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Bone mineralization is an essential step during the embryonic
development of vertebrates, and bone serves vital functions in
human physiology. To systematically identify unique gene func-
tions essential for osteogenesis, we performed a forward genetic
screen in zebrafish and isolated a mutant, no bone (nob), that does
not form any mineralized bone. Positional cloning of nob identi-
fied the causative gene to encode ectonucleoside triphosphate/
diphosphohydrolase 5 (entpd5); analysis of its expression pattern
demonstrates that entpd5 is specifically expressed in osteoblasts.
An additional mutant, dragonfish (dgf), exhibits ectopic minerali-
zation in the craniofacial and axial skeleton and encodes a loss-of-
function allele of ectonucleotide pyrophosphatase phosphodies-
terase 1 (enpp1). Intriguingly, generation of double-mutant nob/
dgf embryos restored skeletal mineralization in nob mutants, in-
dicating that mechanistically, Entpd5 and Enpp1 act as reciprocal
regulators of phosphate/pyrophosphate homeostasis in vivo. Con-
sistent with this, entpd5 mutant embryos can be rescued by high
levels of inorganic phosphate, and phosphate-regulating factors,
such as fgf23 and npt2a, are significantly affected in entpd5 mu-
tant embryos. Our study demonstrates that Entpd5 represents a
previously unappreciated essential player in phosphate homeosta-
sis and skeletal mineralization.

he vertebrate skeleton is composed of bone and cartilage.

Bone-forming cells, osteoblasts, secrete a collagen-rich ma-
trix that is subsequently mineralized, whereas bone-resorbing
cells, osteoclasts, remove bone tissue and remodel it. Osteoblasts
are of mesenchymal origin, and Runx2 and Osterix have been
identified as the major transcription factors controlling osteo-
blast commitment and differentiation (1, 2). Osteoclasts, on the
other hand, are of hematopoietic origin and derive from the
monocyte lineage (3). In humans, the generation and remodeling
of bone is a dynamic process that occurs throughout life and is
dependent on age and sex. A number of human osteopathies are
common, often caused by misregulation of skeletal mineral ho-
meostasis (mainly calcium and phosphate).

Crucial in regulating biomineralization is the balance between
promoters and inhibitors of biomineralization, both on an auto-
crine/paracrine level as well as on a systemic level. The ratio be-
tween phosphate and pyrophosphate is central to this process.
Locally, in the osteoblast and its microenvironment, phosphatases
such as phosphatase orphan 1 (PHOSPHOL1) or tissue-nonspecific
alkaline phosphatase (TNAP) are thought to be key factors in the
initiation of mineralization (4). PHOSPHOL is responsible for
providing the phosphate necessary for nucleation of crystal growth
within matrix vesicles (5), whereas TNAP can dephosphorylate
various substrates but most importantly breaks down pyrophos-
phate in the microenvironment of osteoblasts (6). Pyrophosphate
is a strong chemical inhibitor of bone mineral (hydroxyapatite)
formation and is locally provided by the pyrophosphate channel
ANK and ectonucleotide pyrophosphatase phosphodiesterase 1
(ENPP1) (7). On a whole-organism level, phosphate levels are
regulated by controlling retention/secretion in the kidney via
a hormonal network involving parathyroid hormone (PTH),
FGF23, and 1,25(OH),D; (8).
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Under normal conditions, calcium and phosphate concen-
trations of the extracellular fluid are below the level of saturation
needed for spontaneous precipitation in soft tissues but above
the level sufficient to support crystal growth in skeletal tissue (9).
For example, deficiency in the ENPP1 gene can result in path-
ological soft-tissue mineralization, particularly in arteries (10,
11). On the other hand, hypophosphatemia leads to decreased
mineralization of skeletal tissues, as evidenced by genetic studies
in which PHOSPHO1, PHEX (phosphate regulating gene with
homologies to endopeptidases on the X chromosome), or TNAP
function is diminished (4, 12, 13).

We have taken a forward genetic approach to identify novel
regulators of osteogenesis and bone mineralization, and here
report the isolation and characterization of two zebrafish
mutants: no bone (nob) mutants fail to form any mineralized
skeleton, whereas dragonfish (dgf) mutants show ectopic min-
eralization in the craniofacial and axial skeleton. We demon-
strate the causative genes to encode Entpd5 (ectonucleoside
triphosphate/diphosphohydrolase 5) and Enppl, respectively,
and provide evidence that the combined activity of these factors
maintains normal physiological levels of phosphate and pyro-
phosphate in the embryo.

