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Background Population structure (PS), including population stratification and
admixture, is a significant confounder in genome-wide association
studies (GWAS), as it may produce spurious associations. Random
forest (RF) has been increasingly applied in GWAS data analysis
because of its advantage in analysing high dimensional genetic
data. RF creates importance measures for single nucleotide poly-
morphisms (SNPs), which are helpful for feature selections.
However, if PS is not appropriately corrected, RF tends to give
high importance to disease-unrelated SNPs with different frequen-
cies of allele or genotype among subpopulations, leading to inaccur-
ate results.

Methods In this study, the authors propose to correct for the confounding
effect of PS by including the information of PS in RF analysis. The
correction procedure starts by extracting the information of PS
using EIGENSTRAT or multi-dimensional scaling clustering proced-
ure from a large number of structure inference SNPs. Phenotype
and genotypes adjusted by the information of PS are then used as
the outcome and predictors in RF analysis.

Results Extensive simulations indicate that the importance measure of the
causal SNP is increased following the PS correction. By analysing a
real dataset, the proposed correction removes the spurious associ-
ation between the lactase gene and height.

Conclusion The authors propose a simple method to correct for PS in RF ana-
lysis on GWAS data. Further studies in real GWAS datasets are
required to validate the robustness of the proposed approach.

Keywords Genome-wide association study, population stratification, random
forest

Introduction
Genome-wide association study (GWAS) is a powerful
tool to identify genetic markers with susceptibility to
complex diseases.1–3 Traditional analysis methods for

population-based GWAS data, including Armitage’s
trend test, Pearson �2 test and unconditional logistic
regression, are mainly based on the comparison of
allele or genotype frequencies. A single nucleotide
polymorphism (SNP) is suggested to be associated
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with the disease if its allele or genotype frequency is
unequally distributed between cases and controls.
However, the genetic nature of a complex trait con-
sists of subtle SNP effects on disease risk and complex
SNP–SNP interactions.4 Recently, many studies have
reported that random forest (RF), an ensemble ma-
chine learning method, is a powerful algorithm in
GWAS data analysis because of its ability in handling
high-dimensional genetic data with relatively modest
sample size and a huge number of variables.5–10

Studies have also suggested that RF is less prone to
overfitting and able to handle high-order interactions,
which make it a good complementary data mining
tool for GWAS data, as well as for parts of gene iden-
tification and disease prediction.11 When used in
GWAS data analysis, RF generates several types of
variable importance measurements (VIMs) to esti-
mate the relative importance for each SNP based on
its involvement in predicting the outcome.

Population stratification may cause false positive or
negative results in population-based GWAS.12–14

When cases and controls are sampled from a popula-
tion comprising two or more subpopulations with
various rates of disease, disease-unrelated SNPs with
different allele or genotype frequencies among subpo-
pulations may be detected. Spurious association may
also occur if samples are collected from an admixed
population, and the ancestry distributions are differ-
ent between cases and controls.12,14 In GWAS analysis
using traditional logistic or linear regression, the con-
founding effect of population structure (PS) can be
corrected by including the axes of variation derived
from EIGENSTRAT analysis as covariates.15,16

Recently, Li and Yu17 proposed a multi-dimensional
scaling (MDS) clustering method, which is a direct
extension of EIGENSTRAT. Simulations suggested
that MDS clustering provides a better correction for
PS than EIGENSTRAT if the ancestral difference
between cases and controls is extremely high.

Substructure in a non-homogeneous population is
also a concern when applying RF in GWAS. Some
disease-unrelated SNPs are significantly differentiated
among subpopulations on allele or genotype frequen-
cies. If the rates of the disease are also different
among subpopulations, these SNPs may be given
high VIMs by RF, as they may be indirectly correlated
with the disease and will have a ‘good’ predictive abil-
ity. Subsequently, these disease-unrelated SNPs will
be incorrectly ranked among the top list of VIMs.
As the selection of important SNPs is mainly based
on the ranks of VIMs, the importance of some ‘truly’
associated SNPs may be de-valued and hard to
identify.

