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Abstract
Recent technological advances provide researchers with a way of gathering real-time information
on an individual's movement through the use of wearable devices that record acceleration. In this
paper, we propose a method for identifying activity types, like walking, standing, and resting,
from acceleration data. Our approach decomposes movements into short components called
“movelets”, and builds a reference for each activity type. Unknown activities are predicted by
matching new movelets to the reference. We apply our method to data collected from a single,
three-axis accelerometer and focus on activities of interest in studying physical function in elderly
populations. An important technical advantage of our methods is that they allow identification of
short activities, such as taking two or three steps and then stopping, as well as low frequency
rare(compared with the whole time series) activities, such as sitting on a chair. Based on our
results we provide simple and actionable recommendations for the design and implementation of
large epidemiological studies that could collect accelerometry data for the purpose of predicting
the time series of activities and connecting it to health outcomes.
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1. Introduction
Accurate measurement of physical activity is necessary for understanding the complex
relationship between an individual's health outcomes and his or her behavior profile.
Unfortunately, standard measures of activity such as questionnaires and diaries are based on
self-reporting and are subject to known shortcomings. Moreover, these measures typically
offer snapshots of activity and do not reflect the dynamic nature of movement in the real
world. Recently, progress in sensor technologies and wearable computing devices have
allowed researchers to collect real-time information on movement through the use of
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accelerometers. In this paper, we propose a method for predicting activity types, such as
walking, standing and sitting, from a multichannel accelerometer designed with widespread
deployment in observational studies in mind.

In early years, human activity function is assessed using measures of activities of daily
living that depend on retrospective self-report, despite well-documented and substantial
measurement error associated with these instruments [7, 18]. The results of these studies
were highly impaired by problems associated with self-reported activity data. Wearable
sensors started to be deployed into studies, since they allow for unbiased measurement in
older populations with cognitive or physical impairment. Moreover, the accuracy of sensors
is not effected by differences in sex, race/ethnicity or language, all well known sources of
bias in self-reports. This is particularly important in the study of aging populations, both
because issues with recall are more severe and because understanding physical activity
accurately is central to the study of elderly populations in public health [21]. The use of
them to collect activity information in large-scale observational studies took a major step
forward with the addition of the ActiGraph to the National Health and Nutrition
Examination Survey (NHANES) in 2003 [27]. Many published work have demonstrated
these devices’ ability to monitor human activity status[28, 5, 1, 25, 4, 20, 10, 6, 9, 15]. Some
of them focused on the quantification of total energy expenditure[28] or “activity counts”
[15]. However, these devices (often combined with more sophisticated sensors) offer the
potential to assess more complex questions regarding real-world function and more refined
measures of specific activity types. Accelerometer, which is the basic of these wearable
sensors, were discussed in many literatures because they are capable of accurately collecting
adequate data for physical activity monitoring[11, 5, 25]. Since avoiding laying a burden to
the subjects is crucial in large scale observational study, developing methods to predict the
physical activity using accelerometry data becomes one of our major interests.

We base activity prediction on the idea that movements can be understood in terms of
smaller components, which we dub “movelets”. Briefly, given accelerometer time series
data, we decompose movements into short overlapping segments; these movelets are the
elements which make up motions and activities. Using data with known activity labels,
movelets are organized by activity type into “chapters”, or collections of movelets with the
same activity label. Predictions of unknown activity labels are made by finding the closest
match, defined in terms of squared error for all acceleration channels, of an unlabeled
movelet to those in chapters. Thus we build our method on the intuition that movements
with elements that look similar are likely to have the same labels.

