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Summary
Gaussian graphical models have been widely used as an effective method for studying the
conditional independency structure among genes and for constructing genetic networks. However,
gene expression data typically have heavier tails or more outlying observations than the standard
Gaussian distribution. Such outliers in gene expression data can lead to wrong inference on the
dependency structure among the genes. We propose a l1 penalized estimation procedure for the
sparse Gaussian graphical models that is robustified against possible outliers. The likelihood
function is weighted according to how the observation is deviated, where the deviation of the
observation is measured based on its own likelihood. An efficient computational algorithm based
on the coordinate gradient descent method is developed to obtain the minimizer of the negative
penalized robustified-likelihood, where nonzero elements of the concentration matrix represents
the graphical links among the genes. After the graphical structure is obtained, we re-estimate the
positive definite concentration matrix using an iterative proportional fitting algorithm. Through
simulations, we demonstrate that the proposed robust method performs much better than the
graphical Lasso for the Gaussian graphical models in terms of both graph structure selection and
estimation when outliers are present. We apply the robust estimation procedure to an analysis of
yeast gene expression data and show that the resulting graph has better biological interpretation
than that obtained from the graphical Lasso.
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1. Introduction
Gaussian graphical models (GGMs) have been widely used for modeling the dependency
structure among a set of variables (Whittaker 1990). Such models use undirected graphs to
specify the conditional independence structures among the variables. In genomics, Gaussian
graphical models have been applied to analyze the microarray gene expression data in order
to understand how genes are related at the transcriptional levels (Segal et al. 2005; Li and
Gui 2006; Finegold and Drton 2011). Due to the fact that the number of genes is usually
larger than the sample size, regularization methods have been developed in recent years to
estimate high dimensional Gaussian graphical models (Yuan and Lin 2007; Meinshausen
and Bühlmann 2006; Peng et al. 2009; Friedman et al. 2008). Alternatively, l1 constrained
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regularization methods have also be developed for estimating the sparse concentration
matrix (Cai et al. 2011). The key of these procedures is to impose a sparse constraint on the
concentration matrix of the multivariate variables. Among these, Friedman et al. (2008)
developed the graphical Lasso (glasso) procedure that is computationally very efficient
through application of the coordinate descent algorithm (Tseng and Yun 2009).

One key assumption of the GGMs and the estimation methods is the multivariate normality
of the observations. However, outliers are often observed (Daye et al. 2012) in microarray
gene expression data, or the data have longer tail than the normal distribution. Violation of
the normality assumption can lead to both false positive or false negative identifications of
the edges and biased estimate of the concentration matrix. In particular, contamination of a
few variables in a few experiments can lead to drastically wrong inference on graph
structures. However, the existing literature on robust inference in graphical models is very
limited, especially in high dimensional settings. Finegold and Drton (2011) proposes to use
multivariate t-distributions for more robust inference of graphs. However, the zero elements
of the inverse of the covariance matrix of a t-distribution do not correspond to conditional
independence and the density does not factor according to the graph. Finegold and Drton
(2011) show that the zero conditional correlations in the t-distribution entail that the mean-
squared error optimal prediction of a given variable can be based on the variables that
correspond to its neighbors on the graph.

In this paper, we consider the problem of robust Gaussian graphical modeling and propose a
robust estimation of the GGMs through l- penalization of a robustified likelihood function.
Different from Finegold and Drton (2011), we still consider the GGMs, however, the
estimation procedure is more robust than the standard penalized estimation approaches such
as glasso. Our work is partially motivated by the work of Miyamura and Kano (2006), where
they improve a Gaussian graphical modeling procedure through a robustified maximum
likelihood estimation. In their work the likelihood function is weighted according to how the
observation is deviated, and the deviation of the observation is measured based on its own
likelihood. However, Miyamura and Kano (2006) did not consider the problem of inferring
the graphical structure, especially in high dimensional settings. We propose to develop a l1
regularization procedure based on the robustified likelihood by a Lasso penalty function on
the concentration matrix of the Gaussian graphical model. We develop a coordinate gradient
descent algorithm (Tseng and Yun 2009) for efficient computation and optimization. After
the graphical structure is obtained, we re-estimate the positive definite concentration matrix
using an iterative proportional fitting algorithm that guarantees the positive definiteness of
the final estimate of the concentration matrix.

The paper is organized as follows. A brief review the GGMs and key idea of a penalized
likelihood approach for robust estimation is first given in Section 2. Some details of
coordinate gradient descent algorithm for the robust estimation are presented in Section 3.
We evaluate the performance of the methods by simulations and application to a real data set
in Sections 4 and 5. Finally, a brief discussion is given in Section 6.