In this article, we propose a simple method to cor-
rect for the confounding effect of PS in RF analysis. A
small number of top axes of variation (say, principal
components) derived from EIGENSTRAT analysis are
included in the RF analysis in an appropriate form.
We use simulated datasets with PS, including

population stratification and population admixture,
as well as a real dataset, to evaluate the performance
of the proposed method. We also demonstrate that
the top principal coordinates and cluster memberships
derived from MDS clustering analysis can also be
used in the proposed method. Thus, our approach
provides an efficient framework for PS correction in
RF analysis.

Methods
Random forest
Detailed procedures of RF in a context of genetic
association study have been described previously by
Sun.18 Briefly, let N and M denote the sample size
and the number of SNPs in a GWAS, respectively.
To ‘grow’ a tree, RF begins by creating a bootstrap
sample (with replacement) from the entire dataset.
The remaining sample, which contains about
one-third of the entire dataset, is called ‘out-of-bag’
(OOB) sample. A subset of SNPs, the size of which is
the square root of M by default, is randomly selected
at each node. The SNP with the greatest ability to
improve the ‘purity’ of the child nodes is selected to
split the node. The process of node splitting continues
until the purity measurements of all terminal nodes
cannot be improved. The procedure is repeated for
t times to generate a forest with t trees.

For each tree in a forest, the outcome of each indi-
vidual in the OOB sample can be predicted by letting
the individual go down the tree. After the entire forest
is grown, an individual’s outcome would be deter-
mined as the one with most of the votes every time
the individual is in an OOB sample. The OOB error
rate is estimated by averaging the proportions of mis-
classification over all individuals and can be used to
evaluate the RF model.

When a SNP is used as the node to split the data,
the average improvement on ‘purity’ can be used to
measure the importance of this SNP. RF provides two
types of VIM for SNPs, Gini VIM and permutation
VIM. It has been reported that permutation VIM is
less biased when analysing high-dimensional genetic
data.6,19 We will use permutation VIM in the subse-
quent analysis. Mean decrease in accuracy (MDA),
which is defined by the normalized average increased
OOB error rate after permuting the outcome with the
SNP of interest, should be used if the phenotype is
dichotomous. If the outcome is continuous, the per-
mutation VIM would be calculated by the increased
mean square error (IMSE) of OOB sample after per-
muting the outcome with the SNP. The greater the
MDA or IMSE, the more important the SNP would be.

Extracting the information of PS
Here, we describe two approaches to extract the in-
formation of PS. The first one is based on
EIGENSTRAT. We use XM�N to denote the matrix of
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genotypes, in which M and N are the numbers of
SNPs and individuals, respectively. XM�N has been
centralized and normalized by row (SNP). Let �N�N

denote the variance–covariance matrix of XM�N. The
jth axis of variation is then defined as the jth eigen-
vector of �N�N. The first k axes of variation are used
to correct for PS.

Another approach to extract PS information is MDS
clustering, which is a direct extension of
EIGENSTRAT. This method extracts k principal coord-
inates from the similarity matrix to provide an
optimal representation of each subject in the
k-dimensional space. The similarity matrix can be
defined based on inner product, genotype matching
or allele sharing. Individual are then assigned to a
small number of discrete subpopulations using the
k-medoids clustering algorithm.20 The number of the
clusters is determined by the gap statistic.21

Random forest analysis with correction
for PS
In general, a variable must be associated with both
the predictors and the outcome to be a confounder.22

Thus, we first remove the confounding effect of PS
from both phenotype and genotypes.15 If the informa-
tion of PS is extracted by EIGENSTRATA, instead of
directly including the k axes of variation as predictors,
we adjust the genotypes and phenotype using the in-
formation of PS first. Let gi (gi¼ 0, 1 or 2) denote the
genotype of the ith SNP. A generalized linear model
(GLM) is fitted by regressing gi on the k axes of vari-
ation. The adjusted genotype gi,adjusted is then defined
as the residual of the model. A similar calculation is
performed to get the adjusted phenotype. If MDS
clustering is used to extract the information of PS,
genotypes and phenotype are adjusted in the same
way, except that the principal coordinates and the
indicator variables representing cluster memberships
are used instead of the axes of variation.