Our data are generated using a single accelerometer positioned on the subject's hip at the
apex of the left iliac crest. The accelerometer is built on core chip MMA7260Q by
Freescale™, and records acceleration in three mutually orthogonal directions for a wide
range of sampling frequencies (time points per second) and sensitivities (acceleration per
unit of scale). Data were collected during in-laboratory sessions in which subjects performed
a collection of activities, including resting, walking, and lying, repeated chair stands, lifting
an object from the floor, up-and-go, and standing to reclining on a couch. We observe data
for two subjects with two laboratory visits each. Sessions lasted roughly 15 to 20 minutes,
and in that time each activity was replicated up to three times. Both the data collection
device and activities performed are compatible with the needs of observational studies,
especially of elderly populations: the single accelerometer worn at the hip is unobtrusive and
wearable in real time, and the activities provide a useful understanding of physical
movement. During the data collection, an observer recorded activity start and stop times to
provide a time series of movement labels that accompanies the accelerometer signal.
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The accelerometer output consists of 3 voltage time series, which are proxy measures of
acceleration. The time series vary by amplitude, frequency and correlation along the time
course of the corresponding activities. For example, Figure 1 displays two segments of
accelerometer data. In the first segment, the subject stands, walks twenty meters, and stands.
In the second segment, the subject performs two replicates of lying down and standing up;
during each replicate, the subject lies from a standing position, rests for several seconds in
the lying position, and rises to a standing position. Three acceleration channels or axes are
shown, and activity labels are provided. From this figure, we see that active periods, in
which the subject is walking, rising or lying down, have higher variability than inactive
periods, in which the subject is resting in either the standing or lying position. Walking is
characterized by periodic acceleration patterns for each axis, although there are differences
in amplitude between axes. Replicates of the “Chair Stand” activity display similar patterns,
bolstering the intuition that movements that share a label also appear similar visually.
Although there are two types of inactivity (standing and lying), the acceleration time series
corresponding to these two periods are characterized by low variation around stable
constants; however, the ordering and relative position of the axes are different, due to a
change in the orientation of the accelerometer with respect to Earth's gravity.

The goal of this work is to demonstrate the conceptual framework for the movelet approach,
rather than to describe the details of its application to a large data set. The movelet
prediction algorithm described in the paper is an important first step in developing
accelerometer-based biomarkers of activity in large observational studies. Several strengths
of this approach are illustrated by the analysis of a few subjects at a few visits; at the same
time, improvements and refinements both in the statistical analysis and in the data collection
are suggested by our results. For instance, matching unlabeled movelets to reference
chapters provides a fast and easily understood method for predicting labels. However,
results can be sensitive to the definition of the gold standard of activity type - very often, the
observer annotations disagree with the raw accelerometer output. Additionally, the use of
gyroscopic information, which is included in many accelerometer devices, can give
accelerometer output that is robust to rotations of the device itself. These are important
considerations in designing a data collection method that will give useful information
regarding activity in observational studies. More importantly, our findings have already led
to changing the proposed design of the experiment for an ongoing and future observational
studies. Indeed, an investigator will now go to the home of study participants, help install
the device correctly, provide simple hands-on instructions, and ask the participants to
perform a few well defined tasks. This process will be videotaped for improving and
assisting human annotation. The investigator will then leave and study participants are then
called on the phone and asked to perform a few simple tasks for re-calibration. None of
these features was part of the original data collection protocol. We conclude that
understanding the inherent pitfalls and variability associated with even the most advanced
measuring technology can lead to dramatic improvements in the design of experiments, data
quality, and analysis. This paper, as a “proof-of-concept” work, provides the first part of the
story for accelerometry data.

Prediction of physical activity intensity and type has been under intense methodological
development in electronic engineering and computer science, but to a lesser extent in
statistics. Preece et al. [24] provided a nice review of the current methods of activity
prediction. Many prediction methods using either raw or transformed accelerometer data
exist, including “cut-point” or linear regression [8, 11], quadratic discriminant analysis [23],
artificial neural networks [13, 14, 29, 30, 26], Markov Models [16, 23], unsupervised
learning [19] and combined methods [25, 2]. Previous work has often focused on activity
types that are not of interest in public health studies[23], such as using computer or brushing
of teeth, or has included multiple accelerometers placed at several locations on a subject's
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body [13, 14, 17]. A comparison of recent approaches was also applied to data generated
using five biaxial accelerometers by Bao and Intille [3]. However, these approaches are
unsuitable for application to accelerometer data in public health studies, either because they
require more sensors on subjects or because they are not designed to detect short-term
activities like standing from a lying position. Moreover, prediction results from black-boxed
machine learning methods are usually difficult to examine and improve. This stimulates us
to find a method which could not only detect long term activities like walking and
vacuuming, but also short term activities like sitting down or lying down.