Results

Nob Mutants Lack a Mineralized Skeleton. In a forward genetic
screen in zebrafish (14), we uncovered 14 mutant lines out of 429
families screened. One mutant, no bone (nob™3”'%), completely
lacked a mineralized skeleton (Fig. 1 A and B). Skeletal staining
of mutant and sibling embryos showed that the mutant pheno-
type is apparent at 6 d postfertilization (dpf) (Fig. 14). Nob
mutant embryos maintained the ability to form mineralized teeth
and otoliths (Fig. 14), two calcified structures with a different
mineral composition from bone (15, 16). Mutant embryos were
viable when separated at 6 dpf from their siblings via alizarin red-
based in vivo skeletal staining (17). Except for the absence of a
mineralized skeleton (Fig. 1B), we could not phenotypically
distinguish mutants from siblings until 21 dpf (Fig. 1C). After
about 21 dpf, nob mutants showed slower growth and died
around 35 dpf.

Dermal bone formation (which does not occur via a cartilagi-
nous intermediate) is equally affected in nob mutants, indicating
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Fig. 1. Nob mutants lack a mineralized skeleton. (A) Alizarin red/alcian blue staining of sibling and mutant nob embryos. Cartilage elements appear normal
in mutants. All bone is absent, but teeth and otoliths are present. (B) Skeletal staining of 21-dpf sibling and nob mutant individuals. (B’) Enhanced contrast
image highlighting the correctly patterned but unmineralized vertebra anlagen. (C) Images of sibling and mutant nob fish at 23 dpf, demonstrating that nob
mutants are indistinguishable from siblings at the gross morphological level. (D) Whole-mount in situ hybridization detecting the chondrogenic marker sox9a.
(E) Confocal projection of Meckel's cartilage of a sibling versus mutant embryo showing no difference for anti-type Il collagen (red) or the proliferation
marker anti-phospho-Histone H3 (green). (F and G) Whole-mount in situ hybridization detecting the osteoblast markers co/710a1 (F) and col1a2 (G) in 3-dpf
nob mutant and sibling embryos. (H) Osterix:GFP expression, marking early osteoblasts in 6-dpf nob mutant and sibling embryos. br, fifth branchial arch; cl,
cleithrum; nt, notochord tip; op, operculum; ot, otolith; ps, parasphenoid; t, teeth.

that the phenotype is not caused by chondrogenesis defects.
Nevertheless, we asked whether cartilage tissue develops nor-
mally in nob mutants. Alcian blue staining, labeling mucopoly-
saccharides and glycosaminoglycans in cartilage, appeared
identical in mutant versus sibling embryos (Fig. 14 and Fig.
S1A4). We visualized the expression of sox9a and type II collagen
but could not find qualitative difference in the expression of
these chondrogenic markers (Fig. 1 D and E). We also analyzed
the proliferation marker phospho-Histone H3 (pH3) in 6-dpf
nob mutants (n = 4; average of 9.00 pH3-positive chondrocytes)
versus siblings (n = 4; average of 12.75 chondrocytes). Again, this
did not constitute a significant difference in proliferating cells in
the craniofacial elements (Fig. 1E). Together, these data suggest
that chondrogenesis is unaltered in nob mutants.

Next, we asked whether an absence of osteoblasts might be
causative for the nob mutant phenotype, and addressed this
question using an osterix:GFP transgenic line (17, 18) as well as
other osteoblast markers. As shown in Fig. 1 F-H, no difference
was observed in the number of osterix (Fig. 1H)-expressing
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osteoblasts between sibling and nob mutant embryos. In addition,
we observed no difference in the expression of type I collagen
(colla2) (Fig. 1G) or type 10 collagen (coll0al) (Fig. 1F), which
marks osteoblasts in teleosts (19). Together, these data demon-
strate that it is not the absence of osteoblasts that is causative for
the nob mutant phenotype.