RF analysis is then conducted using the adjusted
phenotype as outcome and the adjusted genotypes
as predictors. As the adjusted phenotype is no
longer discrete, the RF now consists of regression
trees. IMSE should be used to measure the import-
ance of SNPs.

When fitting GLM to remove the confounding effect
of PS, we can use an identity link for continuous
phenotype, a logit link for binary phenotype and an
ordinal or multinomial logit link for additive genotype
(coded as 0, 1 or 2). However, we notice through
simulations that the correction is robust to the selec-
tion of link function (as shown in the ‘Results’ sec-
tion). Thus, we will use GLM with an identity link
function (say, general linear model) in most scenarios
in this article.

Design of simulation experiments
We conduct extensive simulation studies to evaluate
the performance of RF with PS correction. Following

the design of Li and Yu,17 we simulate four scenarios.
Scenarios 1–3 are designed to have two, three and
four underlying subpopulations, respectively. In each
of the three scenarios, two levels (moderate and
extreme) of population stratification are simulated
by varying the proportions of individuals in cases
and controls from the different subpopulations. The
detailed proportion parameters are described in the
first columns of Tables 1 and 2. As an example, for
the simulation of moderate population stratification
in Scenario 2, 45, 35 and 25% of the cases are
sampled from subpopulation 1, 2 and 3, respectively,
whereas 35, 20 and 45% of controls are from subpo-
pulation 1, 2 and 3, respectively. In Scenario 4, we
consider an admixed population formed by two an-
cestral populations.

For each setting in different scenarios, we generate
1000 datasets. Each dataset consists of 10 000 SNPs
for PS inference, 90 disease-unrelated random SNPs,
9 disease-unrelated differentiated SNPs and 1 causal
SNP. The approach proposed by Price et al.15 is used to
generate simulated SNPs. We assume that the Hardy–
Weinberg equilibrium is valid for each SNP in each
subpopulation. We generate 1000 cases and 1000 con-
trols in each dataset. Details on the simulations of
SNPs are given in the Supplementary data, available
at IJE online.

Two additional simulations are performed under
Scenarios 1–3 with moderate population stratification.
The first one is performed to investigate whether the
proposed method is robust to the selection of the
GLM’s link function. A binary logistic model is
fitted to remove the effect of PS from the phenotype.
For the genotypes, we calculate the expected genotype
for each SNP by P1þ 2P2, in which P1 and P2 are the
probabilities of carrying one or two minor alleles pre-
dicted by a multinomial or ordinal logistic model. The
corrected genotype is then defined by the difference
between the observed and expected genotypes. The
aim of the second one is to exclude the possibility
that the correction effect is because of using IMSE
instead of MDA. IMSE is used as the VIM for RF
analysis without PS correction. The results are then
compared with those obtained using MDA.

Evaluating performance
For each dataset, PS information is inferred using the
10 000 disease-unrelated SNPs. Association between
the outcome and the 90 random SNPs, 9 differen-
tiated SNPs and 1 causal SNP is then analysed by
RF without and with correction for PS, respectively.
We evaluate the performance of the proposed method
based on either EIGENSTRAT or MDS clustering. As
RF approach does not provide P-values as general
hypothesis tests, it is not straightforward to derive
measures for performance such as type I error rate
and power in traditional methods. However, RF pro-
vides VIM for SNPs. Thus, for every simulated dataset
in each scenario, we first obtain the permutation
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VIMs for all SNPs by RF. We use MDA for RF without
PS correction and IMSE for RF with PS correction.
SNPs are then sorted in descending order by VIM
(MDA or IMSE) and ranked from 1 to 100. Ranks
from the 1000 simulated datasets are then pooled by
SNP types (random, differentiated and causal). As an
example, for random SNPs, we will have 90� 1000
ranks. For each of the three types of SNPs, we use
histograms to compare the distributions of ranks be-
tween RF analyses without and with PS correction.
We also calculate the proportions of SNPs with
ranks of 1, 45 and 410.