Our approach and taxonomy are inspired by the speech recognition literature [12], where
words or parts of words are matched to known speech patterns. However, the parallel with
speech recognition should not be overstated given the large differences between the two
activities and measurement instruments. First, speech is often recorded at much higher
frequencies (between 8 and 16kHz) than acceleration (10Hz in our dataset), providing
density and detail to voice recognition data [22]. Second, audio data is inherently single-
channel while acceleration is understood in three orthogonal directions, increasing the
dimension of the activity prediction problem. In natural speech most sounds and many full
words are repeated often, providing an ample training set on which to build a prediction
algorithm. In activity prediction, movements can be rarely performed and infrequently
observed, making the definition of a training set challenging. Moreover, high fidelity audio
recorders could be treated as thought they were lossless reproductions of the original signal.
In contrast, accelerometers are weak proxies for activities that are complex and could be
ambiguous.

The remainder of the paper is organized as follows. In Section 2 we describe the movelet-
based approach to predicting activity based on accelerometer data. Section 3 details the
application of our proposed method to the real data described above. We close with a
discussion in Section 4.

2. Methods
To predict activities based on accelerometer data, we first define a movelet as a basic
element of 3-axis time series data. Collections of movelets paired with known labels
(annotations) form chapters, which are in turn organized into reference dictionaries of
known movelets and their associated activities. Classification of accelerometer data with
unknown activity annotations is based on decomposing the unlabeled data into component
movelets, and then matching each unlabeled movelet to these chapters. The label of the best
matched chapter is used as a preliminary prediction of the activity of the unlabeled movelet.

2.1. Definitions
We observe data that is a collection of three time series representing the acceleration in three
mutually orthogonal axes. Though we have two subjects and each with two visits, we
actually treat them as 4 independent visits. Thus denote the data by Xi(t) = {Xi1(t), Xi2(t),
Xi3(t)}, t = 1, 2, . . . , Ti, where Ti is the length of the accelerometer time series for visit i.
Define an activity label time series Li(t) such that Li(t) is a function mapping t to {Act1,
Act2, . . . , ActA}, t = 1, 2, . . . , Ti, where Acta denotes activity type a. Let  and  be a
partition of observation time for visit i into training and validation sets, respectively. Thus if

, then Xi(t) belongs to the training dataset and has a known activity label Li(t);
otherwise Li(t) is unknown and is to be estimated. Training sets contain continuous
segments or blocks of time to include full examples of each movement type.

Next we define movelets as elements of time series that characterize movement in temporal
windows with length H. More specifically, let
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define the movelet of subject/visit i at time t ∈ {1, 2, . . . , (Ti – H + 1)}. Note that movelets
are made up of time series for all axes of the accelerometer output, and summarizes the
pattern of acceleration recorded from time t to t + H – 1. The dimension of the movelet Mi(t)
is 3H, because there are 3 concatenated time series, and contains all the accelerometry
information for a window of movement of length H/10, because time is expressed in 10 Hz
in our case. H is usually chosen so that a movelet Mi(t) captures enough information to
identify a movement and is not too long to contain more than one type of activity as well.
Movelets Mi(t) with  are paired with their known activity labels and collected into
activity-specific “chapters”. Thus, we define a chapter  as a collection of movelets {Mi(t) :
Li(t) = Acta} that share a common label. An important characteristic of movelets is that they
are overlapping moving windows; in fact Mi(t) and Mi(t + 1) overlap everywhere, except at
time t and t + H. This is an important characteristic when there is uncertainty on where the
activity actually starts, because transitions between two activities can be unclear particularly
for elderly subjects. This happens to be a serious problem even with the best in-lab human
annotation. Allowing this sort of obscure period in our movelets may help us solve the
problem. One chapter is constructed for each activity type; chapters are then combined to
form a subject-visit specific “dictionary” of movelets and their labels. Dictionaries are
distinct for subjects and visits to control for differences between the movement patterns for
different subjects and to account for changes in the orientation of the accelerometer at
different visits. This dictionary is used as a reference for movelets Mi(t) with . Table 1
displays an example of a subject-specific dictionary consisting of A chapters in total. Each
chapter is constructed using the training set and is made up of movelets, the short
components of three-axis accelerometer data. Usually for activities with well-defined
beginning and endings(standing up from chair, etc) one full replicate is used to construct a
chapter. For continuous activities(walking, sitting, etc.) we use a two-to-three-second
segment to build the chapter.

