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Summary
We examine a generalized F-test of a nonparametric function through penalized splines and a
linear mixed effects model representation. With a mixed effects model representation of penalized
splines, we imbed the test of an unspecified function into a test of some fixed effects and a
variance component in a linear mixed effects model with nuisance variance components under the
null. The procedure can be used to test a nonparametric function or varying-coefficient with
clustered data, compare two spline functions, test the significance of an unspecified function in an
additive model with multiple components, and test a row or a column effect in a two-way analysis
of variance model. Through a spectral decomposition of the residual sum of squares, we provide a
fast algorithm for computing the null distribution of the test, which significantly improves the
computational efficiency over bootstrap. The spectral representation reveals a connection between
the likelihood ratio test (LRT) in a multiple variance components model and a single component
model. We examine our methods through simulations, where we show that the power of the
generalized F-test may be higher than the LRT, depending on the hypothesis of interest and the
true model under the alternative. We apply these methods to compute the genome-wide critical
value and p-value of a genetic association test in a genome-wide association study (GWAS),
where the usual bootstrap is computationally intensive (up to 108 simulations) and asymptotic
approximation may be unreliable and conservative.
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1. Introduction
With a mixed effects model representation of penalized splines (Speed 1991; Ruppert et al.
2003; Wand 2003), we imbed the test of an unspecified function into a test of some fixed
effects and a variance component in a linear mixed effects model with multiple variance
components. Tests involving variance components have non-standard null distributions
because some parameters are on the boundary of the parameter space under the null. When
data consists of independent subvectors both under the null and alternative, the asymptotic
distribution of a likelihood ratio test (LRT) or a restricted LRT (RLRT) is a 50:50 mixture of
chi-square distributions (Self and Liang 1987; Stram and Lee 1994). When the independence
assumption is violated, Crainiceanu and Ruppert (2004) and Crainiceanu et al. (2005)
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discovered that the null distribution of the LRT is different from a 50:50 chi-square mixture
in models with a single variance component, and that using a chi-square mixture distribution
was conservative. For models with a single variance component, Crainiceanu and Ruppert
(2004) took advantage of a spectral decomposition of the likelihood to propose a fast
algorithm for computing the exact null distribution of the LRT and RLRT. This non-
standard behavior was also observed for the degrees-of-freedom test proposed by Cantoni
and Hastie (2002), and the null distribution needed to be computed by bootstrap.

To generalize these results to more complex models with nuisance variance components
under the null, Greven et al. (2008) proposed to approximate the null distribution of the
RLRT using a pseudo-likelihood ratio test theory (Liang and Self 1996). One constructs
pseudo-outcomes by subtracting the best linear unbiased predictors (BLUPs) of nuisance
random effects and applying methods developed for models with a single variance
component to derive the null distribution of the RLRT. Although the procedure generally
works well, in some models with highly correlated covariates and a nuisance variance
component that is on the boundary of the parameter space, the regularity conditions of the
pseudo-RLRT may not be satisfied and a conservative type I error rate has been observed
(Greven et al. 2008; Scheipl et al. 2008). No simple spectral decomposition or exact
distribution is available in the literature for testing a variance component in linear mixed
models with multiple random effects.

We examine a generalized F-test of a variance component, where there are nuisance random
effects under the null. The methods are applicable to testing an unspecified nonparametric
function or varying-coefficient through penalized splines with clustered data, comparing two
spline functions, testing the significance of an unspecified function in an additive model
with multiple components, and testing a row or a column effect in a two-way analysis of
variance model. We transform a test of a nonparametric function to a test of some fixed
effects and a random effect in a linear mixed effects model with nuisance variance
components under the null. We present a spectral decomposition to account for additional
variance components in the model and develop a fast algorithm to compute the null
distribution of the proposed test. The spectral representation is also used to compare the
LRT with the pseudo-LRT, which reveals a connection with methods developed for the
single variance component models, and sheds new insights on the geometry of the LRT in
multiple variance components models. Compared to the LRT, the generalized F-test has a
computational advantage – only a single linear mixed effects model will be fit under the
alternative, which is an attractive feature when the test is carried out many times. For
example, in a genome-wide association study (GWAS), the procedure is applied to compute
the genome-wide critical value of a genetic association test with correlated family data,
where the parametric bootstrap is computationally intensive due to the large number of
simulations required (up to 108 repetitions) and the asymptotic approximation is unreliable
and conservative at the extreme tails.