Application to lactase (LCT)–height
association
A spurious association between SNPs in the lactase
(LCT) gene and height was reported by Campbell
et al.23 It had been used to evaluate whether a correc-
tion method can remove the confounding effect of PS
by several studies.24,25 We apply the proposed method
to a GWAS dataset from the Harvard Lung Cancer
Susceptibility Study. Details of participant recruitment
for the study have been described previously.26 DNA
was extracted from the whole blood and genotyped
using the Illumina 610 k Quad chip. We restrict the
analysis to 859 men with height information.

The original SNP reported by Campbell et al. is
rs4988235. However, it is neither genotyped in the
610 k Quad chip nor imputed. We select to use two
imputed SNPs, rs3754686 and rs2322660, which are
both in high linkage disequilibrium (LD) with
rs4988235 (r2

¼ 0.70 and 0.70, respectively). The im-
putation is performed using MaCH.27 The final data-
set includes these two SNPs and other 998 randomly
picked SNPs. RF analyses without and with PS cor-
rection are then performed using a dichotomized
height (4175 and 4175 cm) as the phenotype. An
additional analysis is performed with a continuous
height (cm) as the phenotype.

We use R statistical software (version 2.12) from R
project (http://www.r-project.org/) for the simulation
and statistical analysis. The R package
‘randomForest’ is used for RF analysis.28 For each
forest, 1000 trees are grown. The number of SNPs
sampled in each node is set to be 10 by default.
Either the top 10 axes of variation (EIGENSTRAT)
or the top 10 principal coordinates (MDS clustering)
are included for PS correction.

Results
Correction for population stratification
Results from Scenarios 1–3 with moderate population
stratification are presented in Table 1. The correction
for PS improves the ability of identifying the causal
SNP and decreases the ranks of differentiated SNPs
when compared with the RF analysis without PS cor-
rection. For example, in Scenario 1, when PS is not

corrected, the causal SNP is ranked the 1st in only
446 of the 1000 simulations, whereas the differen-
tiated SNPs have the probability of 0.827 to present
in the top 10 positions. After the PS correction, the
probability to be ranked the 1st increases to 0.808
(EIGENSTRAT) or 0.830 (MDS clustering) for the
causal SNP, and the differentiated SNPs only have a
probability of 0.048 (EIGENSTRAT) or 0.092 (MDS
clustering) to be ranked in the top 10 positions. We
observe similar results from Scenarios 2 and 3.

The distributions of ranks generated in Scenario 1
with moderate population stratification are presented
in Figure 1. It is not surprising that the distribution of
differentiated SNPs is highly positively skewed if PS is
not corrected (panel a), indicating a large possibility
of being ‘falsely’ identified. We observe a decrease of
importance for the differentiated SNPs and a consist-
ent increase for the causal SNP after PS correction
(panels b and c). Ranks from the random SNPs
seem more likely to be uniformly distributed, except
in the left tail. Results from Scenarios 2 and 3
(Supplementary Figures S1 and S2, available as
Supplementary data at IJE online) follow similar
patterns.

Results on exploring whether the correction will per-
form well under extreme mismatching of cases and
controls are summarized in Table 2, as well as
Supplementary Figures S3–S5 (available as Supple-
mentary data at IJE online). For the highly differen-
tiated SNPs, the possibility to be falsely identified as
important SNPs is greatly increased if population
stratification is not corrected, whereas the RF with
PS correction achieves good correction. However, it
should be noted that the PS correction also decreases
the ability to identify the causal SNP, especially for
Scenarios 1 and 2.

Correction for population admixture
Table 3 presents the results for applying the correction
to simulated admixed populations. Once again, the RF
with PS correction yields smaller VIMs for the differ-
entiated SNPs than the RF without correction, and
thus decreases the possibility of false discoveries.
The corresponding distributions of ranks are provided
in Figure 2 and Supplementary Figure S6 (available as
Supplementary data at IJE online). RF with PS cor-
rection generates higher peaks for the causal SNP
than the RF without correction.

