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Bacillus anthracis spores are the infectious form of the organism for humans and animals. However, the approved human vac-
cine in the United States is derived from a vegetative culture filtrate of a toxigenic, nonencapsulated B. anthracis strain that pri-
marily contains protective antigen (PA). Immunization of mice with purified spore proteins and formalin-inactivated spores
(FIS) from a nonencapsulated, nontoxigenic B. anthracis strain confers protection against B. anthracis challenge when PA is
also administered. To investigate the capacity of the spore particle to act as a vaccine without PA, we immunized mice subcuta-
neously with FIS from nontoxigenic, nonencapsulated B. cereus strain G9241 pBCXO1�/pBC210� (dcG9241), dcG9241 �bclA,
or 569-UM20 or with exosporium isolated from dcG9241. FIS vaccination provided significant protection of mice from intraper-
itoneal or intranasal challenge with spores of the virulent B. anthracis Ames or Ames �bclA strain. Immunization with dcG9241
�bclA FIS, which are devoid of the immunodominant spore protein BclA, provided greater protection from challenge with either
Ames strain than did immunization with FIS from BclA-producing strains. In addition, we used prechallenge immune antisera
to probe a panel of recombinant B. anthracis Sterne spore proteins to identify novel immunogenic vaccine candidates. The anti-
sera were variably reactive with BclA and with 10 other proteins, four of which were previously tested as vaccine candidates.
Overall our data show that immunization with FIS from nontoxigenic, nonencapsulated B. cereus strains provides moderate to
high levels of protection of mice from B. anthracis Ames challenge and that neither PA nor BclA is required for this protection.

Bacillus anthracis is a Gram-positive, spore-forming, rod-
shaped bacterium that can cause cutaneous, inhalational, or

gastrointestinal anthrax. Anthrax disease, which typically occurs
in grazing mammals and incidentally in humans, develops after
introduction and subsequent germination of B. anthracis spores
within the host. In the United States, human anthrax cases are rare
and occur predominantly after exposure to contaminated animal
products such as wool or animal hides (1–3). The intentional dis-
semination of B. anthracis spores through the U.S. postal system in
2001 resulted in 22 cases of anthrax with five fatalities from inha-
lational anthrax (4). In recent years, Bacillus cereus strains that
produce B. anthracis virulence factors have been isolated from
humans with severe pulmonary “anthrax-like” infections (5–9).
B. anthracis and B. cereus are closely related members of the B.
cereus sensu lato group, but only B. anthracis is categorized by the
U.S. Centers for Disease Control and Prevention as a Category A
bioterrorism agent.

B. anthracis contains the two virulence plasmids, pXO1 and
pXO2. Genes that encode the anthrax toxin subunits edema factor
(EF), lethal factor (LF), and protective antigen (PA) are found on
pXO1, and the genes needed to produce the poly-�-D-glutamic
acid capsule are encoded on pXO2. EF or LF combines with PA to
form edema toxin (ET) or lethal toxin (LT), respectively. PA is
essential for toxicity because PA binds to target cell receptors and
mediates entry of EF or LF into the host cytosol (reviewed in
reference 10). ET is a calmodulin-dependent adenylate cyclase
that appears to elicit edema at the site of infection (11–13) and also
has antiphagocytic effects on neutrophils (14). LT is a zinc-depen-
dent metalloprotease that cleaves and subsequently inactivates
mitogen-activated protein kinase kinases 1 and 2 (15, 16). The
poly-�-D-glutamic acid capsule protects vegetative bacilli from

phagocytosis and macrophage killing (reviewed in reference 17).
B. cereus G9241, which was isolated from a welder with pulmonary
anthrax-like disease, contains the pXO1 homolog pBCXO1 and
an unrelated megaplasmid, pBC210 (8). B. cereus G9241 produces
PA, LF, and EF from the pBCXO1-carried genes pag, lef, and cya,
respectively (8, 18). In addition, pBCXO1 encodes an intact and
functional operon required for hyaluronic acid capsule synthesis
(19), and pBC210 contains an operon that is necessary for pro-
duction of a putative tetrasaccharide capsule (8, 18, 19).

In the United States, the only Food and Drug Administration-
approved anthrax vaccine for human use is AVA (anthrax vaccine
adsorbed) or Biothrax. AVA is derived from a vegetative culture
filtrate of the attenuated B. anthracis V770-NP1-R and contains
primarily PA as well as small amounts of LF and EF (20). Anti-PA
antibodies generated as a result of vaccination with AVA are the
main source of protection against anthrax (21). The current AVA
vaccine has the following shortcomings: (i) a slightly variable
composition, (ii) an 18-month/5-dose vaccination schedule with
required annual boosters (22, 23), and (iii) minor to moderate
local reactogenicity (24, 25). Furthermore, the effectiveness of
AVA and other PA-based vaccines varies in different animal mod-
els. These vaccines provide no protection against toxigenic, encap-
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sulated B. anthracis in mice (26–28), confer variable protection
against geographically diverse B. anthracis isolates in guinea pigs
(29, 30), and are highly protective in rabbits and rhesus macaques
(29).

