of dopaminergic neurons in PD has been

connected to a variety of factors, including genetic, envi-

ronmental and immunologic conditions. Genetic factors

have been identified in familiar forms of PD, which con-

tribute to about 10 % of PD cases (Lesage and Brice 2009;

Rosner et al. 2008), and pesticides have been identified as

environmental risk factors in PD pathogenesis (Liu et al.

2003; Uitti and Calne 1993). Moreover, intravenous drug

abuse with meperidine-related substances contaminated

with 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine (MPTP)

triggers acute destruction of dopaminergic neurons and PD

(Langston et al. 1983). In the past decade, evidence for an

immunologic background of PD has been accumulated, on

which we will focus here.
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Several studies show that PD pathogenesis is associated

with neuroinflammation (McGeer and McGeer 2004),

which is the prerequisite for the maturation of DCs and

their migration to the respective sites in the brain. Fol-

lowing these steps, DCs could be able to trigger an auto-

immune response by transferring brain antigens into the

cervical lymph nodes and presenting them to T- and

B-cells. A potential link between Parkinsonism and auto-

immunity has been reviewed by Benkler et al. (2009).

Early experimental evidence in favor of an autoimmune

background of PD came from Chen et al. (1998) who

reported that the transfer of plasma antibodies isolated

from PD patients to the substantia nigra of rats induced a

marked loss of dopaminergic neurons. In contrast, animals

treated with antibodies from healthy controls exhibited

much lower neuronal damage, suggesting that autoanti-

bodies that recognize dopaminergic cells are present in

patients with PD (Chen et al. 1998). In the last decade,

several autoantibodies directed at antigens associated or

related to PD pathogenesis have been identified in PD

patients, including antibodies directed at melanin (Double

et al. 2009), a-synuclein (Papachroni et al. 2007; Yanam-

andra et al. 2011), and GM1 ganglioside (Zappia et al.

2002). Reversible Parkinsonian syndrome together with the

presence of anti-neuronal antibodies has been observed in

an EBV-infected patient (Roselli et al. 2006). Autoreactive

antibodies associated with PD have not only been found

in plasma but also in brain: post-mortem analysis of

brains from PD patients and controls showed binding of

IgG to dopaminergic neurons in tissues from patients with

PD (Orr et al. 2005).

One potential target structure for an immune attack

against dopaminergic neurons is the pigment neuromelanin

(NM) that accumulates in dopaminergic neurons as a

byproduct of catecholamine metabolism from oxidative

polymerization of dopamine and norepinephrine to qui-

nones (Graham 1979). We described recently that NM

triggers maturation of DCs in vitro and that this maturation

is functional as NM-treated DCs were able on their turn to

trigger a proliferative T response. We also showed that

DCs can phagocytoze NM (Oberlander et al. 2011). These

experiments demonstrate that the first necessary criteria for

DCs to initiate an adaptive autoimmune response directed

against NM-associated structures are fullfilled. As depicted

in Fig. 1, we hypothesize that activated DCs migrate from

the brain into the cervical lymph node where they present

the potential (auto-) antigens to T and B cells. The rec-

ognition of NM as a pathogen or dangerous molecule and

its uptake by DCs would allow DC migration and its pre-

sentation in the cervical lymph nodes, thereby triggering an

adaptive autoimmune response if NM-reactive T or B cells

are present. This autoimmune response against NM would

be directed against NM-rich cells in the brain, leading to

dopaminergic cell death (Fig. 1). This auto-aggressive loop

would be enhanced by a NM-triggered activation of

microglia, which has been described before (Wilms et al.

2003; Zhang et al. 2011), resulting in an amplification of

the adaptive immune response against NM and the local

reactivation of immigrating effector T cells (Fig. 1). There

is accumulating evidence for an immunogenic role of NM

in PD pathogenesis: In sera from PD patients antibodies

directed at catecholamine-based melanins have been

Fig. 1 How activation of DCs

by NM could trigger

autoimmunity directed at

dopaminergic neurons. Contact

of DCs with NM triggers

maturation of these cells that

subsequently migrate from the

brain into the cervical lymph

nodes where they present NM

to B- and T-lymphocytes.

If NM-reactive lymphocytes are

present, they get activated

(primed) and secrete

NM-specific antibodies (B cells)

or exert NM-specific cytotoxic

functions (T cells). Activation

of microglia by NM would

result in a proliferation of

NM-specific T cells after

contact with NM-presenting

microglia. NM-specific

antibodies and T cells may

recognize NM-positive neurons

and trigger their degradation
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detected (Double et al. 2009). Moreover, post-mortem

analysis of brains from PD patients reveals the opsoniza-

tion of NM with complement C1q (Depboylu et al. 2011),

indicating that NM is recognized by the classical comple-

ment pathway as a target structure and shows the capacity

to cause neuroinflammation (McGeer and McGeer 2004).

Opsonization with C1q is either mediated by previous

antibody coating of the target structure followed by

recruitment of C1q to the Fc-part of the antibody or by

direct binding to C1q ligands (Kojouharova et al. 2010). It

remains to be elucidated whether C1q-binding of NM is

antibody-dependent or independent and to what extend this

complement binding contributes to neuronal cell death.

The relevance of the complement system in providing

‘‘danger transmitters’’ to evoke immune responses fol-

lowing danger signals has been discussed thoroughly

elsewhere (Kohl 2006). In addition to an immune response

directed at NM itself, the high protein affinity of NM

(Zecca et al. 2000), together with the efficient phagocytosis

of NM by DCs (Oberlander et al. 2011) would allow a

DC-mediated presentation of neuronal proteins to the

adaptive immune system that are primarily unrelated to

NM. In this scenario, NM would act like a Trojan horse,

providing access of otherwise unrecognized brain proteins

to the DC-triggered adaptive immune response.

Conclusions

The past decade has provided accumulating evidence for a

significant role of the immune system in PD pathogenesis,

be it either through inflammation or by an autoimmune

response. Thus, immunomodulating therapy strategies

aiming to attenuate PD disease progression become an

attractive option and warrant further investigation.
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