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The Cretaceous–Paleogene (K-Pg) boundary is marked by a major
mass extinction, yet this event is thought to have had little effect
on the diversity of lizards and snakes (Squamata). A revision of
fossil squamates from the Maastrichtian and Paleocene of North
America shows that lizards and snakes suffered a devastating
mass extinction coinciding with the Chicxulub asteroid impact.
Species-level extinction was 83%, and the K-Pg event resulted in
the elimination of many lizard groups and a dramatic decrease in
morphological disparity. Survival was associated with small body
size and perhaps large geographic range. The recovery was pro-
longed; diversity did not approach Cretaceous levels until 10 My
after the extinction, and resulted in a dramatic change in faunal
composition. The squamate fossil record shows that the end-Cre-
taceous mass extinction was far more severe than previously be-
lieved, and underscores the role played by mass extinctions in
driving diversification.

evolution | adaptive radiation

Today, lizards and snakes (Squamata) are represented by more
than 9,000 living species, which exploit an extraordinary

range of ecological niches and habitats; they include insectivores,
carnivores, herbivores, and omnivores, as well as terrestrial, ar-
boreal, fossorial, and aquatic forms (1, 2). The history of this
radiation extends deep into the Mesozoic. After the appearance
of crown squamates in the Jurassic (3), lizards and snakes un-
derwent a Cretaceous radiation (4, 5), and by the late Cretaceous
most major groups had appeared, including iguanians, geckos,
skinks, anguids, and platynotans (3, 4), as well as many snake
lineages (5). However, with the exception of the marine mosa-
saurs, all major squamate lineages are thought to have survived
the end of the Cretaceous. Consequently, the Cretaceous–Pa-
leogene (K-Pg) extinction that ended the Mesozoic is considered
to have had little effect on squamate evolution (4, 6, 7).
The K-Pg extinction represents one of the most severe mass

extinctions in the history of life (8). Its causes remain a matter of
debate (7, 9–12), but suggest that the extinction resulted from
the Chicxulub asteroid impact (9–12), when debris shot into the
atmosphere by the impact would have darkened the skies,
causing a shutdown of photosynthesis and subsequent collapse
of the food chain (10–13). Terrestrial ecosystems were partic-
ularly hard hit. Notably, the nonavian dinosaurs became extinct
at this time (9), but the K-Pg event also resulted in severe
extinctions among mammals (14), birds (15), insects (16), and
plants (17). Given this, it would be remarkable had squamates
not been affected.
In this light, we restudied the squamate fossil record across the

K-Pg boundary, focusing on North America. Globally, few fossils
are available to address this problem, because (i) squamates are
generally small and lightly built, limiting their preservation po-
tential, and (ii) few terrestrial sequences span the K-Pg boundary
(17). Western North America is unique, however, in having a
rich record of lizards and snakes from both the late Maas-
trichtian (5, 18–22) and the early Paleocene (23–27), making this
the only place in the world where the problem can be studied.
Critically, a chronostratigraphic framework (SI Appendix) makes
it possible not only to examine patterns of turnover, but also to
constrain the timing of extinction.

The only previous study of this problem focused on the
Maastrichtian–Paleocene transition in eastern Montana. High
turnover was observed for fossil vertebrates across the K-Pg
boundary; among squamates, 3 of 11 Maastrichtian species (27%)
persisted into the Paleocene (14, 28). However, the limited focus
of that study makes it difficult to discern whether this high
turnover was a regional or local event; furthermore, the rarity of
Paleocene vertebrate fossils raises the possibility that survivors
have been overlooked, and that turnover is exaggerated by sam-
pling artifacts (14). Consequently, the concept of a mass extinc-
tion of squamates has received little attention.
Here we combine data from the literature (19–27) and museum

collections to create a detailed picture of squamate diversity and
disparity in the Maastrichtian and Paleocene of North America.
This study includes localities from NewMexico to Alberta (Dataset
S1) and includes all known species, as well as previously un-
recognized Maastrichtian species (SI Appendix).

Systematic Paleontology
A total of 27 lizards and three snakes occur in the lateMaastrichtian
of North America, including 21 previously recognized forms (19–
22) and nine heretofore unreported species (Fig. 1). Thus, this
assemblage ranks as one of the most diverse fossil squamate
assemblages yet discovered.These species represent awide rangeof
squamate lineages, many of which are now extinct (Fig. 2).
The fauna is dominated by the extinct Polyglyphanodontia.