2. Models and examples
In this section, we first introduce several motivating examples and then describe the general
modeling framework.

Example 1: Test an unspecified function in a partially linear mixed effects model
For clustered data, such as samples collected from a family study, let i index families (or
clusters) and j index subjects in a family (or a cluster). Consider a partially linear mixed
effects model
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(1)

where αi’s are independent family-specific random effects, f(sij) is an unspecified baseline
function relating the outcome to the covariates sij, cij’s are vectors of fixed effects with
coefficients η, and εij’s are independent residual measurement errors. Our goal is to test the
significance of the regression function f(s), that is,

or the deviation of f(s) from an hth order polynomial function, that is,

Under the alternative, to incorporate a large class of functions, we specify f(s) to be a
flexible spline function, such as

where τk, k = 1, … , K, are a sequence of knots, and  if s ≥ τ, and 0
otherwise. A sufficient number of knots will be used to guarantee flexibility. Let

 and . Under the alternative, we have the

representation, , where .

To obtain a smooth fitted curve, one minimizes a penalized weighted least squares (Ruppert
et al. 2003),

where Yi = (yi1, … , yini)T, Ci = (ci1, … , cini)T, Xi = (xi1, … , xini)T, Zi = (zi1, … , zini)T, Θ =
(ηT , βT , bT)T , Vi = cov(Yi), λ is a smoothing parameter, D = diag(0m+h+1, ∑−1), m is the
dimension of η, and ∑ is a known penalty matrix, depending on the spline basis used. For
example, ∑ = IK with a truncated polynomial basis.

Linear mixed effects model set up for the test
With a mixed effects model representation of splines (Speed 1991; Ruppert et al. 2003;
Wand 2003), solutions to the penalized weighted least squares are obtained from a linear
mixed effects model, where bk are treated as random effects and the smoothing parameter is
specified as the ratio of two variance components. Specifically, a mixed effects model
representation is
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(2)

where the smoothing parameter  and Ui = 1ni. Through model (2), significance of
f(s) can now be tested by

Testing a nonparametric deviation from a polynomial function is simply through 
Note that αi in model (2) are nuisance random effects under the null hypothesis.

Example 2: Test an unspecified function in a partially linear mixed effects model with
multiple variance components

An extension to Example 1 is a partially linear mixed effects model with multiple variance
components,

(3)

where αi0 and αi1 are independent random effects. It is again of interest to test H0 : f(s) = 0.
Here, there are two nuisance variance components under the null (αi0 and αi1). A model
similar to (2) can be used to test this hypothesis.

Example 3: Varying coefficient model
In many applications, it is of interest to test an unspecified varying-coefficient or a group
difference. Let gi denote a group indicator. A flexible model with an unspecified baseline
function and a varying-coefficient is

where ci is a vector of covariates, f(·) is a spline function describing the relationship between
the expected outcome and the covariate si in the baseline group, and β(·) is the difference
between the experiment group and the baseline group. The hypothesis of no group
difference is H0 : β(s) = 0. Using a linear mixed effects model representation of penalized
splines on f(·) and β(·), the model under the alternative can be expressed as

(4)

where ∑j’s are known penalty matrices and Wj and Zj are related to the basis functions for
f(·) and β(·). Testing a group difference is through

Here, b1 are nuisance random effects under the null. In this example, the nuisance variance

ratio, , can be regarded as the smoothing parameter for the baseline function.
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Example 4: Additive models
Consider an additive model with two covariates,

where f1(·) and f2(·) are unspecified spline functions and the covariates si1 and si2 can be
either correlated or independent. When one of the covariates, say si2, is of primary interest,
one tests H0 : f2(s) = 0, which can also be assessed by testing fixed and random effects in a
mixed effects model similar to (4).