Nob Mutants Encode Alleles of entpd5. To identify the molecular
lesion responsible for the nob"”’® mutant phenotype, we used
simple sequence-length polymorphism and single-nucleotide
polymorphism mapping. Single-embryo mapping positioned the
mutation between flanking markers SNP-Z8 and CA39 (Fig. 24)
on chromosome 17. Sequencing of the zebrafish entpd5 gene (in
mammals also referred to as CD39L4 or PCPH) in mutant and
sibling embryos using gene specific primers (Table S1) revealed
a premature stop codon in the mutant allele due to a T-A
transversion in the third coding exon (Fig. 2B). This mutation
resulted in a Leu>stop alteration at position 155, which is in the
second apyrase conserved domain (gray bars in Fig. 2D, Upper)
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Schematic representation of the predicted protein
structures for Entpd5 and nob"*7'8, The asterisk
indicates the position of the mutation in nob"#>37°,
Gray bars, apyrase domains within Entpd5 (35). See
also Fig. S1. (E) (Left and Center) Entpd5 and osterix
are almost identically expressed in 3-dpf embryos,
with osterix expression in the region of future teeth
(arrows) being the single exception at this stage.
(Right) Representative image of a 3-dpf entpd5:YFP
transgenic embryo showing an expression pattern
that matches endogenous entpd5 transcript distri-
bution (Center). (F) Coexpression of entpd5:YFP and
osterix:mCherry in the operculum of 3-dpf embryos.
(G and H) entpd5 cDNA injection (CMV promoter)
into nob"™37’® mutants results in mosaic minerali-
zation (G). Arrows point at cleithra in G; the ar-
rowhead points to a nonmineralized osteoid in
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represent percentages of rescued mutant embryos
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of the predicted protein. We also uncovered a separate, non-
complementing allele (nob™?'%). The nob™*! allele contained
an A—G transversion in the first coding exon (Fig. 2C), resulting
in a Thr>Ala alteration at position 80 (asterisk in Fig. 2D). This
mutation is located in a highly conserved amino acid residue of
the first apyrase conserved domain (see also Fig. S1B).

Entpd5 Expression Is Sufficient to Rescue the nob Phenotype. Next,
we studied the expression pattern of entpd5 by whole-mount in
situ hybridization. Entpd5 and osterix showed an almost identical
expression pattern at 3 dpf, with osterix expression in the region
of future teeth as the single exception at this stage (Fig. 2F). To
confirm that osterix-positive cells also express entpd5, we gener-
ated an entpd5:YFP transgenic line. As shown in Fig. 2E (Center
and Right), YFP expression was identical to the endogenous
entpd5 gene expression. We crossed the entpd5:YFP transgenic
line with the osterix:mCherry transgenic line and observed that
osterix-expressing cells also express entpd5 (Fig. 2F), demon-
strating that entpd5 is specifically expressed in, and can serve as
a marker for, osteoblasts. Of note, at all stages analyzed, we only
observed entpd5 expression in tissues associated with skeletal
mineralization.

To provide independent evidence that the mutations in the
two mutant entpd5 alleles are causative for the nob phenotype,
we attempted to rescue the phenotype by injection of wild-type
and nob™>31° mutant entpd5 cDNA under the control of a cyto-
megalovirus (CMV) promoter. Mosaic rescue (as expected upon
plasmid DNA injection) was observed in 24% of the nob™>7'8
mutants that were injected with wild-type cDNA (Fig. 2 G and
H), whereas the mutant nob™3"? entpd5 cDNA failed to rescue.
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Of note, rescued embryos showed only mineralization in skeletal
elements, not in other parts of the embryo. Mineralization was
similarly rescued when wild-type entpd5 cDNA was expressed
in the rescuing assay under the control of the osterix promoter
(Fig. 2H).

Next, we visualized the (mosaic) location of entpd5-positive
cells of rescued nob mutants, and therefore injected a cmv:
dendra-t2a-entpd5 construct to mark the cells in which the entpd5
gene was overexpressed. Surprisingly, we observed that miner-
alization was rescued even if osteoblasts do not inherit detect-
able levels of cmv:dendra-t2a-entpd5 (Fig. 2I). This prompted us
to force entpd5 expression in a tissue distinct from osteoblasts, to
clarify the question of whether Entpd5 function needs to be
provided by osteoblasts or can be provided by other tissues. In-
terestingly, injections of entpd5 under the control of an endo-
thelial-specific promoter (kdrl:entpd5) (20) resulted in rescue of
nob mutants in a manner indistinguishable from the cases de-
scribed above (Fig. 27). These results show that although Entpd5
is essential for mineralization and is expressed by osteoblasts in
the wild-type embryo, it can be provided by other cellular sources
and does not need to be delivered by osteoblasts.