Comparison between EIGENSTRAT and MDS
clustering
On eliminating false-positive results for disease-
unrelated differentiated SNPs, EIGENSTRAT and
MDS clustering have little difference in general.
MDS clustering has better performance on increasing
the importance of causal SNP than EIGENSTRAT,
especially when the level of population stratification
is extremely high.
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Other characteristics of the proposed method
Simulations on evaluating whether the proposed cor-
rection is robust to the selection of GLM’s link func-
tion are performed by fitting a binary logistic model
for phenotype and multinomial or ordinal logistic

models for genotypes. By comparing the results
(Supplementary Tables S2 and S3, available as
Supplementary data at IJE online) with Table 1 (in
which general linear model is used), we notice the
difference is negligible, which indicates that the

Figure 1 Distributions of ranks of the three types of SNPs from Scenario 1 with moderate population stratification. The
plots in panel (a) provide the distributions of ranks of VIMs from RF without PC correction. The plots in panels (b) and (c)
give the distributions from RF with PS correction based on EIGENSTRAT and MDS clustering, respectively. In each plot, the
x-axis is the rank of VIMs, ranging from 1 to 100, with 1 denoting ‘the most important’. The y-axis is the proportion of
SNPs with rank equal to the coordinator in the x-axis

Table 3 Proportions of SNPs with ranks of 1, 45 and 410 under population admixture

Ancestral
risk SNP

RF without PS correction
RF with PS correction

EIGENSTRAT MDS clustering

Rank¼ 1 Rank 45 Rank 410 Rank¼ 1 Rank 45 Rank 410 Rank¼ 1 Rank 45 Rank 410

2 Random 0.000 0.008 0.041 0.001 0.041 0.092 0.001 0.042 0.092

Differentiated 0.040 0.381 0.609 0.001 0.032 0.079 0.001 0.031 0.076

Causal 0.631 0.819 0.873 0.935 0.984 0.989 0.930 0.981 0.991

3 Random 0.000 0.000 0.012 0.002 0.044 0.096 0.002 0.043 0.095

Differentiated 0.068 0.492 0.916 0.000 0.013 0.046 0.000 0.017 0.051

Causal 0.392 0.546 0.693 0.831 0.949 0.972 0.839 0.948 0.977

CORRECTION FOR POPULATION STRATIFICATION IN RF ANALYSIS 1803

http://ije.oxfordjournals.org/cgi/content/full/dys183/DC1
http://ije.oxfordjournals.org/cgi/content/full/dys183/DC1
http://ije.oxfordjournals.org/cgi/content/full/dys183/DC1


correction is robust to the selection of the GLM’s link
function.

Supplementary Table S4 (available as Supplemen-
tary data at IJE online) presents the results of RF
without PS correction but using IMSE as the VIM.
It is worth noting that when the effect of PS is not
corrected, the difference between RFs using MDA and
IMSE as VIM is small in general, whereas a large
improvement is observed on RF with PS correction.
This provides the evidence that the correction effect
of the proposed method is not related to VIM.

Correction for PS in the LCS–height dataset
Logistic regression analysis without correction for PS
suggests that the two LCT SNPs, rs3754686 and
rs2322660, are both associated with the dichotomized
height (P¼ 1.05E-6 and 1.14E-5, respectively), indi-
cating a possibility of PS. If the dichotomized height
is used as the phenotype, the RF analysis without
correction for PS shows that rs3754686 and
rs2322660 are ranked the 1st and 2nd among the
1000 SNPs. After PS correction, their ranks are
551st and 443rd (EIGENSTRAT), or 156th and

252nd (MDS clustering). Similar result is observed
when using the continuous height as the phenotype.
The decreased importance of these two LCT SNPs in-
dicates that the confounding effect of PS is removed
from the RF analysis by the correction.