Another example where this test is useful includes testing a fixed smoothing parameter with
longitudinal data, for example, to test λ = λ0 in model (2). The methods can also be used to
test a random slope in the presence of a random intercept, test a row or column effect in a
two-way analysis of variance model, or test a random effect in a split-plot design through a
two-level random effects model.

2.1 The general problem setting
All the examples above can be summarized as testing a hypothesis in a linear mixed effects
model with multiple variance components. To be specific, our goal is to test

in the model

(5)

where X0 is the design matrix for the q-dimensional fixed effects under the null, X1 = (X0,
W) is the design matrix for the p-dimensional fixed effects under the alternative (in some
examples p–q = h + 1), bl, l = 1, … , L, are random effects independent of ε, and ∑l are
known matrices.

3. A generalized F-test
We develop a generalized F-test by comparing the residual sum of squares (RSS) of two
models obtained from (5), similar to the classic ANOVA F-tests. Classic F-tests are based
on computing RSS under a restricted model and a full model and dividing them by
appropriate degrees of freedom. For tests involving variance components, it is unclear what
degrees of freedom should be used (Hodge and Sargent 2001; Vaida and Blanchard 2005).
Although the test statistic based on comparing RSS under the null and the alternative can
still be constructed, its null distribution may be non-standard.

We present the test statistic under the general framework in Section 2.1. For the purpose of
illustration, assume L = 2 in model (5). It is easy to generalize to the case where L > 2 (e.g.,

simulation scenario (c) in Tabel 1). Let γ denote the nuisance variance ratio, , and let

. Under the null hypothesis, the residual sum of squares is
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where  and . Under the alternative,
the residual sum of squares is

where . When the variance components ratio γ
is known to be γ0, a generalized F-test can be defined as

where  is estimated by the restricted maximum likelihood (REML) under the alternative
hypothesis. When γ is unknown, the test statistic is

where both  and  are obtained by REML under the alternative. Both test statistics are
easy to compute with any standard statistical software. However, deriving their null

distributions is not trivial because the null value of  is on the boundary of the parameter
space and the data cannot be partitioned as independent subvectors in certain models, such
as (2).

Note that T1 or T2 is different from the F or R statistic examined in Cantoni and Hastie
(2002). The latter statistics is based on RSS from a conditional model, that is,

, where  and  are BLUPs of bl. The null
distributions of these F and R tests are unknown in literature and need to be obtained
through bootstrap or permutation to account for uncertainties in estimating smoothing
parameters (or variance components). In contrast, the proposed T1 and T2 are based on
marginal models of Y. Although when there is a non-linear trend, the linear mixed effects
model (5) is not the true model under the alternative, it holds exactly under the null. The null
distribution of the proposed generalized F-test is computed from a valid model under the
null and thereby the test is expected to maintain its size.

3.1 Spectral decomposition of the test statistic
Here we present a spectral decomposition to obtain the null distribution of T1 and T2 that
accounts for the nuisance variance components still under the general framework (5) with L
= 2.
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Theorem 1—Let πs(γ) denote the sth eigenvalue of , where

. Let ωs denote the eigenvalues of

, where . Then under the null hypothesis (3), the
generalized F-test T1 has the exact distribution

(6)

where =d denotes equality in distribution, us
i.i.d. ~ N(0, 1), s = 1, … , n–p, vs ~i.i.d., N(0; 1); s

= 1; … ; p – q, , and

(7)

is the spectral decomposition of the log-profile restricted likelihood under the alternative up
to a constant. The null distribution of T2 is obtained by replacing γ0 by  in (6) and
computing  and  by maxγ,λ fn(γ,λ). The proof of Theorem 1 is in the Online Appendix
A.1. These decompositions allow for fast computation of the null distribution of T by
avoiding permutation.