Dragonfish Mutants Encode Alleles of enpp1. In the same genetic
screen we also uncovered a mutant, termed dragonfish (dgf), that
displayed an ectopic mineralization phenotype (Fig. 3.4 and B) in
the axial skeleton with apparent fusion of the mineralized ver-
tebral centra (Fig. 34) and also displayed bone nodules at char-
acteristic positions of the cleithrum (arrow in Fig. 3B). Single-
embryo mapping positioned the mutation between two flanking
markers, SSLR 210 and SSLR 961 (Fig. 3C), on chromosome 20.
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Sequencing (Fig. 3 D and E) of two noncomplementing alleles
(Fig. 3 G and H and Fig. S2C) as well as a BAC-mediated rescue
(Fig. 3 4 and F and Fig. S2 A and B) identified mutations within
the enppl gene underlying the mutant phenotype.

Phosphate Homeostasis Is Disturbed in nob Mutants. Entpd5 and
Enpp1 both hydrolyze extracellular nucleotide derivatives (7, 10,
11, 21, 22), with Entpd5 generating inorganic phosphate (21, 22)
and Enppl generating pyrophosphate (7). We therefore exam-
ined the epistatic relationship of both genes. Strikingly, double-
mutant nob/dgf embryos always formed mineralized bone and
usually even exhibited signs of an ectopically mineralized skele-
ton (Fig. 44). As this suggested that phosphate homeostasis is
disturbed in nob mutants, we tested whether raising nob mutant
embryos in excess phosphate medium would be sufficient to
rescue the phenotype. Indeed, growing embryos in phosphate-
rich medium resulted in partial skeletal mineralization of nob
mutants (Fig. 4B), demonstrating that inorganic phosphate is
a limiting factor for nob mutants to mineralize their skeleton.
Of note, excess calcium had no effect on the nob phenotype,
whereas exogenously supplied calcium has been shown to rescue
other mutants with hypomineralized phenotypes (23, 24).

Next, we studied whether phosphate-regulating genes were af-
fected in nob mutants. Two independent microarray experiments
on 7-dpf nob sibling versus mutant embryos (see SI Materials
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morphic marker are depicted in red, and markers
used for mapping are in black. (D) Sequencing of
dgf’“4°®" revealed a mutation in the splice acceptor
site before exon 11 of the enpp? gene. (E) The
consequence at the transcript level is a deletion of 5
bp (Upper), resulting in a translational frameshift
and a predicted stop codon after 23 amino acids
(Lower). (F) Schematic representation of the BAC
construct generated for the transgenic rescue of the
dgf*®" phenotype. Two genes are contained on the
BAC, and kcnk3 was inactivated through a recom-
bineering approach. (G) Dgf’*® fails to comple-
ment dgf"“#¥’. (H) Schematic drawing of the
predicted protein forms of enpp?, dgf"“***’, and
dgfa’°®, respectively. Enpp1 is a type Il trans-
membrane protein. Striped box, transmembrane
domain; light gray, somatomedin B-like binding
domains; black, catalytic domain; dark gray, nucle-
ase-like domain (36). See also Fig. S2.

and Methods) demonstrated strong down-regulation of the key
phosphate homeostasis regulator fibroblast growth factor 23
(fgf23) in nob mutants. Significant twofold down-regulation of
f2f23 was validated by quantitative (qQ)PCR (Fig. 4C), but this
difference could be ameliorated by supplying Entpd5 via
injection of kdrl:entpd5 (Fig. S3). In addition to this, we studied
the expression of several other phosphate-regulating genes
(which were not present on the array chip; Fig. S1) by qPCR
(Fig. 4C). In concordance with fgf23 down-regulation, significant
up-regulation of the sodium/phosphate cotransporter npt2a was
measured in 7-dpf nob mutants (Fig. 4C).

Taken together, our findings show that Entpd5 is an essential
factor for bone mineralization, and indicate that, mechanistically,
Entpd5 acts on phosphate/pyrophosphate homeostasis.