Previously allied with the Teiidae (20–22), these lizards are now
recognized as a distinct clade (3, 29) that may lie outside of
Scleroglossa entirely (3). Polyglyphanodontians are character-
ized by a V-shaped dentary symphysis, a long splenial that slots
into the subdental shelf, subapical tooth implantation, and tri-
cuspid teeth. Twelve species are present (Fig. 2). The seven
previously recognized species are the polyglyphanodontid Poly-
glyphanodon sternbergi (30) and the chamopsiids Chamops segnis
(18), Leptochamops denticulatus (19), Meniscognathus altmani
(20), Haptosphenus placodon (20), Stypodontosaurus melletes
(21), and Peneteius aquilonius (22). Here two previously identi-
fied species are placed in Polyglyphanodontia. One, previously
referred to Iguanidae (21), is here identified as the poly-
glyphanodontian Tripennaculus n. sp. (SI Appendix). A second,
unnamed lizard from the Frenchman Formation of Saskatch-
ewan (21) is placed in Chamopsiidae. In addition, three pre-
viously unreported species are recognized here. The first of these
species is a chamopsiid, Socognathus brachyodon (Fig. 1A), re-
ferred to Socognathus (21) on the basis of the low yet robust
mandible, massive symphysis, and reduced accessory cusps. It
differs from Socognathus unicuspis in having closely packed,
bulbous teeth (SI Appendix). The second is Obamadon gracilis
(Fig. 1B), a small polyglyphanodontian distinguished by tall,
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slender teeth with large central cusps separated from small ac-
cessory cusps by lingual grooves (SI Appendix). The third species
is an unnamed chamopsiid from Colorado (Fig. 1C), character-
ized by enlarged back teeth (SI Appendix).
Three scincomorphs are present. Contogenys sloani (31) has

previously been identified as a stem xantusiid (32) but here is
placed in the Globauridae, a group of Cretaceous stem scincids
(3). Estescincosaurus cooki (20) represents a scincoid, but its
position within the clade cannot be resolved. Lonchisaurus tri-
churus (Fig. 1G) is a previously unrecognized species distin-
guished by a long straight dentary, numerous closely packed teeth,
and weakly curved crowns with broad, bluntly pointed apices. Its
affinities within Scincomorpha remain uncertain.
Anguimorphs rival polyglyphanodontians in diversity (Fig. 2).

Exostinus lancensis (19) lies on the stem of the extant Xenosaurus
(20, 33). Anguidae include Odaxosaurus piger (19), a basal glyp-
tosaurine, andGerrhonotus spp. (20), a stem gerrhonotine. Litakis
gilmorei (20), and Colpodontosaurus cracens (20) are anguimorphs

of uncertain affinities, neither of which can be placed in any
extant clade.
Four varanoid-like platynotans are present: Palaeosaniwa sp

(20), Parasaniwa wyomingensis (19), Paraderma bogerti (20), and
one heretofore unreported species, Cemeterius monstrosus
(Fig. 1D). Cemeterius is a large platynotan distinguished by a
massive jaw and short, robust, lingually expanded teeth lacking
serrations (SI Appendix). Palaeosaniwa and Paraderma are typ-
ically interpreted as crown varanoids (20, 34), but our analysis
places these species and Cemeterius on the varanoid stem near
Parasaniwa (Fig. 2). Palaeosaniwa is the largest lizard in the as-
semblage, and also the largest terrestrial lizard known from the
Cretaceous; with an estimated snout-vent length (SVL) of 82 cm,
it has a predicted mass of 6 kg (Dataset S1).
A single iguanid is present in the assemblage. Until now, there

has been no definitive evidence of Iguanidae from the Creta-
ceous of North America; previous reports of Cretaceous iguanids
(21) instead represent polyglyphanodontians. Here we report the
oldest iguana known from North America, Pariguana lancensis

Fig. 1. Maastrichtian lizards and
snakes. (A–H) Lizarddentaries; (Iand
J) snake vertebrae. (A) Socognathus
brachyodon, n. sp., YPM-PU 16724
Lance Formation, western WY. (B)
Obamadon gracilis, n. gen et sp.,
UCMP 128873, Hell Creek For-
mation, MT. (C ) Laramie poly-
glyphanodont,UCM42164, Laramie
Formation, CO. (D) Cemeterius
monstrosus n. gen. et sp., USNM
25870, Hell Creek Formation, MT.
(E) Pariguana lancensis n. gen et
sp., AMNH 22208; Lance Forma-
tion, eastern WY. (F) Lamiasaurus
ferox n. gen et sp., UW 25116A,
Lance Formation, southern WY.
(G) Lonchisaurus trichurusn. genet
sp., AMNH 15446, Lance Forma-
tion, eastern WY. (H) Sweetwater
lizard, UW 25116B, Lance Forma-
tion, southern WT. (I) Cerberophis
robustus n. gen et sp., UCMP
130696, Hell Creek Formation, MT.
(J) Lance alethinophidian, Lance
Formation, WY.