2. Gaussian Graphical Models and Penalized Robust Likelihood Estimation
2.1 Gaussian graphical models

We assume that the gene expression data observed are randomly sampled data from a multi-
variate normal probability model. Specifically, let Y be a random p-dimensional normal
vector and Y1, …, Yp denote the p elements, where p is the number of genes. Let V = {1,
…, p} be the set of nodes (genes), and yk be the vector of gene expression levels for the k-th
sample, k = 1, …, n. We assume that
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(1)

with positive definite concentration matrix Ω = {wij}. This model also corresponds to an
undirected graph G = (V, E) with vertex set V = {1, …, p} and edge set E = {eij}, where eij
= 1 or 0 according to whether vertices i and j, 1 ≤ i < j ≤ p, are adjacent in G or not. The
Gaussian graphical model consists of all p-variate normal distributions Np(0, Ω− 1), where
the concentration matrix Ω satisfies the following linear restrictions:

In the Gaussian graphical model, the partial correlation ρij between Yi on Yj is defined as
Corr(εi, εj), where εi is the prediction errors of the best linear predictors of Yi based on Y[−i]
= {Yj: 1 ≤ j ≠ i ≤ p}. It is well known that this partial correlation is also

(2)

2.2 Robustified-likelihood function for robust estimation
Let us consider a parametric statistical model {fθ(y): θ ∈ Θ } for observations {yk: k = 1, …,
n}, where fθ(y) is a probability density function and Θ is a parameter space on ℝq.

For given data yk, k = 1, …, n, a modified log-likelihood for robust estimation is defined as

(3)

where β is a robustness tuning parameter and

which was proposed by Basu et al. (1998). Note that β = 0 corresponds to the ordinary log-
likelihood. Assuming exchangeability between integration and differentiation, the first
differentiation of the likelihood (3) for β > 0 with respective to θ is

(4)

where
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and s(y, θ) = ∂ log fθ(y)/∂θ is the score function. Note that the second component of (4) is
the expectation of the first component, and therefore the estimating equation (4) is unbiased
and can be viewed as M-estimation (Huber 1981).

The intuition why the modified likelihood function can lead to robust estimation is that the
contribution of the outlying observations in the efficient maximum likelihood score equation
is down-weighted relatively to the model. Observations that are wildly discrepant with
respect to the model get nearly zero weights. In the fully efficient case when β = 0, all
observations, including very severe outliers, get weights equal to one. In the GGM, if
observations are outliers that deviate greatly from the true model (e.g., observations from
another models with different means or concentration matrices), then the density functions
evaluated at these outlying observations should be very small and therefore they are
downweighted. The idea of downweighting with respect to the model rather than the data is
also the motivating principle of Windham (1995). A larger value of β results in more robust
estimate of θ. Basu et al. (1998) noted that β > 1 causes a great loss of efficiency for some
models.

2.3 Robust Estimation of the GGMs
Using the general robust likelihood formulation (3) of Basu et al. (1998), Miyamura and
Kano (2006) proposed a robust estimation method for the concentration matrix of a GGM
when the graphical structure is specified. However, estimating the graphical structure of the
GGMs is often the goal of many data analysis. Since we expect that the concentration matrix
Ω is sparse, we propose a l1 penalized robust likelihood function to estimate the sparse
concentration matrix. Specifically, let σ ≡ {wij}i=j denote the vector of p diagonal elements
of the concentration matrix Ω and θ ≡ {wij}i<j denote the vector of q = p(p − 1)/2 off-
diagonal elements of the Ω matrix. We estimate θ and σ by minimizing the following l1
penalized logarithm of the negative robust likelihood function,

(5)

where

and λ is the tuning parameter and ||θ||1= Σi≠j |wij|. See Web Appendix A for the derivation of
the robust likelihood function for the GGMs.

3. A Coordinate Descent Algorithm and Estimation of Ω
3.1 A coordinate descent algorithm

Since the parameter σ is not known, both θ and σ are estimated by a two-step iterative
procedure. First, we estimate θ, assuming that σ is fixed, i.e., lβ(θ) = lβ(θ, σ). We employee
the (block) coordinate gradient descent method of Tseng and Yun (2009) to obtain the
minimizer of the penalized likelihood function (5). The method is designed to solve a non-
convex non-smooth optimization problem where the objective function consists of a smooth
function and a block separable penalty function like the objective function (5).
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The key idea of the method is to replace lβ(θ) by a quadratic approximation to find an
improving coordinate direction at θ, and to conduct an inexact line search along a descent
direction to ensure sufficient descent. Specifically, using a second-order Taylor expansion
lβ(θ) at θ̂, we approximate Qλ,β(θ) by

where d ∈ ℝq and

(6)

The derivations of both ∇lβ(θ) and ∇2lβ(θ) are included in Web Appendix A, and c* > 0 is a
lower bound to ensure convergence (See proposition 3.1).

Next, we choose a nonempty index subset  and denote a minimizer of
Mλ, β (d) as

(7)

This is the estimated descent direction at θ̂, so we should move θ̂ along the direction (θ̂)
to minimize the penalized likelihood. Since H is a diagonal matrix, (θ̂) has the following
closed form

(8)

where mid[a, b, c] denotes the mid-point of (a, b, c).

However, the parameter θ in the Gaussian graphical model is restricted by the partial
correlation relation in (2). Suppose that θj is the u-th row and v-th column element of Ω.
Then, the following inequality must be satisfied;

(9)

because the partial correlation ρuv lies within the interval [−1, 1], and θ̂j is updated by θ̂j +
dj(θ̂). Since the minimum of the objective function (7) is one of the three points in (8),
attaining the descent direction dj(θ̂) within the boundaries (9) is still tractable. The condition
(9) guarantees that θ̂ gives valid partial correlations in every iteration and the algorithm
converges through bounded Ω (See proposition 3.1).