Discussion

We here show that Entpd5 is crucial for bone mineralization in
zebrafish and that entpdS5 is specifically expressed in osteoblasts.
Taken together, our findings show that Entpd5 is a previously
unappreciated and essential factor for bone formation. Entpd5
encodes a secreted ectonucleoside triphosphate/diphosphohy-
drolase that preferably hydrolyzes extracellular nucleotide
diphosphates (21, 22) into nucleotide monophosphates and
inorganic phosphate. Circulating extracellular nucleotides are
known to be important purinergic signaling molecules that can
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Fig. 4. Phosphate homeostasis is disturbed in nob mutants. (A) Nob mu-
tants can mineralize their skeleton in the absence of dgf"#* function, and
will even show ectopic mineralization (arrows point at protrusions of the
cleithrum, a typical feature of dgf mutants). (B) Exogenous phosphate par-
tially rescues the nob mutant phenotype. Arrow points at partially miner-
alized cleithrum. All images represent lateral views of the head skeleton at 6
dpf. (C) Quantitative PCR on 7-dpf embryos revealed that, compared with
siblings (white bars), fgf23 expression levels are significantly down-regu-
lated and npt2a expression is significantly up-regulated in nob mutant
embryos (gray bars). Results are expressed as mean + SEM of three in-
dependent experiments, with *P < 0.05 and **P < 0.005.

generate a variety of physiological responses (25, 26). Although
we do not exclude the possibility of an additional role of puri-
nergic signaling in skeletal mineralization (26), our data rather
point to a role of Entpd5 in phosphate homeostasis.

The restricted expression pattern of entpd5 in osteoblasts
suggests that Entpd5 acts locally, in a microenvironment that is
already permissive for mineralization. On one hand, this notion
is supported by the rescue experiments reported here: Expres-
sion of entpd5 via a ubiquitously acting CMV promoter or an
endothelial-specific kdr-like promoter does not lead to ectopic
mineralization, but results exclusively in bone mineralization in
those regions where the local microenvironment (extracellular
matrix composition, pyrophosphate levels) is prone to minerali-
zation events. On the other hand, entpd5 does not need to be
provided in a cell-autonomous manner (i.e., in osteoblasts):
Expression in the embryonic endothelium is sufficient to cause
mineralization. In the wild-type embryo, one would still expect
the highest levels of Entpd5 protein at the osteoblast surface,
and therefore in the immediate vicinity of a microenvironment
that provides the appropriate and required composition for
biomineralization (see Fig. S4 for a model).

Entpd5 has recently been suggested to play a role in proper
protein folding and glycosylation in the endoplasmic reticulum
(27). However, because both the cartilage matrix and the osteoid
appeared normal in nob mutants, and because dgf/nob double
mutants can mineralize their skeleton, we consider it unlikely
that a failure of proper glycosylation of extracellular matrix
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proteins is the limiting factor for skeletal mineralization. Rather,
our data strongly suggest that a stringently controlled balance
between Entpd5 and Enppl activities determines the level of
mineralization through controlling the ratio of inorganic phos-
phate to pyrophosphate in the immediate vicinity of osteoblasts.
Skeletal mineralization is a tightly controlled process, depending
on the availability of inorganic phosphate release from a variety
of substrates by ectoenzymes (7). Pyrophosphate antagonizes the
ability of inorganic phosphate and calcium to form a mineral
crystal. In line with this, Enppl mutations in humans and mice
have been shown to cause ectopic mineralization due to in-
sufficient extracellular pyrophosphate (10, 11). Based on the
ectopic mineralization phenotype of the dgf mutants, we show
here on the phenotypic level that the function of Enppl is con-
served between fish and mammals.

Because our study indicates that Entpd5 regulates phosphate
homeostasis, we speculated that other factors regulating phos-
phate levels in vivo might be affected. Indeed, Fgf23 is signifi-
cantly down-regulated, and the sodium/phosphate cotransporter
npt2a (NaPi2a) is significantly up-regulated in nob mutants.
Fgf23 is known as a key regulator of phosphate homeostasis (28),
and changes in FGF23 activity lead to human disorders associ-
ated with either phosphate wasting or retention (29). Fgf23 is
a circulating hormone produced in the bone that mainly targets
the kidneys to control the activity of Npt2a and Npt2c (30). It
seems likely that the absence of skeletal mineralization in mutant
nob zebrafish elicits compensatory mechanisms to regulate the
low levels of inorganic phosphate. Down-regulation of fgf23 and
up-regulation of npt2a are consistent with this.