Fig. 2. Systematics of North American squamate
assemblage. Adams consensus with alethinophidian
placement following a recent study (5). Complete
results are provided in SI Appendix. Species crossing
the K-Pg boundary are shown in bold type.
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(Fig. 1E). Pariguana shares with iguanians a lip beneath the
Meckelian fossa formed by an upfolded ventral margin of the
dentary. Posterior extension of the dentary angular process and
the anterolateral extension of the coronoid onto the dentary
indicate that Pariguana is more closely related to crown Iguani-
dae than are the Asian stem iguanids. Pariguana resembles Pa-
leocene iguanids (23) in having teeth with a broad central cusp
flanked by minute accessory cusps, but is distinguished by con-
striction of the Meckelian fossa ahead of the anterior inferior
alveolar foramen (SI Appendix). The existence of Pariguana
shows that dispersal of iguanids from Asia to North America
occurred in the Cretaceous, not in the Paleocene as previously
thought (3).
Two previously unreported lizards of uncertain affinities are also

present. Lamiasaurus ferox (Fig. 1F) is distinguished by tall, curved
crowns with constricted apices and lingual ridges. Present analysis
places it as a stem iguanian on the basis of the short splenial. A
second, unnamed species (Fig. 1H) comes from southern Wyom-
ing; it represents a nonanguimorph autarchoglossan.
Three snakes are known: the stem snake Coniophis precedens

(18) and two alethinophidians (5). Cerberophis robustus (Fig. 1I)
is a large basal alethinophidian (5) previously referred to Boidae
(28). Cerberophis is distinguished by broad vertebrae with hy-
pertrophied synapophyses, and enlarged prezygapophyses with
accessory ridges anteriorly (SI Appendix). A vertebral width of
17 mm implies an SVL >1.7 m and a mass >2.9 kg (Dataset S1),
making Cerberophis large enough to potentially prey on any of
the Cretaceous mammals, as well as on small dinosaurs and
hatchlings of larger dinosaurs. The third species is an unnamed
small alethinophidian (5) (Fig. 1J).

Patterns of Extinction
The fauna shows extremely high turnover across the K-Pg bound-
ary. Of the 30 species found in the late Maastrichtian, only five—
Exostinus, “Gerrhonotus,” Odaxosaurus, Contogenys, and Con-
iophis—occur in the Paleocene. Thus, survival and extinction
rates are 17% and 83%, respectively. The survival rate is lower
than previously estimated (14), because sample sizes are larger,
because taxonomic revision has increased the diversity of the
Maastrichtian victims, and because the mistaken report of Con-
togenys from the Hell Creek increased estimates of survival.
It has been argued that high turnover at the K-Pg boundary

is in part an artifact caused by poor sampling in the Paleocene
(14). To test this hypothesis, we computed species accumulation
curves using rarefaction of occurrence data and sample-based
(Mao-Tau) (35) rarefaction (Fig. 3). These sampling curves show
that the Paleocene is not undersampled relative to the Maas-
trichtian. Surprisingly, despite the rarity of Paleocene fossils, the
fossil record is actually less complete in the Maastrichtian, be-
cause (as discussed below) most victims of the extinction have
restricted geographic ranges, making them difficult to find. In-
sofar as sampling artifacts distort the picture, they may make the
extinction appear less severe than it actually was.
The extinction resulted in the loss of the most diverse clade of

Late Cretaceous lizards, the Polyglyphanodontia, which repre-
sents some 40% of Maastrichtian diversity. Many other lineages,
including the lineages represented by Palaeosaniwa, Litakis,
Colpodontosaurus, Lamiasaurus, and Cerberophis, disappeared as
well. Although we do not use a Linnean taxonomy, these lineages
are arguably sufficiently phylogenetically and morphologically
distinct to warrant family rank. Thus, the absence of extinction
among terrestrial lizard “families” (7) is a taxonomic artifact. In
a traditional, Linnean framework (19–21), virtually all families
appear to cross the K-Pg boundary (7), because lineages that
became extinct were either lumped intomodern families or simply
excluded from analysis because they could not be classified.
Survival at theK-Pg boundary is highly nonrandom. Small size has

been identified as a determinant of survival (36), yet size selectivity is
evident even among the squamates. The most striking pattern is the
extinction of all large lizards and snakes. The Maastrichtian fauna
includes a number of larger forms, including Palaeosaniwa and
Cerberophis, but large squamates are conspicuously absent from the