A similar decomposition can be used to obtain the distribution of the test statistics under the
alternative, that is,

where γ0 and λ0 are the true values of γ and λ, and θs are related to the noncentrality
parameter defined in the Online Appendix A1. This expression is useful for the fast
computation of power under the alternative hypothesis without bootstrap. The distribution of
T2 under the alternative has a similar representation, with γ0 replaced by , and  and 
computed by maxγ,λ, fn(γ,λ).

3.2 Fast algorithm to compute the null distribution—Taking advantage of the
decompositions (6) and (7), one can obtain the exact null distribution of T1 rapidly with the
following Algorithm A:

A0. Pre-simulation step: Compute eigenvalues ρs(γ0).

A1. Simulate n–p independent standard normal random variables, us, and p–q independent
standard normal random variables, vs.

A2. Choose γ by maximizing fn(γ0,λ) in (7) over grid points λ1, … , λm.

A3. Compute the test statistic by (6) using the γ selected in step A2.

A4. Repeat the above steps 1-3 for required number of repetitions.
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Note that this algorithm is extremely fast, since both (6) and (7) only involve arithmetic
operations and their computations are instantaneous. Using R (R Development Core Team,
2012), we were able to obtain about 80,000 simulations per minute on a Dell computer with
2.67GHz CPU and 4Gz memory.

To obtain the null distribution of T2, the steps A0, A2, and A3 in the Algorithm A are
replaced by the following Algorithm B:

B0. Pre-simulation step: Compute eigenvalues πs(γj) at grid points γ1, … γm.

B2. With pre-computed ρs(γj), choose γ and λ through maximizing fn(γ,λ) in (7) over grid
points γ1, … , γm and γ1, …, λm.

B3. Compute the test statistic by (6) using γ and λ selected in step B2.

There are several desirable features regarding the numerical efficiency of Algorithm B. The
eigen-decomposition to compute πs(γ) in step B0 only needs to be done once before the
simulation starts and the simulation replications are only applied to steps B1 through B3.
The speed of eigen-decomposition depends on the column dimension of Z2 (or the number
of knots), which does not increase with the sample size or the number of nuisance variance
components. The algorithm depends on the sample size through simulating n–p standard
normal random variables, thus computation time increases minimally when n increases. In
contrast, a permutation or bootstrap based approach for a mixed effects model may be
slower when the number of random effects is large.

The major computational step in Algorithm B is to maximize fn(γ,λ) in (7). After obtaining
πs(γj), computing fn(γj, λl) only involves arithmetic operations, which can be done
extremely rapidly. In addition, we studied a search algorithm with respect to λ at a fixed
value of  in step B2 and found satisfactory performance in many simulation settings that
offers further improvement on the numerical efficiency. In our data analysis example with a
large sample size (n = 6309), reduction in computing time was more than 3000 folds using
the proposed algorithm when compared to the bootstrap. We obtained about 60,000
simulations per minute on a Dell computer with 2.67GHz CPU and 4Gz memory using R.

Under a special case, one can further speed up the pre-simulation step of Algorithm B. We

show in the Online Appendix A2 that when  and  can be simultaneously
diagonalized, one obtains

(8)

where μs is the sth eigenvalue of . Therefore πs(γ) has an explicit
expression as a function of γ in this case. With this explicit formula, the eigen-
decomposition to obtain μs and ωs only needs to be done once in step B0 for all grid points
of γ. Two matrices can be simultaneously diagonalized if they commute. In example 4
(additive model), for a balanced design where the two covariates are equally spaced and the

knots are also equally spaced, the matrices  and 
commute; therefore, they can be simultaneously diagonalized and the relation (8) holds.

Another speed up of the algorithm is useful when there is more than one nuisance variance
component. In this case, step B2 of the algorithm can be replaced by a one-dimensional
search where we fix nuisance parameters at values estimated under the alternative
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hypothesis. We present an example of an additive model with multiple nuisance variance
components in Section 4.