A murine Entpd5 knockout has been reported, but it is unclear
whether this allele (encoding an ENTPDS5:1acZ fusion) represents
a complete loss-of-function situation. These mice are viable (31)
but appear smaller than littermates, a phenotype often found in
hypophosphatemic mice (4, 28). Furthermore, the mice were
shown to have increased serum alkaline phosphatase (31). To-
gether with the findings of our study, we believe that the phenotype
reported by Read et al. (31) is likely due to disturbed phosphate
homeostasis. However, we cannot exclude that the essential
function of Entpd5 during osteogenesis as described here is po-
tentially unique in basal vertebrates, and that it has shifted to other
secreted paralogues in higher vertebrates, or even to completely
different genes (such as alkaline phosphatase).

In summary, in this study, we demonstrate that entpd5 is es-
sential for skeletal mineralization in zebrafish and that entpd5 is
specifically expressed in osteoblasts. We provide evidence that
the combined activity of EntpdS and Enppl maintains normal
physiological levels of phosphate and pyrophosphate, and that
the absence of activity of either protein results in mineralization
phenotypes. The nob mutant phenotype can be rescued by either
exogenous phosphate or Entpd5 protein provided by non-
osteoblast cells, suggesting that the correct systemic phosphate
levels together with the appropriate extracellular microenviron-
ment of osteogenic cells provides the basis for biomineralization.

Materials and Methods

Alizarin Red/Alcian Blue Skeletal Staining. Skeletal staining was performed as
described previously (17, 32). In vivo skeletal staining was performed with
0.001% calcein or 0.05% alizarin red in E3 medium for 5-10 min and sub-
sequent extensive washes with E3 medium.

Meiotic Mapping and Sequencing. Bioinformatic construction of the genomic
region surrounding the nob"“3’’¢ and dgf™“4**'genes was performed using
Ensembl database Zv6 (http://genome.ucsc.edu/cgi-bin/hgGateway?hgsid=
312908511&clade=vertebrate&org=Zebrafish&db=danRer6) for nob"“37¢
and Zv9 (www.ensembl.org/Danio_rerio/Info/Index?db=core) for dgf"4*8".
Meiotic mapping of the nob"*’’® and dgf’“4*®’ mutations was per-
formed using standard simple sequence-length polymorphisms and single-
nucleotide polymorphisms.
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For sequencing of candidate genes, coding exons of the respective gene
were amplified separately from mutant and wild-type embryos and se-
quenced on both strands. Additional information and all primer sequences
are shown in Table S1. For all experiments, we have used the nob"“3”’ and
dgf™“4*®" alleles, unless stated otherwise.

Whole-Mount in Situ Hybridization and Immunohistochemistry. All in situ
hybridizations were performed at least twice as previously described (17, 33)
and embryos were subsequently genotyped. Previously described probes
were osterix and col10al (17). Immunohistochemistry was essentially done
as described (18) and as detailed in S/ Materials and Methods.

cDNA Rescue Experiments. TRIzol reagent (Invitrogen) was used to extract
RNA from 6-dpf embryos, and mouse RNA was extracted from cultured KS483
cells (34). For details, please consult SI Materials and Methods. One-cell-
stage embryos derived from nob"“3”’8 carrier fish were injected with plas-
mid DNA in a maximum volume of 2 nL. Alizarin red/alcian blue staining was
carried out at 6 dpf. Only injected embryos with normal size, apparently
normal cartilage, and without tissue malformations or general edema or
apparent toxic defects were included for analysis. Each rescue experiment
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was performed three independent times. In total, we scored 490 siblings/131
mutant embryos injected with 100 pg cmv:entpd5; 329 siblings/106 mutants
injected with 100 pg osterix:entpd5; 500 siblings/166 mutants with 100 pg
cmv:Entpd5 (murine ¢DNA); 151 siblings/63 mutants with 100 pg cmv:
nob"“*31% and 481 sibling/129 mutants with 25 pg kdr-l:entpd5 cDNA.

Animal Procedures. All zebrafish strains were maintained at the Hubrecht
Institute using standard husbandry conditions. Animal experiments were
approved by the Animal Experimentation Committee of the Royal Nether-
lands Academy of Arts and Sciences.
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