Discussion
In this article, we demonstrate that traditional RF
approach may produce inaccurate result if the con-
founding effect of PS is not appropriately corrected
in population-based association studies. When differ-
entiated and causal SNPs are used to grow the forest
simultaneously, they will ‘compete’ with each other to
be selected to split the nodes. This competition may
decrease the importance of the causal SNPs if the
confounding effect of PS is strong. Although the
axes of variation derived by EIGENSTRAT or the prin-
cipal coordinates and cluster memberships derived by
MDS clustering can be directly included in linear or
logistic regression model for GWAS data analysis, our
simulation results indicate that the correction effect is
extremely limited when directly including the

Figure 2 Distributions of ranks of the three types of SNPs from Scenario 4 with an ancestral risk of 2
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information of PS in the RF analysis as predictors
(Supplementary Table S1, available as
Supplementary data at IJE online). This may be be-
cause of the fact that the variables representing PS
are not necessarily used as the root nodes of the
trees, which limits the correction effect.

We propose a simple framework to correct the con-
founding effect of PS in RF analysis. The PS informa-
tion is firstly extracted from a large number of SNPs
by EIGENSTRAT or MDS clustering. The confounding
effects are then removed from phenotype and geno-
types by GLM. Our extensive simulation studies indi-
cate that both EIGENSTRAT and MDS clustering
work well under the framework of the proposed
method, with MDS clustering having better perform-
ance. Li et al.25 proposed a phylogenetic approach to
correct for PS by combining phylogeny constructed
from SNPs and principal coordinates from MDS.
They reported that the phylogenetic approach had
better performance than MDS clustering for handling
complex hierarchical PS. As the phylogenetic ap-
proach is an extension of EIGENSTRAT and MDS
clustering, we believe it can also be applied in RF
analysis under the proposed framework in principle.
More studies are needed to verify this declaration.

The number of axes of variation or the principal
coordinates to be adjusted is a possible concern in
EIGENSTRAT analysis or MDS clustering. In our
simulation, we use the top 10 axes for the inference
of PS. We also study the sensitivity of the proposed
method to the number of axes by using the top 20
axes from EIGENSTRAT for correction (not shown in
this article). The results are almost identical to those
using the top 10 axes. As the most extreme situation
of population stratification in our simulations only
includes four subpopulations, the proposed method
is not sensitive to the number of axes used, given
that the 10 axes are sufficient to capture the true
feature of PS. In actual research, a Tracy–Widom
test can be used to identify the appropriate number
of axes to be used.29

In the simulation studies, the correction for PS re-
sults in a loss of efficiency when extreme case–control
mismatching exists. This is in agreement with the
reports by Price et al.15 and Li and Yu.17 As
EIGENSTRAT analysis will ‘implicitly and automatic-
ally match cases and controls to extract the maximum
possible amount of power from the data’,15 individ-
uals failing to be matched would be ignored. As an
example, for the extreme PS in Scenario 1, the ad-
justed analysis would only use the information from
the 500 cases and 1000 controls in Population 2.
Although MDS clustering has slightly better perform-
ance, we strongly recommend that carefully matching
cases with controls on ancestry information should be
used to achieve superior statistical power.

The confounding effect of PS is removed from both
phenotype and genotypes. We observe through simu-
lation that this provides stronger correction effect

than the correction only on phenotype, especially for
the disease-unrelated differentiated SNPs (Supple-
mentary Table S5, available as Supplementary data
at IJE online). Meanwhile, even though we prune
the SNPs based on LD, two SNPs may still be indir-
ectly correlated if both of them are correlated with the
information of PS. As several studies have demon-
strated that correlated predictors may bias the esti-
mates of importance,6,30 we recommend removing
the effect of PS from both phenotype and genotypes.

Genotype imputation provides the possibility for the
scientists to evaluate the association at genetic mar-
kers that are not directly genotyped.31 In the analysis
of the LCT–height-association dataset, rs3754686 and
rs2322660, both imputed, are included in the analysis
using the ‘best-guess’ genotypes. Some geneticists
have suggested using the imputed allele dosages,
which take values in [0,2], in the association analysis
so as to account for uncertainty.32 We re-analyse the
LCT–height dataset with a dichotomous height using
all the SNPs in dosage format generated by MaCH.
The result is similar to the one when the ‘best-guess’
genotypes are used (after correction for PS using
EIGENSTRAT, rs3754686 and rs2322660 are ranked
the 399th and 546th, respectively), which demon-
strates that the proposed correction also works for
the imputed GWAS data in dosage format.