When (θ̂) ≠ 0, an inexact line search using the Armijo rule is performed to determine an
appropriate step-size of the descent direction. Given θ̂ and d = (θ̂), let a step-size α be the
largest value in {α0δl}l≥0 satisfying
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(10)

where 0 < δ < 1, 0 < c0 < 1, α0 > 0 and Δ = −d⊤∇lβ(θ̂) + λ|| θ̂ + d ||1 − λ||θ̂||1. The condition
(10) requires that the objective improvement obtained by the step αΔ is within a factor c0 of
what is predicted by a linear extrapolation from θ̂. In practice, this step-size α can be
computed by a simple backtracking procedure: start with α = α0; if the condition (10) is not
satisfied, set α ← αδ, and repeat until (10) holds. The algorithm is outlined below:

Given θ̂[t],

1 Choose a nonempty index set  ⊆ ℕ and H[t] from (6)

2 Solve (7) with θ̂ = θ̂[t], H = H[t], and  =  to obtain d[t] = (θ̂[t])

3 Choose a step-size α[t] from (10) with θ̂ = θ̂[t] and d = d[t]

4 Update θ̂[t+1] = θ̂[t] + α[t]d[t]

5 Repeat 1 to 4 until some convergence criterion is met

Tseng and Yun (2009) suggested that a method called the Gauss-Southwell-q rule is the
most effective method to select  on diagonally dominant Hessian from their extensive
simulation studies. The Gauss-Southwell-q rule chooses  to satisfy

(11)

where 0 < υ ≤ 1, and

Each iteration (θ̂) measures the magnitude of the descent in Qλ,β(θ) from θ̂ to θ̂ + (θ̂).
So, every θ̂ eventually comes to a stationary point as (θ̂) goes to 0. We have the following
Proposition on the convergence of the algorithm.

Proposition 3.1—If H[t] and  are chosen according to (6) and (11), respectively, and 
is bounded by (9) for all t > 0, then every limit point of the sequence {θ̂[t]}t>0 is a minimum
point of Qλ,β(θ).

This Proposition directly follows from Theorem 1(d) in Section 4 of Tseng and Yun (2009).
In general, because of the non-convexity of the optimization problem, the above algorithm
may not achieve the global optimum.

The Armijo rule (10) and the Gauss-Southwell-q rule (11) of the coordinate gradient descent
method also requires some tuning values to be fixed. We set them as
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and υ[0] = 0.5,

These settings are suggested by Tseng and Yun (2009) to maintain balance between the
number of coordinates updated and step-size based on their experiments. Notice that smaller
υ results in more coordinates being updated while a larger value of υ has the opposite effect.

3.2 Estimation of the concentration matrix
Given σ̂[t] and θ̂[t], we have estimated θ̂[t+1] by the coordinate gradient descent method.
Given current estimate θ̂[t+1], we update σ̂[t] based on (2), where 1/wii represents the partial
variance of the i-th gene. Based on the nonzero elements of θ̂, we fit the linear regression
equation for each gene as response and linked neighboring genes as predictors and obtain
the mean squared error which can be used as an estimate of the partial variance. Since we
assume that the concentration matrix is sparse, the total number of genes linked to each gene
is mostly smaller than the sample size n, so ordinary regression estimation can be made.
When a gene has more linked genes than n, then only the n − 2 genes sorted by the largest
absolute values of the partial correlations of those linked genes are considered in the
regression. The estimate σ̂ quickly stabilizes as nonzero elements and zero elements of θ̂
become fixed regardless of the numerical values of nonzero estimates.

Suppose that the estimates (θ̂S, σ̂) complete the matrix Ω̂S, then a graph can be easily
constructed based on the nonzero off-diagonal elements of Ω̂S. However, the resulting
estimate Ω̂S is not guaranteed to be positive definite, while the likelihood based method of
glasso (Friedman et al. 2008) assures the positive definiteness. However, we have observed
from simulations that Ω̂S is rarely non-positive-definite under the high dimensional sparse
settings that we are interested in. More discussions on this issue can be found in Section 6.

To overcome the potential problem of obtaining a non-positive definite estimate Ω̂S, we can
re-estimate Ω assuming the same zero elements as Ω̂S using the procedure proposed by
Miyamura and Kano (2006). Specifically, given the concentration graph structure estimated
based on the algorithm above, the robustified estimating equation (4) of the Gaussian
graphical model is

(12)

where Σ = Ω−1 is a covariance matrix. See Web Appendix A for the derivation of the
equation above. Given Ω ≡ (θ, σ), suppose that Σ̂ solves the equation (12). Then, the
iterative proportional fitting algorithm of Speed and Kiiveri (1986) is applied to update Σ̂ so
that Σ̂−1 has the exactly same zero elements as Ω̂S does. Resetting Ω = Σ̂−1, this step is
repeated until Σ̂ converges. Miyamura and Kano (2006) have shown that this procedure
always ends up with a positive definite covariance matrix. Let us denote Σ̂M as the re-
estimated robustified covariance matrix, and θ̂ M and σ̂M as the off-diagonal and diagonal
elements of the inverse of Σ̂M, respectively.
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3.3 Tuning parameter selection
The penalized robust log-likelihood (5) has two tuning parameters β and λ, which controls
the robustness and sparsity, respectively. A larger value of β leads to a more robust
estimator, but with an inflation of the variance of the resultant estimator. Due to this trade-
off of robust and efficiency, Basu et al. (1998) argued that there is no universal way of
selecting an appropriate β parameter. We compare the performance of the robust methods
with different β values in our simulation study and choose one to apply to the real data
analysis.