Paleocene. The largest known early Paleocene lizard is Provar-
anosaurus acutus. Comparisons with varanids suggest an SVL of
305 mm and a mass of 415 g (Dataset S1), compared with an es-
timated SVL of 850 mm and mass of 6 kg for the largest Maas-
trichtian lizard, Palaeosaniwa. The largest early Paleocene snake
is Helagras prisciformis, with an estimated SVL >950 mm and
a mass >520 g, compared with >1,700 mm and 2.9 kg for the
largest Maastrichtian snake, Cerberophis.
Because tooth diameter is correlated with SVL (Dataset S1), we

used tooth diameter to examine the relationship between survival
and body size. Average tooth diameter is significantly smaller for
the survivors (mean, 0.494 mm) than for victims (mean, 1.07 mm)
(P < 0.05, t test). We used logistic regression to quantify how
survival probability is affected by size. This approach allowed us
to use a continuous independent variable (e.g., tooth diameter) to
predict a categorical dependent variable (e.g., survival vs. extinc-
tion), and to describe that response with a curve. The relationship
between survival and tooth diameter is described by the logistic
equation logit(survival) = 0.9881 − 4.1350 × (tooth diameter)
(model χ2 = 4.384; df = 1; P = 0.0363), demonstrating how the
odds of survival drop precipitously with increasing size (Fig. 4).
Analysis of selectivity is complicated by the nonindependence

of data points, however. For example, the large stem varanoids
are related and thus may share features other than body size,
such as foraging strategy, breeding biology, or vulnerability to
cold. Selection against one of these traits would eliminate these
large-bodied forms, creating the appearance of size selectivity.
Thus, we used phylogenetically independent contrasts (PIC) anal-
ysis to examine the role of phylogeny (SI Appendix). Contrasts of
survivorship against contrasts for tooth diameter continue to
show a negative correlation between survival and size, although
the correlation is not significant (P = 0.37, two-tailed t test).
The processes behind this size selectivity are not known, but

in the absence of photosynthesis, invertebrates feeding on dead
plant and animal matter might have been the only available food,
favoring the survival of small insectivores (13). In addition, small
animals might have been able to seek shelter against the heating

Fig. 3. Comparisons of late Maastrichtian and Paleocene diversity. (A) Late
Maastrichtian (Lancian) and early Paleocene (Puercan-Torrejonian). (B) Di-
versity of lizard genera by land vertebrate age (using range-through as-
sumption), Aquilan to Wasatchian.
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pulse caused by re-entering ejecta (11) or heavy frosts caused by
impact winter (11).
Size selectivity may help explain why nonavian dinosaurs be-

came extinct, suggesting that it was nonavian dinosaurs’ failure
to evolve a diverse fauna of small-bodied species, rather than
a decrease in the diversity of large-bodied forms, that ultimately
sealed their fate. A number of small, nonavian dinosaurs are now
known from the Late Cretaceous, including alvarezsaurids (37)
and microraptorine dromaeosaurids (38), and taphonomic biases
almost certainly obscure the true diversity of small dinosaurs (38,
39). However, the fact remains that during the late Maastrichtian,
small dinosaurs were vastly outnumbered by other small verte-
brates, including a minimum of 30 squamates, 18 birds (15), and
50 mammal species (40). Strikingly, birds—the only dinosaurs to
survive— were the only dinosaurs with a high diversity of small-
bodied (<5 kg) forms (15). In this context, a discussion of a de-
cline in large dinosaur diversity in the Maastrichtian (9) is per-
haps beside the point. A high diversity of large herbivores and
carnivores in the latest Maastrichtian would have been unlikely
to change the fate of the nonavian dinosaurs, because no animals
occupying these niches survived. Instead, the rarity of small
dinosaurs—resulting perhaps from being outcompeted by squa-
mates and mammals for these niches —led to their downfall.
Survival also may be influenced by biogeography (41). Survivors