We acknowledge this study has several limitations.
First, although RF can be used to analyse GWAS
data with thousands or even hundreds of thousands
of markers, our simulation only uses 10 000 SNPs for
the inference of PS information, and 100 SNPs for
RF analysis. However, it has been reported that
including too many non-informative SNPs in RF ana-
lysis will lower the overall signal-to-noise ratio and
decrease the predictive ability of RF.7,10,33 Thus, an
SNP-pruning procedure, based on LD, and feature
selection are recommended before RF analysis.
These will dramatically decrease the number of
SNPs in the analysis and make our simulation a
more likely realistic scenario. Second, it may not be
straightforward to apply the proposed correction in
RF analysis when the outcome is a categorical
phenotype with more than two categories
(multi-class outcome). A possible solution is to gen-
erate K binary indicator variables for each class of
the phenotype (K is the number of classes of the
outcome). RF analysis is then performed using each
of the K indicator variables as the outcome, with
correction for PS. As our approach has only been
tested in a dataset with dichotomous and continuous
outcomes, more studies are required to evaluate the
performance of the proposed correction on RF ana-
lysis with multi-class outcome.

Supplementary Data
Supplementary Data are available at IJE online.

CORRECTION FOR POPULATION STRATIFICATION IN RF ANALYSIS 1805

http://ije.oxfordjournals.org/cgi/content/full/dys183/DC1
http://ije.oxfordjournals.org/cgi/content/full/dys183/DC1
http://ije.oxfordjournals.org/cgi/content/full/dys183/DC1
http://ije.oxfordjournals.org/cgi/content/full/dys183/DC1
http://ije.oxfordjournals.org/cgi/content/full/dys183/DC1
http://ije.oxfordjournals.org/cgi/content/full/dys183/DC1


Funding
This work was supported by the National Cancer
Institute of the U.S. National Institutes of Health
(CA092824 to D.C.C.), the National Institute of
Environmental Health Sciences of the U.S. National
Institutes of Health (ES00002 to D.C.C.), and the
National Natural Science Foundation of China
(NSFC30901232 to Y.Z. and NSFC81072389 to F.C.).

Acknowledgements
The authors thank Dr Alkes Price for suggestions on
simulations. They would also like to thank the re-
viewers for their comments and suggestions, which
were very helpful for improving our manuscript.

Conflict of interest: None declared.

References
1 Thomas DC, Haile RW, Duggan D. Recent developments

in genomewide association scans: a workshop summary
and review. Am J Hum Genet 2005;77:337–45.

2 McCarthy MI, Hirschhorn JN. Genome-wide association
studies: past, present and future. Hum Mol Genet 2008;
17(R2):R100–01.

3 Rosenberg NA, Huang L, Jewett EM, Szpiech ZA,
Jankovic I, Boehnke M. Genome-wide association studies
in diverse populations. Nat Rev Genet 2010;11:356–66.

4 Hirschhorn JN, Daly MJ. Genome-wide association stu-
dies for common diseases and complex traits. Nat Rev
Genet 2005;6:95–108.

5 Breiman L. Random forests. Mach Learn 2001;45:5–32.
6 Nicodemus KK, Malley JD, Strobl C, Ziegler A. The be-

haviour of random forest permutation-based variable im-
portance measures under predictor correlation. BMC
Bioinformatics 2010;11:110.

7 Goldstein BA, Hubbard AE, Cutler A, Barcellos LF. An
application of random forests to a genome-wide associ-
ation dataset: methodological considerations & new find-
ings. BMC Genet 2010;11:49.

8 Maenner MJ, Denlinger LC, Langton A, Meyers KJ,
Engelman CD, Skinner HG. Detecting gene-by-smoking
interactions in a genome-wide association study of
early-onset coronary heart disease using random forests.
BMC Proc 2009;3(Suppl 7):S88.

9 Kim Y, Wojciechowski R, Sung H et al. Evaluation of
random forests performance for genome-wide association
studies in the presence of interaction effects. BMC Proc
2009;3(Suppl 7):S64.