We use the K-fold cross validation based on the log-robust likelihood criterion with β fixed
to choose the sparsity tuning parameter λ. First we divide all the samples in the training
dataset into K disjoint subgroups, also known as folds, and denote the index of subjects in
the kth fold by Tk for k = 1, 2, ···, K. The K-fold cross-validation score is defined as

(13)

where nk is the size of the kth fold Tk and  and  are the corresponding estimates of

θ and σ based on the sample  with λ as the tuning parameter. It is well known
that cross validation can perform poorly on model selection problems involving l1 penalties
(Meinshausen and Bühlmann 2006) due to shrinkage in the values of the non-zero elements
of the concentration matrix. To reduce the shrinkage problem, we replace the non-zero
elements of θ̂S with their non-penalized estimate θ̂M using the iterative algorithm presented
in Section 3.2. We have found that this approach allows us to select sparser network
structures than those from using standard cross validation. This two-stage approach was also
used for tuning parameter selection in other settings when l1 penalization is used (James et
al. 2010).

4. Simulation Studies
4.1 Simulation setup and results when p < n

We performed simulation studies to examine the performance of the proposed robust
method with some different β values and to compare with the standard penalized likelihood
method glasso by Friedman et al. (2008) in terms of both graph structure selection and
estimation of the concentration matrix. Our simulation setup is similar to that of Peng et al.
(2009). We first randomly generate various network graphs that mimic gene regulatory
networks, which typically have a few hub genes with many links and many other genes with
only a few edges. For the first set of simulations, each graph consists of p = 50 nodes, and
three of them are regarded as hub genes with degrees around 8. The other 47 nodes have 1,2,
or 3 degrees so that each graph has about 70 edges (see Figure 1 for an example of such a
graph). Based on this network graph we construct a positive definite p×p concentration
matrix Ω, where most of elements are zero and the elements corresponding to the edges are
nonzero. The simulated nonzero partial correlation ρij of each concentration matrix has ρij ∈
(−0.66, −0.06) for negative correlation and ρij ∈(0.06, 0.66) for positive correlation with
mean correlations of about −0.28 and 0.28, respectively.

We then simulated i.i.d samples of gene expression data yk from the multivariate normal
distribution, where outliers are added from the same distribution but with different mean
vectors. Specifically, each sample was generated from the following mixture distribution,
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We fix the mixing proportion p0 = 0.1, and make four types of outliers: μ⊤ = (0, …, 0)⊤, (1,
…, 1)⊤, (1.5, …, 1.5)⊤, and (2, …, 2)⊤. They are denoted by model I, II, III, and IV,
respectively. This outlying pattern leads to decreasing of the partial correlation coefficients,
so the graph structure could be obscured by the outliers. Finally, we re-scaled the data so
that each gene has a mean of 0 and standard deviation of 1. The simulated data set consists
of a training set for model fit and independent validation set for tuning parameter selection,
and both have a sample size of n = 100. For each model, we repeated to generate simulation
data 100 times where the network graph was also re-generated each time.

The glasso and robust method with β = 0, 0.01, 0.02, 0.05, 0.07, and 0.1 were fitted for each
model. Figure 2 shows the average ROC curves of different methods over 100 simulation
data sets for each model as the tuning parameter λ varies. Since no outliers were generated
in model I, the standard method glasso performs quite well here, and the other robust
methods except β = 0.1 also show similar selection performance as glasso, although they
have slightly lower curves. However, in other models II, III, and IV with outliers, we
observe that glasso performed very poorly in recovering the true edges. In addition, the
robust method with β = 0 results in very similar ROC curves as glasso for all models. This is
because the robust penalized estimation with β = 0 simply reduces to ordinary penalized
likelihood estimation of glasso. We observe that the robust method with β = 0.05 shows the
best performance for gene selection when outliers exist. It is noticeable that the ROC curves
from the robust method with β = 0.05 are very comparable for all models, indicating that its
selection performances are stable and are not affected by outliers. The ROC curves when β
= 0.07 are very similar to those when β = 0.05 and are omitted here. The robust method with
β = 0.1 shows the second best performances in models II, III, and IV, but its selection is
relatively poor in model I.