The definitions of movelets, chapters, and dictionaries given above provide a useful analogy
for our proposed classification method. Given unlabeled accelerometer data that has been
decomposed into movelets, we use the dictionary as a reference by “looking up” an
unlabeled movelet and finding its best match among known movelets. The label associated
with the best match, which is the chapter title, is used to predict the unknown label.
Matching, which is described below, quantifies the intuition that movelets with similar
visual appearances are likely to be components of the same larger movement.

2.2. Matching and labeling
Given an unlabeled movelet Mi(t0), we predict the label Li(t0) first by matching Mi(t0) to a
chapter in the dictionary described above. To be more specific, the closest match for
movelet Mi(t0) in the dictionary is Mi(t′), where

The distance function D(·, ·) is
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(1)

Thus, distance between movelets averages the difference taken over all acceleration axes.

Based on this match, an estimate for the unknown label is ; that is, we take the
label associated with the best dictionary match and use it to estimate the unknown label.
Figure 2 gives a schematic of the matching process, in which an unlabeled movelet Mi(t*) is
compared to a dictionary with 4 chapters. The distance between Mi(t*) and all reference
movelets is calculated using the distance function (1). After Mi(t*) is compared to all
reference movelets in the dictionary it is matched to Chapter 2, because movelet Mi(t′) in
Chapter 2 along with Mi(t*) provides the smallest distance.

After preliminary labels , , are generated using the matching step, a majority
voting procedure is used to select final estimated labels L̂i(t). Each element of

 is considered a single vote, and the activity
with the most votes in this set is the estimate L̂i(t). An advantage of this procedure is that it
smooths the predicted labels L̂i(t) by taking into account the fact that movements are
continuous, meaning that neighboring movelets contain information about the current
activity. Additionally, because movelets decompose movements into their constituent parts,
the matching applies even when the duration of movements is variable. For instance, two
replicates of sitting from the standing position may take different amounts of time, but will
have similar movelet signatures.

2.3. Movement fingerprints and lazy movelets
To increase the accuracy of our dictionary-based classification method and decrease the
computational burden of the looking-up process, each chapter must be carefully constructed
to include useful information while excluding redundant or less useful movelets. With this in
mind, chapters that were built in the manner described above can be fine-tuned using the
identification of what we will label “fingerprint” and “lazy” movelets.

First, each chapter must include the signature movelets of the corresponding activity. We
refer to these defining movelets as “fingerprints” because they provide excellent prediction
of a specific activity related to the chapter. Fingerprints are thus the characteristic
acceleration time series associated with a movement, and are most often used when
matching new movelets of the same activity. Second, unnecessary or redundant information
should be removed from the chapter. For example, a chapter built on several seconds of
walking will include many near-identical movelets due to the periodic nature of the activity.
Further, there often exist “lazy” movelets which, contrary to fingerprints, are not commonly
matched to and do not usefully identify the activity; rather than aiding prediction, these can
be falsely matched to by movelets of other activities. Both redundant and lazy movelets can
be excluded from a chapter to increase computational performance and reduce the number of
errors. Finally, some movements share very similar movelets. These “ambiguous” movelets
can lead to misclassification due to very close matches in multiple chapters. In this situation,
an ambiguous movelet can be removed from one chapter so that matches will be made to the
remaining movelet; the choice of which movelet to retain will depend on the relative
importance of correctly classifying the two movements. The selection of fingerprint and lazy
movelets was done independently of performance on the test set.
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As an example of both fingerprints and lazy movelets, Figure 3 displays the chapter for
“Standing from Lying” from a movelet dictionary. We used only the yellow-line-shaded
region to construct the chapter, despite the fact that the areas shown in light gray are also
labeled by a human observer as “Standing from Lying”. The fingerprint of this activity is the
pattern that the mid gray time series goes down while the green one goes up. The movelets
in the light gray bands (not shaded by yellow lines) are lazy movelets, and do not distinguish
this activity from others. We removed the lazy movelets from the annotated time period and
built the library conservatively to make the chapter a more useful reference for future
unlabeled activities.