10 Sun YV, Cai Z, Desai K et al. Classification of rheumatoid
arthritis status with candidate gene and genome-wide
single-nucleotide polymorphisms using random forests.
BMC Proc 2007;1(Suppl 1):S62.

11 Ziegler A, Konig IR, Thompson JR. Biostatistical aspects
of genome-wide association studies. Biom J 2008;50:8–28.

12 Lander ES, Schork NJ. Genetic dissection of complex
traits. Science 1994;265:2037–48.

13 Freedman ML, Reich D, Penney KL et al. Assessing the
impact of population stratification on genetic association
studies. Nat Genet 2004;36:388–93.

14 Marchini J, Cardon LR, Phillips MS, Donnelly P. The ef-
fects of human population structure on large genetic as-
sociation studies. Nat Genet 2004;36:512–17.

15 Price AL, Patterson NJ, Plenge RM, Weinblatt ME,
Shadick NA, Reich D. Principal components analysis cor-
rects for stratification in genome-wide association stu-
dies. Nat Genet 2006;38:904–09.

16 Price AL, Zaitlen NA, Reich D, Patterson N. New
approaches to population stratification in genome-wide
association studies. Nat Rev Genet 2010;11:459–63.

17 Li Q, Yu K. Improved correction for population stratifica-
tion in genome-wide association studies by identifying
hidden population structures. Genet Epidemiol 2008;32:
215–26.

18 Sun YV. Multigenic modeling of complex disease by
random forests. Adv Genet 2010;72:73–99.

19 Nicodemus KK, Malley JD. Predictor correlation impacts
machine learning algorithms: implications for genomic
studies. Bioinformatics 2009;25:1884–90.

20 Kaufman L, Rousseeuw PJ. Finding Groups in Data: An
Introduction to Cluster Analysis. New York: Wiley Online
Library, 1990.

21 Tibshirani R, Walther G, Hastie T. Estimating the number
of clusters in a data set via the gap statistic. J R Stat Soc
Series B Stat Methodol 2001;63:411–23.

22 Rothman KJ, Greenland S, Lash TL. Modern Epidemiology.
Philadelphia, PA: Lippincott Williams & Wilkins, 2008.

23 Campbell CD, Ogburn EL, Lunetta KL et al.
Demonstrating stratification in a European American
population. Nat Genet 2005;37:868–72.

24 Qin H, Morris N, Kang SJ et al. Interrogating local popu-
lation structure for fine mapping in genome-wide associ-
ation studies. Bioinformatics 2010;26:2961–68.

25 Li M, Reilly MP, Rader DJ, Wang LS. Correcting
population stratification in genetic association studies
using a phylogenetic approach. Bioinformatics 2010;26:
798–806.

26 Asomaning K, Miller DP, Liu G et al. Second hand smoke,
age of exposure and lung cancer risk. Lung Cancer 2008;
61:13–20.

27 Li Y, Willer CJ, Ding J, Scheet P, Abecasis GR. MaCH:
using sequence and genotype data to estimate haplotypes
and unobserved genotypes. Genet Epidemiol 2010;34:
816–34.

28 Liaw A, Wiener M. Classification and regression by
randomForest. R News 2002;2:18–22.

29 Patterson N, Price AL, Reich D. Population structure and
eigenanalysis. PLoS Genet 2006;2:e190.

30 Strobl C, Boulesteix AL, Kneib T, Augustin T, Zeileis A.
Conditional variable importance for random forests. BMC
Bioinformatics 2008;9:307.

31 Li Y, Willer C, Sanna S, Abecasis G. Genotype imputation.
Annu Rev Genomics Hum Genet 2009;10:387–406.

32 Zheng J, Li Y, Abecasis GR, Scheet P. A comparison of
approaches to account for uncertainty in analysis of
imputed genotypes. Genet Epidemiol 2011;35:102–10.

33 Amaratunga D, Cabrera J, Lee YS. Enriched random for-
ests. Bioinformatics 2008;24:2010–14.

1806 INTERNATIONAL JOURNAL OF EPIDEMIOLOGY