We then investigate the performance of these methods when the tuning parameter λ is
chosen using the cross-validation (13). Table 1 summarizes both selection and estimation
performances for four different outlier models. The table includes the average and standard
errors of the total number of detected edges, sensitivity, specificity, and the mean squared
errors (MSEs) of θ̂M over 100 simulated data sets. Since θ̂M is re-estimated for accurate
tuning parameter selection, we also re-estimate the matrix Ω of glasso to select the tuning
parameter in a similar way, using the iterative proportional fitting algorithm of Speed and
Kiiveri (1986). This procedure gives the symmetric positive definite estimate for Ω which is
used for the comparison of MSEs among different methods. In each model the results of
glasso and the robust methods with β = 0.02, 0.05, and 0.07 are presented in the table. For
model I where there are no outliers, all methods perform similarly in terms of both selection
and estimation. However, for other three models when the outliers are present, the
performances are quite different. The glasso and the robust method with β = 0.02 tend to
select many more edges as the magnitudes of outliers increase, which leads to significantly
lower specificity and increased MSEs while the sensitivity goes slightly up. In contrast, the
robust methods with β = 0.05 and 0.07 show consistent better performances for models II,
III, and IV, although both methods still select a few more edges than for model I. The glasso
has a little higher sensitivity than the robust methods due to selecting too many edges. In this
set of simulations, the best choice of a robustness tuning parameter β appears to be around
0.05 or 0.07.
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4.2 Simulations when p > n
In the next set of simulations, we demonstrate that the proposed robust method performs
consistently better than glasso even when p > n. We generate graphs with triple modules in
this simulation (See right plot of Figure 2) so that each simulated network graph has p = 150
nodes including 9 hub genes and around 210 edges. The concentration matrix in each model
is generated so that the distribution of nonzero partial correlations is same as the previous
simulation. The gene expression data yk with n = 100 are also generated in exactly the same
way for each of the four outlier models.

Figure 3 presents the average ROC curves of glasso and the robust methods with β = 0.005,
0.01, 0.02, and 0.03 over 100 simulation data sets for each model as the tuning parameter λ
varies. Similar to the first set of simulations, glasso shows the worst selection performance
for the models where outliers are present. The robust methods with both β = 0.02 and 0.03
have the best ROC curves, although β = 0.02 is slightly preferred in model I. In this
simulation, we observe that the robust methods with β > 0.03 performed worse than method
with β = 0.03. Basu et al. (1998) have also discussed that the robust estimation in
multivariate normal distribution models loses efficiency for increasing p when β is fixed.
Thus, the parameter β should be carefully selected depending on the multivariate dimension
p.

Table 1 summarizes both selection and estimation performance of detecting the edges under
the selected λ using cross-validation for four different outlier models. All methods
performed similarly for model I. It is clear that the robust methods with both β = 0.02 and
0.03 outperformed glasso on both selection and estimation for all models where outliers
were present. Compared to the first set of simulations, glasso recovers relatively few true
edges when p > n, but the robust methods consistently have higher level of sensitivity and
specificity for all models and for large p.

4.3 Simulations with different concentration matrices for the outliers
In the next set of simulations, we consider four different models where the outliers are
generated from models with different concentration matrices while differing the magnitude
of μ’s. These models mimic the scenarios where the outliers come from models with
different graphical structures. The last model assumes that the outliers are not symmetric
about the mean to mimic the scenarios that the outliers can affect both the means and also
the concentration matrix. We again observe that our proposed robust method still recovers
more true edges than glasso for the same false positive rates even when the Markov
structures are blurred by the outliers or when the outliers are not symmetric about the means.
Details of the models and simulation results are presented in Web Appendix B.

These simulation studies have clearly demonstrated that the robust method with an
appropriate robustness tuning parameter gives much better performance than glasso in terms
of both graphical structure selection and estimation of the concentration matrix when the
data have some outliers. Since our algorithm only guarantees convergence to a stationary
point, we explore different starting values for the concentration matrix, including both the
identity matrix and the estimate from the glasso, we did not observe any differences in the
final estimates. Choosing the identity matrix as the starting value performs well in all
simulation examples. Finally, the algorithm is very fast. For a given tuning parameter λ, it
took 1.2–1.7s and 2.2–2.4s for the simulated data sets when p = 50 and p = 150 using the R
codes that we implemented.
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5. Analysis of Yeast Gene Expression Data Set
To demonstrate the proposed robust estimation method, we present results from an analysis
of a data set generated by Brem and Kruglyak (2005). In this experiment, 112 yeast
segregants, one from each tetrad, were grown from a cross involving parental strains
BY4716 and wild isolate RM11-1a. RNA was isolated and cDNA was hybridized to
microarrays in the presence of the same BY reference material. Each array assayed 6,216
yeast genes. Genotyping was performed using GeneChip Yeast Genome S98 microarrays on
all 112 F1 segregants. Due to small sample size and limited perturbation to the biological
system, it is not possible to construct a gene network for all 6,216 genes. We instead focus
our analysis on a set of 54 genes that belong to the yeast MAPK signaling pathway provided
by the KEGG database (Kanehisa et al. 2010). We aim to understand the conditional
independence structure of these 54 genes on the MAPK pathway.