3.3 Distribution of the (R)LRT with multiple variance components—The
decomposition (6) allows a direct comparison between LRT and pseudo-LRT
approximation. Let L(γ,λ) = −nlog{RSS(γ,λ)} −log∣V1(γ,λ)∣ denote the profile log-
likelihood under the model (2) obtained by substituting the weighted least square estimate

 into the likelihood. When the variance ratio γ0 is known, the likelihood ratio test is
LRT1 = supλ≥0 L(γ0, λ) − supλ=0 L(γ0, λ). We show in Online Appendix A4 that under the
null hypothesis, LRT1 has the exact distribution

(9)

and φs(γ) are the eigenvalues of . When γ is unknown, we show in the
Online Appendix A3 that the null distribution of LRT2 can be obtained as

When the hypothesis of interest only involves a variance component without fixed effects,
RLRT is used instead of LRT. We cab show that the exact null distribution of RLRT with γ
known is

(10)

and the null distribution of RLRT with γ unknown is RLRT2 =d supγ≥0,≥0 hn(γ,λ).

Greven et al. (2008) computed the null distribution of RLRT by applying methods for the
single variance component model (Crainiceanu and Ruppert 2004) through a pseudo-LRT

using pseudo-outcomes , where  are BLUPs of bl. From (9), it is easy to
see that by replacing μs,n in Crainiceanu and Ruppert (2004) with πs(γ), we arrive at their

equation (9). Note that μs,n are eigenvalues of  denoted by μs in this work.

Since πs(γ) are eigenvalues of , it follows that

Therefore, when γ0 = 0 or , RLRT1 and RLRT2 reduce to the equation (9) in
Crainiceanu and Ruppert (2004). In general, when γ > 0 there is no explicit expression
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relating πs(γ) to μs,n. However, when relation (8) in Section 3.2 holds, we substitute (8) into
(11) to arrive at the null distribution representation

where the constants c0,s = (1 + γ0ωs). Therefore, scaling μs,n by 1 + γ0ωs would equate the
exact null distribution of the RLRT1 and the pseudo-RLRT in this case. The close
relationship between (9) and equation (9) in Crainiceanu and Ruppert (2004) sheds lights on
the validity of approximating LRT in the multiple variance components model by a single
variance component based approach in some cases observed in Greven et al. (2008).

4. Simulations
4.1 Overview of the simulation experiments—We performed simulation studies to
examine the type I error rate and power of the generalized F-test and compare them with the
50:50 chi-square approximation and the pseudo-LRT (or pseudo-RLRT when applicable). In
all simulations, we assume the nuisance variance ratio γ to be unknown and examine the
performance of T2. Performance of T1 is similar and results are omitted. In all experiments,
we simulated covariates si from a uniform distribution with support [0,1]. We used a linear
truncated polynomial basis with K = min(n/10, 35) knots, and examined two sample sizes
for each scenario. We obtained 5,000 replications to compute the null distribution of T2,
5000 replications to compute the empirical rejection rate to assess type I error rate, and 1000
replications to assess power.

We considered five simulation scenarios: (a) Testing  in model (2) of Example 1; (b)
Testing f(s) = 0 in model (1) of Example 1; (c) Testing f(s) = 0 in model (3) of Example 2;
(d) Testing β(t) = 0 in Example 3; and (e) Testing linearity of f2(t) in Example 4. The
parameters common to the next two subsections are as follows. For case (a) through (d), we
let η = 1 and simulated cij from a uniform distribution with support [0,1]. We fixed β =

(−0.2, 0.2)T and . For case (c), the nuisance random intercepts in model (3) have

variance . For case (d), coefficients β1 = (1, −0.5) in the varying coefficient model (4).
We generated the binary group indicator from a Bernoulli distribution with a success
probability of 0.5, and used the effect coding (−1/1 coding). For case (e), we generated
covariates (si1, si2) from uniform distributions with a correlation of 0.7. For (d) and (e), we

centered the covariates si or (si1, si2) to improve numerical stability. Lastly, we fixed  in
all experiments.