2.4. Summary
Movelet-based analysis of accelerometer data is built on the intuition that movements with
similar acceleration patterns at the elemental level are likely to be generated by the same
activity. Using this idea, we decompose movements into overlapping segments and construct
reference chapters and dictionaries; given unlabeled time series, we match to the reference
and use the best match to predict the unknown activity type. Movement fingerprints are
identified to strengthen the construction of chapters and to aid in the basic understanding of
movements, while lazy movelets are eliminated to reduce classification error and
computation time. The result is a conceptually clear method for activity prediction that is
computationally feasible and scalable to large datasets.

3. Application to LIFEmeter data
We now apply our methods to data from two subjects, each with two visits. Data were
collected in the development of the LIFEmeter multi-sensor device, intended to assess
physical function in large-scale observational studies. The subjects were community
dwelling older adult participants in the LIFEmeter study, ages 65 and older who had no
history of cognitive dysfunction, lived in the Baltimore area, and were capable of walking
across a small room unassisted. They were observed in a clinical setting, and performed
physical activities that are common in daily living. The following activities were selected as
important in understanding physical function in real-world setting: walking, standing from
sitting, standing from lying, sitting from standing, and lying from standing. Three sedentary
states (standing, sitting, and lying) were also annotated. Table 2 lists all activities observed
and provides abbreviations that will be used through the remainder of this section.

An observer annotated the time points at which an activity was started and completed,

providing activity labels . Annotations were imperfect due to early or late start and
stop points, to rounding times to the nearest second, and to misalignment. Obvious errors in
the observed labels were detected and corrected through comparison with the accelerometer
output to create labels used to construct movelet dictionaries and assess the predictive
performance of our algorithm.

3.1. Constructing the dictionary
Following the method described in Section 2, we build a dictionary with 8 chapters of
activities for each subject and visit. First, we partitioned the accelerometer data into training
and validation sets  and . Using the training set, we decompose movements into
movelets and organize by activity type. Our choice of H is 10, based on the 10Hz sample
rate of the device used in our data collection. This is because each 1-second movelet
contains just enough information to identify a movement, and is not so long that it restricts
the matching of an unknown activity. We also tried other choices of H between 10 and 15
which did not give substantially different results. We therefore conclude that, in general, the
methods is robust to the choice of H within a reasonable range (in our case around 10). For
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activities with well-defined beginnings and endings, such as “CS_Stand” and “CS_Sit”, we
use the first replicate as training data and reserve the remaining replicates as testing data.
Chapters for these activities contain between 5 and 30 movelets each, depending on the
duration of the activity. For continuous movements that lack well-defined beginnings and
endings, such as “Walk” or “standing”, we extract segments lasting 2 to 3 seconds that are
clearly labeled with a particular activity to build the corresponding chapter. This is done to
prevent chapters from becoming too large, and, since these activities are periodic, to prevent
redundant information from being included in the reference.

3.2. Initial results
After constructing dictionaries for each subject and each visit using the training data, we
predict activity labels L̂i(t) for  by matching movelets to the reference and
implementing the majority voting step. Figure 4 details this analysis. For the accelerometer
data displayed in Figure 1 (one segment of walking and two replicates of lie-rest-stand), the
lower panel of Figure 4 shows the minimum distance between each unlabeled movelet and
all movelets contained in the reference chapters as a collection of distance curves. The
preliminary labels  are taken to be the chapter title with smallest distance. Next, the
prediction L̂i(t) is determined via a majority vote in which each element of

 is considered a single vote. At the top of
Figure 4 are the observer-annotated (top colored bar) and predicted labels (bottom color bar)
that accompany the accelerometer data. A comparison of the annotations and predictions
indicates generally high agreement between these time series. In particular, there is broad
overlap between the prediction and annotation of walking and resting periods as well as the
location of the shorter activities lying and standing. Moreover, there is generally reasonable
separation between the distance curve corresponding the the correct chapter and the
remaining chapters, indicating the ability of the movelet-based analysis to distinguish
between activity types. In two regions, the distance curves are zero – these depict the first
replicate of the “Lie from Stand” and “Stand from Lie” activities, and were used to construct
their respective activity chapters. Isolated misclassifications in the preliminary labels, such
as those that take place in the middle of walking period, are in effect smoothed by the
majority-voting step which prevents single activity labels from disagreeing with its
neighbors.