The yeast genome encodes multiple MAP kinase orthologs, where Fus3 mediates cellular
response to peptide pheromones, Kss1 permits adjustment to nutrient-limiting conditions
and Hog1 is necessary for survival under hyperosmotic conditions. Lastly, Slt2/Mpk1 is
required for repair of injuries to the cell wall. A schematic plot of this pathway is presented
in Figure 2 of the Web Appendix C. Note that this graph only presents our current
knowledge about the MAPK signaling pathway. Since several genes such as Ste20, Ste12
and Ste7 appear at multiple nodes, this graph cannot be treated as the “true graph” for
evaluating or comparing different methods. In addition, although some of the links are
directed, this graph does not meet the statistical definition of either directed or undirected
graph. Rather than trying to recover exactly the MAPK pathway structure, we choose this
set of 54 genes on the MAPK pathway to make sure that these genes are potentially
dependent at the expression level. We evaluate whether the genes on the same signaling path
of the MAPK pathway tend to be linked on the graphs estimated from the GGM based on
the gene expression data.

We apply both glasso and the robust method to these 54 genes in the MAPK pathway to
study their conditional independence structure. For each of the 54 genes, we first re-scale the
data so that each gene has a mean of 0 and a standard deviation of 1. Figure 3 of Web
Appendix C shows the histogram of re-scaled real gene expression data excluding 5 extreme
values and two histograms of data sets simulated from models III and IV presented in
previous section. The shapes of histograms are quite similar, and the number of genes (p =
54) and sample size (n = 112) in real data are also comparable to those in the first set of
simulations (p = 50, n = 100). The histograms of these genes and their skewness (Web
Appendix C) indicate that the expressions of some genes are not symmetric about their
means and include outliers. Based on the simulation results, we fix the robustness tuning
parameter β = 0.05, which gave the best performance in the simulation studies. We use 5-
fold cross validation to choose the optimal tuning parameter for both glasso and robust
estimation. After the λ is chosen, we rerun both glasso and robust method using the full
samples and obtain the final estimates of the concentration matrix with glasso identifying
163 links and the robust method identifying 100 links.

Clearly, glasso results in a much denser graph than the robust estimation, which makes it
difficult to interpret biologically. The mean, median and maximum degree the graph is 6,
6.03 and 14 based on glasso, and 3, 3.7 and 10 based on the robust estimation, respectively.
We observe that 87 edges are identified by both glasso and the robust method, 76 links are
identified only by glasso and 13 links are identified only by the robust method. Figure 4
shows the undirected graph of 54 genes based on the estimated sparse concentration matrix
from the robust method, where a total 100 links are observed among 44 genes. This
undirected graph can indeed recover lots of links among the 54 genes on the KEGG MAPK
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pathway. Most of the links in the upper part of the MAPK signaling pathway are recovered
by the estimated graph. For example, the kinase Fus3 is linked to its downstream genes
Dig1, Ste12, FAR1 and Fus1, and the MFA1 (MATα1)/MFA2 genes and STE2 and STE3
form an interconnected subgraph. This part of the pathway mediates cellular response to
peptide pheromones. Similarly, the kinase Slt2/Mpk1 is linked to its downstream genes
Swi4 and Rlm1. The Sho1 gene on the second layer of the pathway is linked to many of its
downstream genes, including Ste11, Ste20, Cttl, Glo1 and MSN4. These linked genes are
related to cell response to high osmolarity.

6. Discussion
Gaussian graphical models have been widely used in modeling the conditional independency
structures of the data and have been applied to analysis of gene expression data. We have
proposed a l1 penalized robust likelihood estimation procedure for the GGMs in order to
achieve the robustness and to maintain the efficiency. Our simulations demonstrated that
when there are outliers in the data, the proposed estimation procedure can greatly
outperform the graphical Lasso for GGMs. The method also resulted in much fewer number
of links for the yeast MAPK gene expression data than glasso, which makes it easier to
interpret biologically. Many of the links identified by the robust method agree with the
current knowledge of the MAPK pathway and have a clear biological interpretation.

As discussed earlier, one limitation of the penalized robust likelihood estimate of the
concentration matrix is its lack of assurance of positive definiteness. This is certainly not
unique to our proposed estimator. Except for the glasso estimate, many other estimators of
the concentration matrix in the GGM setting (Peng et al. 2009; Cai et al. 2011) are not
guaranteed to be positive definite either. However, for simulations reported above, the
corresponding estimators we have examined are all positive definite. This suggests that, for
the sparse and high dimensional regime that we are interested in, non-positive-definiteness
does not seem to be a big issue for the proposed method, as it only occurs when the resulting
model is huge and thus very far away from the true model. As long as the estimated models
are reasonably sparse, the corresponding estimators by the penalized robust likelihood
remain positive definite. After the graph structure is determined, we proposed to obtain the
final estimate of the concentration matrix using the procedure of Miyamura and Kano (2006)
that is guaranteed to be positive definite.