4.2 Type I error rates—Here we examine the sensitivity of type I error rates of various
tests to the presence of the nuisance random effects under the null. The empirical type I error
rate was evaluated at a nominal level of 5% and at various values of the variance of the
nuisance random effects that ranged from 0 to 100. We show the empirical type I error rates
in Table 1 and show the confidence intervals of the error rates computed based on the exact
binomial distribution in the Online Supplementary Material (Tables A1 and A2). From these
tables, it is seen that the 50:50 chi-square approximation of Stram and Lee (1994) is
conservative, regardless of the sample size and the value of the nuisance variance
component, except in case (a) with a relatively large sample size. Similar to Greven et al.
(2008) and Scheipl et al. (2008), the pseudo-LRT and pseudo-RLRT behave satisfactorily
across various settings, except in case (e): a conservative type I error was observed for
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pseudo-RLRT when the nuisance variance is small and the covariates si1 and si2 are highly
correlated in the additive model. In this case, when the nuisance variance component

 and 0.01, and n=500, the type I error rate of the pseudo-RLRT is smaller than
the nominal level (i.e., the upper bound of the exact 95% confidence interval is smaller than

5%, Table A2 in the Online Supplementary Material). For other values of , the type I
error rate of the pseudo-RLRT adheres to the nominal level. In this scenario, the proposed
procedure is robust to the presence of nuisance variance component in the sense that it

maintains the correct size for all values of .

In other simulation settings where the covariates have low correlation or the nuisance
variance component is not on the boundary of the parameter space, the generalized F-test
also has type I error close to the nominal level. For example, with the partially linear model,
case (a) and (b) in Table 1 show that both the generalized F-test and the pseudo-RLRT
maintain the nominal level of the type I error rate at all the values of nuisance variance.
However, the 50:50 chi-square approximation is still conservative. In these settings, we
investigated a speed-up of Algorithm B by replacing Step B2 with a one-dimensional search
of λ over λ1, … , λm, while fixing  as estimated under the alternative. The procedure is
instantaneous and provides satisfactory type I error rates similar to those reported in Table 1.
In case (c), we investigate the performance of the proposed procedure when there are
multiple nuisance variance components under the null (random intercepts and random
slopes), and show that the proposed test maintains the correct type I error rate.

4.3 Power of the tests—The next six sets of simulations compare the power of various
tests. The true models under the alternative hypothesis are specified as follows. For case (a),

we simulated data from model (2) with  and let  take different values. For case (b),

we fixed  and let f(t) = d * sin(2πt) in the partially linear mixed effects model (1). The

parameter d serves as a measure of the effect size. For case (c), we fixed both variances 

and  at one in the partially linear model (3). We let β = (0.3, 0.3)T for the case n = 40, ni

= 5; β = (0.1, 0.1)T for the case n = 100, ni = 5; and let the variance  take different values.

For the varying coefficient model, we fixed the nuisance variance component at  and
let β(t) = d * sin(2πt) in scenario (d), let β(t) = d * (t+t2) in scenario (e), and let d range

from 0.1 to 1. For case (f), we fixed the nuisance variance component at  in the

additive model and let the variance component of interest, , take different values.

We present the numerical results in Tables A3 and A4 in the Online Appendix A.4 and
depict the power comparisons in Figure 1 and Figure 2. We see that in all six scenarios, the
50:50 chi-square approximation is less powerful because it is a conservative procedure. The
loss of power can be up to 16% compared to the proposed test. Depending on the hypothesis
being tested and the true underlying model, there are some differences in power between the
generalized F-test and the pseudo-LRT or RLRT. For example, in scenario (a), when testing
for the random intercepts in model (2), there is no difference between the proposed and
RLRT. In scenario (b), when testing the presence of a sine function in a partially linear
model, the LRT is less powerful than the generalized F-test for several values of d. For
scenario (c) and with a sample size of 200, the LRT appears to be slightly more powerful

than the generalized-F when .