On the other hand, as shown in the right segment of Figure 4, the annotated labels for the
shorter activities have much longer time durations than the predicted intervals. This is most
likely due to a combination of early and late stop points in the annotations and time spent
transitioning between activities. For example, when a subject is asked to sit from a standing
position, there is a brief pause as the new movement is begun; similarly, when rising to a
standing position, there is a short period of stabilization as the movement is completed. The
extent to which these transitions will appear in real-world data, rather than in a controlled
setting, is unclear. In these periods, the “true activity” is not clearly defined but the
annotations are seen to be conservative in starting and stopping short activities, whereas the
predictions extend neighboring (well-predicted) resting periods. This contrast can negatively
affect the apparent prediction accuracy, although many of the activities are correctly
identified.

Let  be the amount of time spent performing activity a (measured by ) and  be the
predicted amount of time spent performing activity a. For each subject and visit, in Table 3,

we report  for all activities a, a′.
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Table 3 reinforces the observations from Figure 4 that long continuous activities, like resting
and walking, are better predicted than short activities, like standing from a chair. In fact,
with the exception of subject 1 at visit 1, all resting states are accurately predicted more that
99% of the time, and walking is accurately predicted between 68% and 80% of the time.
However, short activities seem to be fairly poorly predicted, and are often mistaken for one
of the resting states. Again, this apparent shortcoming stems from two major factors: i. these
activities are undertaken for very short periods, so even minor misclassification can greatly
impact results, and more importantly ii. the observer-provided annotations for these short
activities are inaccurate.

3.3. Refined results
A comparison of our initial predictions, the observer defined annotations and the raw
accelerometer data indicate that a gold standard for Li(t), the true activity labels associated

with acceleration data, is not given by the observer's annotations . Thus, we next
create a “combined observer” to define activity labels  by synthesizing information
from the observer annotations and raw accelerometer output. Primarily, this resulted in
designating times between two distinct activities as “transition times”, rather than
misleadingly assigning these periods to one or the other activity. The new activity labels are
shown in Figure 5, and a comparison of labels  and predictions L̂i(t) is given in Table
4. All the tables demonstrate the large improvements in prediction accuracy that arise from
improvements in the standard used to define true activity labels. We contend that these
findings indicate that: 1) accurate labeling is crucial to prediction algorithm training; 2) a
large source of prediction inaccuracies can reliably be traced to human labeling; and 3)
prediction accuracy results reported in the literature are hard to compare because data use
different labeling protocols.

The construction of the combined observer also illustrates the feedback from the movelet-
based prediction algorithm to the annotations. Periods that were largely misclassified using

 as a reference, and that were labeled as “transitions” in , are periods where the
distance between an unlabeled movelet and those in the reference dictionary is large. Thus,
movelets that don't match well to any known reference can be quickly identified. In
observational studies, this facilitates the recognition of movements that are not included in
any dictionary or are otherwise abnormal.

4. Discussion
Understanding physical activity is a key component in public health studies of subject
function. However, standard measures of physical function such as activities of daily living
questionnaires are subject to substantial measurement error. Emerging accelerometer
technologies allow the collection of real-time, real-world activity data and may alleviate
many of the issues with retrospective self-report data collection.

In this paper we propose a method for activity classification built around the “movelet” as a
basic element of movements. Using movelets with known activities, we construct reference
chapters and dictionaries; given an unlabeled movelet, we find its closest match in the
reference and use the match's label as a basis for prediction. Thus, our method is built on the
intuition that movements with similar component acceleration patterns are likely to be
generated by the same activity. This allows the method, and the matches it provides, to be
quickly evaluated based on visual inspection of the accelerometer time series. Moreover, the
extension to large data sets in which subjects are observed for hours or days is direct,
because activity prediction is local in time. Finally, our method accurately predicts short
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activities, such as taking a few steps, as well as relatively rare and low-frequency
movements such as rising from a chair.