occur in more localities (mean, 3 localities) than victims (mean,
2.16 localities), as found for marine invertebrates (41); the differ-
ence is not statistically significant, however, by the Mann–Whitney
U test. The relationship between survival and range is described by
the logistic equation logit(survival) = −2.1768 + 0.0228 (occur-
rences) (Fig. 4). Again, the relationship is positive, but not sig-
nificant. PIC analysis, plotting contrasts of survivorship against
range size, shows a weakly positive but not significant association
between survival and range size (P = 0.57, two-tailed t test).
The effects of the K-Pg extinction on squamates also can be

shown in terms of morphological disparity. Using tooth diameter
as a proxy for body size, it is evident that the early Paleocene
fauna has a dramatically reduced range of sizes compared with
the Maastrichtian fauna (Fig. 5A). Tooth shape disparity, ana-
lyzed using principle component analysis and measured in terms
of sum of ranges, product of ranges, sum of variances, or product

of variances (SI Appendix), also drops across the K-Pg boundary
as forms with specialized ziphodont, brachyodont, and tricuspid
teeth disappear (Fig. 5B). The disparity is not significantly lower
than expected, however, given the small number of survivors; thus,
we cannot reject the hypothesis that the loss of disparity resulted
from extinction that is random with respect to tooth shape, rather
than from selection against particular morphotypes (SI Appendix).
Critically, stratigraphic data make it possible to constrain the

tempo of turnover, which is necessary to test competing hy-
potheses about the causes of the extinction. The vast majority of
the species that became extinct can be shown to persist high in
stratigraphic section, and many have a last occurrence less than
300,000 y before the Chicxulub impact (SI Appendix). Although
the precise age of last occurrence cannot be estimated in all cases,
we emphasize that the assemblage described here is as close as we
can come to providing a picture of the fauna just before the
Chicxulub impact. In particular, because many genera persisted for
10 My or longer (Fig. 6), and because vertebrate faunas showed
little turnover in the late Maastrichtian (42, 43) it is unlikely that
a significant number of these species became extinct in the short
intervals separating these localities from the K-Pg boundary.
It has been argued that environmental stresses in the latest

Maastrichtian, including climate change and sea level change,
contributed to the end-Cretaceous mass extinction by causing
a decline in diversity leading up to the K-Pg boundary (9). Dis-
cussions of diversity have tended to focus on dinosaurs, but
whether they experienced a minor decline during the Maas-
trichtian (9) or did not (10, 42, 43), the persistence of an ex-
ceptionally diverse lizard and snake fauna just before the K-Pg
extinction argues against the idea that late Maastrichtian ter-
restrial ecosystems were stressed before the Chicxulub impact.
The available evidence suggests instead that extinctions among
the squamates were abrupt and coincided with the K-Pg bound-
ary, supporting the hypothesis that the Chicxulub asteroid impact
was the sole cause of the end-Cretaceous mass extinction.

Fig. 4. Selective survivorship of squamates at the K-Pg boundary. (A)
Cenograms (size data for species in rank order), with tooth diameter as
a proxy for size, for K-Pg survivors and victims. (B) Logistic regression, showing
decreasing survival probability at larger sizes. (C) Number of localities occu-
pied by survivors and victims. (D) Logistic regression showing increasing sur-
vival probability with increasing geographic range (using number of localities
as a proxy for range size).

Fig. 5. Disparity of late Maastrichtian and early Paleocene squamates. (A)
Cenograms showing Maastrichtian and Paleocene size disparity. (B) Comparison
of shape disparity in teeth of Maastrichtian and Paleocene squamates,
showing results of a principle components analysis of 2D landmark data. The
Maastrichtian fauna is circumscribed by the red hull, with survivors bounded by
a dark-gray hull and survivors plus immigrants bounded by a light-gray hull.
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Recovery and Radiation
Extinction at the K-Pg boundary was followed by recovery in the
Paleocene and Eocene. A number of new lizard lineages occur in
the basal Paleocene, notably the stem varanoid Provaranosaurus,
xantusiids, and amphisbaenians (27). These may represent oppor-
tunistic invaders that colonized the area in the aftermath to exploit
niches left vacant by the extinction, as seen among mammals (10,
44). Despite this, early Paleocene diversity is considerably lower
than late Maastrichtian diversity (Fig. 3). Subsequently, ecological
release provided by the extinction allowed the survivors to stage an
adaptive radiation, paralleling the adaptive radiations staged by
mammals (6, 45, 46), birds (46, 47), and fish (48). The community
that emerges in the early Eocene is dominated by groups that are
either minor components of the Cretaceous fauna or unknown
from the Cretaceous, particularly the Anguidae, Iguanidae, Xan-
tusiidae, Macrostomata, and Amphisbaenia (Fig. 6). However, di-
versity does not approach Cretaceous levels until the early Eocene,
10 My later, when diversity rapidly increases (Fig. 3B) with the
onset of late Paleocene–early Eocene global warming (49). Thus,
lizards recovered more slowly than mammals, which rebounded
to Maastrichtian diversity levels within 1.5 My of the K-T ex-
tinction (44), and exceeded Cretaceous diversity within 5 My of
the extinction (45) as they radiated to occupy niches left open by
dinosaurs. Unlike mammals, however, squamates appear to have
simply reoccupied the niches they occupied before the extinction.
This reoccupation of niches was also delayed; by the middle Pa-
leocene, lizards had yet to recover the range of body sizes and
morphotypes found in the Maastrichtian (Fig. 5).
The end-Cretaceous extinction of squamates was likely a global