For the varying coefficient model in case (d), when the function being tested is a sine
function, the proposed test has a greater power than the pseudo-LRT. The power gain is up
to 10%. When the function being tested is simpler (less number of modes), such as a
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quadratic function in scenario (e), the pseudo-LRT is slightly more powerful than the
proposed F-test. For the additive model in case (f), the proposed test behaves similarly to the
pseudo-RLRT. A computational advantage of the generalized F-test is that it requires fitting
only one linear mixed effects model. The reduction in computational burden is important
when the test is applied many times, such as in a GWAS, where T1 or T2 is computed for up
to a million single nucleotide polymorphisms (SNPs) along the genome.

5. Data analysis
In 2007, dense SNP genotyping (550,000 SNPs) was conducted in the Framingham Heart
Study (FHS) to map genes associated with risk factors of cardiovascular disease (CVD). In
this genome-wide association study (GWAS), the research goal is to test the association
between a SNP and a risk factor for CVD. Here the outcome of interest is the systolic blood
pressure (SBP), a complex trait influenced by both environmental and genetic factors. In the
literature, the heritability of SBP is estimated to be high (between 30% to 60%, Levy et al.
2000), which suggests a substantial genetic contribution. Several GWAS were conducted to
identify SNPs that can explain the high heritability (Levy et al. 2009). However, most work
in the current literature do not account for the age-specific genetic effect.

We test for the genetic association by the proposed generalized F-test using the FHS
baseline SBP data incorporating the age effect by a varying coefficient mixed effects model.
There were 6309 subjects from 951 families with available SBP included in the analysis. In
the literature on genetic analysis of SBP, a log-transformation is often applied to better
satisfy the model assumptions (Byng et al. 2003; Cui and Sheffield 2003). Therefore, a log-
transformation of SBP was also applied in our analysis. We show a scatter plot of SBP and
log(SBP) against age in Figure 3.

Consider the varying-coefficient mixed effects model,

(11)

where yij is the log-transformed SBP of the jth subject in the ith family, αi is a family-
specific random effect, gij is the genotype at a SNP for this subject coded as number of the
minor alleles, sij is the subject’s age, cij are fixed effects (such as gender, age, age-squared,
body mass index (BMI) and BMI-squared), and β(sij) is an additive genetic effect. It is of
interest to test no genetic effect, that is, H0 : β(s) = 0 in (11). Under the alternative, usual
practice specifies β(s) as a linear function. Wang et al. (2012) observed power loss of the
linear model analysis when the true genetic effect is nonlinear. Since the true genetic effect
is unknown in practice, a flexible model under the alternative is desirable. We specify β(s)
using a quadratic truncated polynomial base under the alternative and test the association
through penalized spline. With the mixed model representation, the test falls under the

general framework in model (5) and we test H0 : β2 = 0, .

To correct for the large number of tests performed in a GWAS, the genome-wide
significance level is usually set as 10−8 (Levy et al. 2009). We created 108 repetitions to
examine the null distribution of the test statistic. The computing time for 108 null
distribution simulations was around 28 hours on a Dell computer with 2.67GHz CPU and
4GHz memory, compared to an estimated 105 hours by bootstrap (estimated from
performing 100 bootstraps). The long computing time for bootstrap is partially due to a large
number of random effects (families). The genome-wide critical value was computed to be
7.84.
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Levy et al. (2009) conducted a meta analysis of six GWAS on blood pressure traits and
reported several promising regions that may harbor genes for SBP. We selected two
promising candidate regions on chromosome 12 to analyze. There were 42 SNPs available
in these regions (19 from region 88485Kb to 88605Kb and 23 from region 110305Kb to
110390Kb). The p-values were computed as the proportions of the simulated null test
statistics greater than or equal to the observed. The top ranking SNPs are rs7136259,
rs17249754, and rs11065898 with the respective p-values 0.00012, 0.00015, and 0.00068.
The minor allele frequencies of these SNPs are 18%, 21%, and 34%, respectively. The first
two top-ranking SNPs locate in the gene ATP2B1 (88585Kb and 110347Kb on chromosome
12) and the third one locates in the gene SH2B3 (88605Kb on chromosome 12). Both genes
were reported to be associated with hypertension and blood pressure in several studies (Levy