Several directions exist for improving the movelet-based method. Focusing on the
predictions for a single subject, transition models could naturally encode information about
the order of movements and the likelihood of switching between them. Similarly, smoothing
the distance functions (shown in Figures 4 and 5) would allow neighboring time points to
influence the prediction at the current time. In our analysis, the movelet lengths were chosen
to be 1 second; the sensitivity of predictions to this choice should be examined. Augmenting
dictionaries to include objects other than movelets, for instance by adding measures of mean
and variation, or to include sources of data other than the accelerometer, such as recorded
speech or location information from a GPS device, could improve predictions. Our current
method relies on models trained on each individual, and the solution of this issue is under
exploration. A statistical technique is being developed to normalize the orientation of the
devices across subjects, in order to enable us to perform prediction using models trained by
other subjects. This will also increase our understanding of heterogeneity in acceleration
patterns between and within subjects. For instance, constructing a multi-subject dictionary
would necessitate an understanding of movement fingerprints across several subjects.

Our results and methods suggest three improvements that could help the deployment of this
technology to large epidemiological studies. First, there is an increasing need to minimize
the effect of changes in accelerometer orientation that can occur during normal movements;
this can perhaps be addressed by taking advantage on gyroscopic capacities in the
SHIMMER™ device. This would facilitate interpretation of the accelerometry data,
especially in realistic scenarios where people wear these devices for extended periods of
time, and also might allow the construction of dictionaries for use in populations. Second,
the study could be more accurate if a human observer goes to the home of the participants,
explains the setting up, carefully instructs the placement of the device and conducts a short
testing period using a known sequence of common activities whose duration and type is
carefully annotated. This would also resolve the problem of requiring subject-specific
training of prediction algorithms, which was mentioned previously. It would also place a
smaller burden on the participants. Finally, replication and calibration pre-studies should be
conducted to ensure that prediction algorithms perform well on new subject or visit data.

The ability of technological solutions to improve the prediction of activity from
accelerometer output is currently being evaluated. In the next phase of data collection,
gyroscopic information will be used to normalize data to a constant vertical orientation. This
may reduce the sensitivity of the movelet approach to rotations of the device that naturally
occur as it is worn, and could also increase the comparability of movelets across subjects.
Complementary improvements in the data collection via updated technology and in the
activity prediction through refinements of the movelet approach will be needed to construct
useful biomarkers of activity in large observational studies. The process of using and
implementing new technologies in observational studies is a hard process filled with
potential pitfalls. However, we find this challenge to be well worth undertaking by
statisticians even before the beginning of the study in the design phase.
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Fig 1.
Two segments of accelerometer data. First, a subject walks for approximately 20 second;
then, a subject preforms two replicates of ”Lie down / Rest / Stand up”. Acceleration in
three mutually orthogonal directions is shown, and activity labels are included.
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Fig 2.
A display of matching an unlabeled movelet Mi(t*) to 4 chapters in the dictionary. Points in
each chapter represent labeled movelets corresponding to the activity associated with this
chapter. The distance between the unlabeled Mi(t*) and each chapter is given by the
minimum distance between Mi(t*) and the movelets in each chapter. After Mi(t*) is
compared to all reference movelets in the dictionary, it is matched to Chapter 2 which
provides the smallest distance among all the 4 chapters.
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Fig 3.
The chapter “Standing from Lying”, which consists of 16 movelets. In dark grey is the
section of the acceleration data used to construct the chapter; in light grey are time points
with the same activity label, but that are excluded from the chapter as “lazy” movelets.
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Fig 4.
Observer-defined annotations and predictions for two segments of accelerometer data with
several activity types. Curves giving the smallest distance between movelets and each
chapter are displayed.
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Fig 5.
Comparison of “combined observer” annotations, based on observed-defined annotations
and an inspection of the raw accelerometer data, and predicted labels.
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Table 1

A subject-specific dictionary with with A chapters, one for each activity type. Each chapter consists of
movelets, short overlapping segments of three-axis accelerometer data, which are illustrated in the far-right
column of the table

Dictionary

Chapter Activity Movelets

C1
Activity 1 {Mi(t) : Li(t) = Act1}

C2
Activity 2 {Mi(t) : Li(t) = Act2}

⋮ ⋮ ⋮

CA
Activity A {Mi(t) : Li(t) = ActA}
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Table 2

A list of activities of interest, with abbreviates used in remaining Figures and text

Activity List

Activity Alias

Rest (Stand) Standing

Rest (Sit) Sitting

Rest (Lie) Lying

Standing from Chair CS_Stand

Sitting Down from Standing CS_Sit

Lying Down from Standing RS_Lie

Standing from Lying RS_Stand

Walking Walk
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