phenomenon. As in North America, the Late Cretaceous of
Asia is dominated by archaic forms (50, 51), including Poly-
glyphanodontia and stem members of Iguanidae, Acrodonta,
Scincidae, Gekkota, and Varanidae (3), all of which are absent
from the Paleogene. Poor stratigraphic constraint makes it im-
possible to address the timing of these extinctions, but the dra-
matic turnover of the Asian fauna from the Cretaceous to the
Paleogene (51) is consistent with a worldwide extinction of squa-
mates at the end of the Cretaceous. The disappearance of the
giant marine Mosasauridae from the world’s oceans (4, 6, 7)
underscores the reach of this extinction. Our analysis focuses on
terrestrial forms, but including mosasaurs would increase esti-
mates of extinction rates and especially of disparity loss. Finally,
the appearance of lacertids in the Paleocene of Europe (52), de-
rived acrodonts in the Early Eocene of Asia (53), boid snakes in
the Paleocene of South America (54), and caenophidian snakes in
the Early Eocene of India (55) document the diversification of
these lineages in the aftermath of the K-Pg extinction, suggesting
that the Paleogene radiation of squamates was global as well.

Discussion and Conclusions
The squamate fossil record shows that the Chicxulub asteroid
impact coincides with severe extinction at the species level, the
loss of many branches of the squamate tree, and reduced mor-
phological disparity. Although the fossil record (4) and the
molecular clock (56) agree that many squamate clades originated
in the Cretaceous, perhaps as part of the “Cretaceous Terrestrial
Revolution” (57), these patterns are not inconsistent with mass
extinction, given that clades can survive the loss of the majority
of their members. The K-Pg extinction ultimately led to the di-
versification of the lizards and snakes that dominate the fauna
today, as the ancestors of modern groups literally emerged from
the ashes of the asteroid impact. Thus, the squamate fossil re-
cord provides a striking example of how mass extinction works as
a form of creative destruction, and shows how the origins of the
modern biota can be understood only in light of catastrophes
occurring in deep time.

Materials and Methods
To investigate the relationships of the Cretaceous lizards, we conducted
amorphological phylogenetic analysis using a new squamatematrix (3) and
then added 27 Maastrichtian lizards and Coniophis, along with 12 new

characters, for a total of 219 species and 622 characters (Dataset S2).
Analyses were conducted using PAUP* 4.0 b10 to implement 10 runs of the
parsimony ratchet (200 iterations, 25% reweighting) to find a series of

Fig. 6. Cretaceous–Paleogene faunal succession. The Cretaceous fauna is
dominated by Polyglyphanodontidae, whereas the Paleogene fauna is dom-
inated by Anguidae and Iguanidae.
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shortest trees. Heuristic search was then used to generate 100,000 trees to
estimate the strict and Adams consensus (SI Appendix). Relationships of
other snakes follow a recent study (5).

To investigate sampling effects, sample-based rarefaction (SI Appendix)
with EstimateS was used to compare the quality of the Maastrichtian and
Paleocene fossil records. Selectivity with respect to body size and range size
were investigated using logistic regression. PIC analysis was conducted using
Mesquite. Mass estimates for lizards and snakes were conducted by regressing
jaw and vertebral length against SVL, and then using regression equations to
estimate mass (Dataset S1). Morphological disparity was studied using tooth

diameter to examine size disparity, and landmark analysis was conducted
using TPSDig and TPSRelW to examine shape disparity (SI Appendix).
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