et al. 2009; Newton-Cheh et al. 2009). We present the fitted genetic effect  on the
original scale for three SNPs in Figure 4, which suggests a nonlinear trend in all three cases.
For SNPs rs7136259 and rs17249754, the genetic effect appears to be larger at the early and
late ages (before age 20 and after age 50), while for SNP rs11065898, the genetic effect
fluctuates across time.

These analyses provide some evidence of the presence of gene-age interaction, which in
some cases may not have been identified if the time-trend had been ignored (Wang et al.
2012). There are reports of empirical evidence and theoretical justification for genetic
factors controlling time-varying developmental features of a phenotype in plant, animal, and
human genetic literature (Province and Rao 1985, Rice 2002, He et al. 2010). Since aging is
a complex biological process during which many physiological changes may take place, age
may represent a surrogate of various unmeasured biological factors. Taking into account the
gene-age interaction in a genetic association study may help with resolving some of the
inconsistencies in replicating a genetic finding, and may increase power of association tests
(e.g., Lasky-Su et al. 2008; Wang et al. 2012).

This data analysis example shows that the proposed procedure solves a computational
problem encountered in obtaining reliable genome-wide significance level for large-scale
studies such as GWAS, where permutation is practically unrealistic and asymptotic
approximation may be conservative and unstable.

6. Discussion
In this work, we propose a test of an unspecified function through linear mixed effects
models with more than one variance component. We present a spectral decomposition of the
test statistic that offers fast computation of the null and alternative distributions and reveals
the connection between (R)LRT for single and multiple variance component models. The
computational gain over permutation and bootstrap is especially useful for large scale
experiments, such as the GWAS or microarray gene expression studies. With a large scale
study, improving power is important, therefore an asymptotic chi-square approximation that
leads to a conservative decision is highly undesirable. We observe some power differences
between the generalized F-test and the (R)LRT depending on the true underlying model. In
practice, when the true underlying function is unknown, these tests may supplement each
other in terms of power. For the LRT or RLRT, the R package RLRsim (Scheipl et al. 2008)
can be used to compute the null distribution efficiently.

Here, we use a reduced-rank penalized spline to represent an unknown function under the
alternative. An extension to applying the test and its null distribution computation with
smoothing splines or kernel machines is possible through mixed effects model
representations. Lastly, the methods can be extended to O’Sullivan penalized splines using
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the B-splines basis functions through a penalty matrix presented in Wand and Ormerod
(2008).

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Power of various tests in scenarios (a) (top two panels), (b) (middle two panels), and (c)
(bottom two panels) based on 1,000 simulations.
(a): Testing for the random intercept with a nuisance unspecified function in example 1.
(b): Testing for an unspecified function with a nuisance random intercept in example 1.
(c): Testing for an unspecified function with nuisance random intercepts and random slopes
in example 2.
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Figure 2.
Power of various tests in scenarios (d) (top two panels), (e) (middle two panels), and (f)
(bottom two panels) based on 1,000 simulations.
(d): Testing for a varying coefficient with a nuisance smooth term in example 3, sine
function.
(e): Testing for a varying coefficient with a nuisance smooth term in example 3, polynomial
function.
(f): Testing for linearity of a smooth additive function with a nuisance smooth term in
example 4; corr(ti1, ti2)=0.7.
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Figure 3.
Scatterplot of the SBP versus age (top panel) and log(SBP) versus age (bottom panel) in
6309 Framingham samples
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Figure 4.

Fitted age-specific genetic effect  (solid lines) and its pointwise confidence interval
(dashed lines) for SNPs rs7136259 (top panel), rs17249754 (middle panel) and rs11065898
(bottom panel)
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