As with all the robust procedures, there is a trade-off between robustness and efficiency,
which is controlled by the parameter β in our proposed penalized robust likelihood
estimation. The methodology affords a robust extension of the powerful penalized maximum
likelihood estimation of the Gaussian graphical models when β = 0. We notice that when the
data are indeed normal, the results from the robust estimation are not effected by the choice
of the β value. When there are outliers, the performance of the robust estimation depends on
the β value, however, is always better than glasso in recovering the graph structure and in
estimation of the concentration matrix as long as the β is not too large. From our
simulations, it seems that choosing β between 0.03 and 0.07 affords considerable robustness
while retaining efficiency. How to best choose this parameter requires further research.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Examples of the simulated network graphs: the graph on the left is used in the first set of
simulations (single module) and has 50 nodes including 3 hub nodes with around 70 edges;
the graph on the right is used in the second set of simulations (triple modules) and has 150
nodes including 9 hub nodes with around 210 edges.
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Figure 2.
The ROC curves of glasso and the robust method with different robustness tuning
parameters, β = 0, 0.01, 0.02, 0.05, and 0.1 for the first set of simulations with p = 50, n =
100. Model I does not have outliers, but Model II, III, and IV has 10% of small, medium and
large magnitudes of outliers, respectively. Each curve is an average over 100 simulated data
sets.
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Figure 3.
The ROC curves of glasso and the robust method with different robustness tuning
parameters, β = 0.005, 0.01, 0.02, and 0.03 for the second set of simulations with p = 150, n
= 100. Model I does not have outliers, but Model II, III and IV has 10% of small, medium
and large magnitudes of outliers, respectively. Each curve is an average over 100 simulated
data sets.
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Figure 4.
The genetic networks identified based on the proposed robust penalized estimation with β =
0.05 for the 54 genes of the KEGG MAPK pathway.

Sun and Li Page 17

Biometrics. Author manuscript; available in PMC 2013 December 01.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text



$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text

Sun and Li Page 18

Ta
bl

e 
1

Si
m

ul
at

io
n 

re
su

lts
: s

um
m

ar
y 

of
 e

dg
e 

de
te

ct
io

n 
un

de
r 

th
e 

se
le

ct
ed

 tu
ni

ng
 p

ar
am

et
er

 λ
 b

y 
cr

os
s-

va
lid

at
io

n 
fo

r 
tw

o 
se

ts
 o

f 
si

m
ul

at
io

ns
 w

ith
 p

 =
 5

0;
 n

 =
 1

00
an

d 
p 

=
 1

50
; n

 =
 1

00
. T

he
 r

es
ul

ts
 a

re
 th

e 
av

er
ag

e 
(s

ta
nd

ar
d 

er
ro

r)
 o

f 
th

e 
nu

m
be

r 
of

 d
et

ec
te

d 
ed

ge
s,

 s
en

si
tiv

ity
, s

pe
ci

fi
ci

ty
, a

nd
 m

ea
n 

sq
ua

re
d 

er
ro

rs
(M

SE
)

fo
r 
θ̂ M

 o
ve

r 
10

0 
si

m
ul

at
io

n 
da

ta
. R

es
ul

ts
 f

ro
m

 g
la

ss
o 

an
d 

th
e 

pr
op

os
ed

 r
ob

us
t e

st
im

at
io

n 
w

ith
 d

if
fe

re
nt

 s
pe

ci
fi

ca
tio

ns
 o

f 
th

e 
β 

va
lu

e 
ar

e 
co

m
pa

re
d.

M
od

el
M

et
ho

d
# 

of
 e

dg
es

Se
ns

it
iv

it
y

Sp
ec

if
ic

it
y

M
SE

p 
=

 5
0,

 n
 =

 1
00

I
gl

as
so

89
.2

2 
(1

.6
8)

0.
70

 (
0.

00
52

)
0.

97
 (

0.
00

12
)

0.
00

32
 (

0.
00

00
)

β 
=

 0
.0

2
95

.9
9 

(1
.8

3)
0.

70
 (

0.
00

50
)

0.
96

 (
0.

00
13

)
0.

00
34

 (
0.

00
01

)

β 
=

 0
.0

5
94

.8
2 

(1
.8

2)
0.

69
 (

0.
00

53
)

0.
96

 (
0.

00
13

)
0.

00
37

 (
0.

00
01

)

β 
=

 0
.0

7
91

.1
0 

(1
.6

2)
0.

67
 (

0.
00

53
)

0.
96

 (
0.

00
11

)
0.

00
39

 (
0.

00
01

)

II
gl

as
so

30
6.

54
 (

8.
35

)
0.

76
 (

0.
00

65
)

0.
78

 (
0.

00
69

)
0.

00
95

 (
0.

00
02

)

β 
=

 0
.0

2
23

6.
82

 (
11

.0
5)

0.
72

 (
0.

00
79

)
0.

84
 (

0.
00

92
)

0.
00

83
 (

0.
00

02
)

β 
=

 0
.0

5
13

6.
60

 (
4.

67
)

0.
70

 (
0.

00
62

)
0.

92
 (

0.
00

37
)

0.
00

62
 (

0.
00

02
)

β 
=

 0
.0

7
11

0.
89

 (
2.

26
)

0.
68

 (
0.

00
58

)
0.

94
 (

0.
00

17
)

0.
00

57
 (

0.
00

01
)

II
I

gl
as

so
41

8.
85

 (
3.

22
)

0.
77

 (
0.

00
55

)
0.

68
 (

0.
00

27
)

0.
01

4 
(0

.0
00

3)

β 
=

 0
.0

2
39

2.
27

 (
11

.9
9)

0.
75

 (
0.

01
05

)
0.

71
 (

0.
01

00
)

0.
01

4 
(0

.0
00

3)

β 
=

 0
.0

5
13

1.
25

 (
5.

35
)

0.
69

 (
0.

00
65

)
0.

93
 (

0.
00

44
)

0.
00

76
 (

0.
00

03
)

β 
=

 0
.0

7
10

5.
22

 (
2.

72
)

0.
67

 (
0.

00
57

)
0.

95
 (

0.
00

21
)

0.
00

72
 (

0.
00

01
)

IV
gl

as
so

44
1.

47
 (

4.
93

)
0.

77
 (

0.
00

79
)

0.
66

 (
0.

00
40

)
0.

02
0 

(0
.0

00
5)

β 
=

 0
.0

2
43

0.
28

 (
9.

15
)

0.
75

 (
0.

01
07

)
0.

67
 (

0.
00

77
)

0.
02

0 
(0

.0
00

5)

β 
=

 0
.0

5
13

3.
50

 (
5.

78
)

0.
70

 (
0.

00
71

)
0.

93
 (

0.
00

46
)

0.
01

1 
(0

.0
00

4)

β 
=

 0
.0

7
10

9.
95

 (
3.

29
)

0.
68

 (
0.

00
69

)
0.

95
 (

0.
00

25
)

0.
01

0 
(0

.0
00

2)

p 
=

 1
50

, n
 =

 1
00

I
gl

as
so

26
3.

68
 (

2.
38

)
0.

64
 (

0.
00

27
)

0.
99

 (
0.

00
02

)
0.

00
15

 (
0.

00
01

)

β 
=

 0
.0

05
28

1.
33

 (
2.

73
)

0.
64

 (
0.

00
27

)
0.

99
 (

0.
00

02
)

0.
00

15
 (

0.
00

01
)

β 
=

 0
.0

2
28

1.
94

 (
2.

61
)

0.
64

 (
0.

00
27

)
0.

99
 (

0.
00

02
)

0.
00

16
 (

0.
00

01
)

β 
=

 0
.0

3
27

6.
03

 (
2.

82
)

0.
63

 (
0.

00
30

)
0.

99
 (

0.
00

02
)

0.
00

17
 (

0.
00

01
)

II
gl

as
so

68
2.

78
 (

1.
63

)
0.

60
 (

0.
00

63
)

0.
95

 (
0.

00
02

)
0.

00
30

 (
0.

00
01

)

β 
=

 0
.0

05
63

7.
32

 (
9.

14
)

0.
64

 (
0.

00
52

)
0.

95
 (

0.
00

08
)

0.
00

31
 (

0.
00

01
)

β 
=

 0
.0

2
42

7.
60

 (
7.

39
)

0.
65

 (
0.

00
34

)
0.

97
 (

0.
00

06
)

0.
00

27
 (

0.
00

01
)

β 
=

 0
.0

3
33

5.
24

 (
4.

46
)

0.
63

(0
.0

03
3)

0.
98

 (
0.

00
04

)
0.

00
25

 (
0.

00
01

)

II
I

gl
as

so
50

7.
70

 (
24

.7
1)

0.
40

 (
0.

00
91

)
0.

96
 (

0.
00

21
)

0.
00

39
 (

0.
00

01
)

Biometrics. Author manuscript; available in PMC 2013 December 01.



$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text

Sun and Li Page 19

M
od

el
M

et
ho

d
# 

of
 e

dg
es

Se
ns

it
iv

it
y

Sp
ec

if
ic

it
y

M
SE

β 
=

 0
.0

05
67

2.
33

 (
6.

22
)

0.
54

 (
0.

00
87

)
0.

95
 (

0.
00

06
)

0.
00

40
 (

0.
00

01
)

β 
=

 0
.0

2
46

9.
63

 (
10

.2
9)

0.
66

 (
0.

00
43

)
0.

97
 (

0.
00

09
)

0.
00

37
 (

0.
00

01
)

β 
=

 0
.0

3
36

3.
00

 (
7.

63
)

0.
63

 (
0.

00
38

)
0.

98
 (

0.
00

06
)

0.
00

34
 (

0.
00

01
)

IV
gl

as
so

67
8.

70
 (

4.
00

)
0.

38
 (

0.
00

33
)

0.
95

 (
0.

00
04

)
0.

00
46

 (
0.

00
01

)

β 
=

 0
.0

05
67

3.
54

 (
2.

46
)

0.
52

 (
0.

00
81

)
0.

95
 (

0.
00

03
)

0.
00

49
 (

0.
00

01
)

β 
=

 0
.0

2
48

7.
78

 (
12

.5
9)

0.
66

 (
0.

00
41

)
0.

97
 (

0.
00

11
)

0.
00

38
 (

0.
00

01
)

β 
=

 0
.0

3
37

0.
41

 (
9.

31
)

0.
63

 (
0.

00
42

)
0.

98
(0

.0
00

8)
0.

00
33

 (
0.

00
01

)

Biometrics. Author manuscript; available in PMC 2013 December 01.