The bioterrorism threat associated with B. anthracis and the
shortcomings of AVA fostered significant research support by
government agencies to develop a better and more effective an-
thrax vaccine. While most of the newer vaccine candidates are still
based on PA, additional research on other components of B. an-
thracis, such as the spore and spore components, has yielded
promising results in animals (27, 30–35). Live, attenuated spore
vaccines are used safely and effectively in humans in Russia and
China and in animals worldwide (36, 37). Moreover, immuniza-
tion with PA and formalin-inactivated spores (FIS) of a nontoxi-
genic, nonencapsulated B. anthracis strain conferred protection
against subcutaneous (s.c.) and intranasal (i.n.) challenge of
guinea pigs with virulent B. anthracis 9602 but protected against
only s.c. challenge of mice (32, 35). Vaccination with either com-
ponent by itself provided only minor protection from s.c. chal-
lenge with B. anthracis 9602 in guinea pigs and no protection in
mice (32). Studies of the efficacy of spore proteins as vaccine can-
didates showed that immunization with PA and BclA, BxpB/
ExsFA, or p5303 protected mice from challenge with attenuated B.
anthracis Sterne (pXO1�/pXO2�) better than did immunization
with PA alone (31, 34). In a similar vaccine study conducted in
mice and guinea pigs challenged with fully virulent B. anthracis
Ames (pXO1�/pXO2�), the addition of BclA, BxpB/ExsFA, and
p5303 to the PA vaccine regimen enhanced protection compared
to vaccination with PA alone (33). Immunization of mice with
plasmids that encode PA and BclA increased survival after B. an-
thracis Ames challenge compared to immunization with either

component separately, while vaccination with PA and live B. an-
thracis Sterne spores afforded complete protection (27).

As the above examples demonstrate, for B. anthracis spore- or
spore component-based vaccines to protect mice from virulent B.
anthracis challenge, the inclusion of PA, either exogenously or
naturally, is required. However, here we report that immunization
of mice with FIS from nontoxigenic, nonencapsulated B. cereus
strains in the absence of PA provided moderate to full protection
of BALB/c mice from challenge with highly virulent B. anthracis
Ames. In addition, we showed that the presence or absence of BclA
on the vaccine strain appeared to influence the capacity of the host
immune system to generate an antibody response against some
spore antigens. Finally, we identified several immunogenic spore
antigens that merit further investigation as vaccine candidates.
Our results with the B. cereus FIS vaccine indicate that antibodies
against accessible components on the spore surface can protect
against virulent B. anthracis in a mouse model.

(This work was presented in part at the Bacillus ACT 2011
Meeting, Bruges, Belgium, August 2011, and at the 112th General
Meeting of the American Society for Microbiology, San Francisco,
CA, June 2012 [38].)

MATERIALS AND METHODS
Bacterial strains, plasmids, and growth conditions. All bacterial strains
and plasmids used in this work are listed in Table 1. Bacteria were rou-
tinely cultured in Luria-Bertani (LB) broth with shaking at 37°C (250
rpm), and selection of transformants was done on LB agar plates at 37°C
unless stated otherwise. Where appropriate, antibiotics were used for se-
lection at the following final concentrations: ampicillin (Amp), 100 �g/
ml; kanamycin (Kan), 100 �g/ml; and erythromycin (Erm), 5 �g/ml.

Spore preparation and inactivation. B. anthracis Sterne, B. cereus, and
B. anthracis Ames spores were prepared as previously reported (18, 34,

TABLE 1 Strains and plasmids used in this study

Strain or plasmid Relevant characteristics Source or reference

Strains
E. coli

Top10 High-competency cloning strain Life Technologies
INV110 dam dcm mutant strain used to produce unmethylated plasmid DNA Life Technologies

B. anthracis
Ames pXO1�/pXO2� 30
Ames �bclA pXO1�/pXO2� �bclA::kan 39
Sterne 34F2 pXO1�/pXO2� NMRCa

B. cereus
569-UM20 Plasmidless, nonencapsulated, anthranilic acid-negative strain derived from B. cereus 569 40
dcG9241 pBCXO1�/pBC210�/pBClin29� 18
dcG9241 �bclA pBCXO1�/pBC210�/pBClin29� �bclA::kan This work

Plasmids
pGEM-T TA-based E. coli cloning vector; Ampr Promega
pUTE583 Dual E. coli and Bacillus vector; Cmr in E. coli, Emr in Bacillus 41
pUTE618 Source of �kan cassette for gene replacement; Cmr Spr 41
pBclA-U 1-kb region upstream from bclA in pGEM-T; Ampr This work
pBclA-D 1-kb region downstream from bclA in pGEM-T; Ampr This work
pBclA-UD 1-kb regions upstream and downstream of bclA in pGEM-T; Ampr This work
pBclA-U�D �kan cassette between 1-kb regions upstream and downstream of bclA in pGEM-T; Ampr This work
p583BclA-U�D �kan cassette between 1-kb region upstream and downstream of bclA in pUTE583; Cmr

in E. coli, Emr in Bacillus
This work

a NMRC, Naval Medical Research Center.
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42). FIS were generated by treatment of purified spores with 4% formal-
dehyde in distilled water for 1 week at 4°C. The spores were washed several
times with distilled water, and an aliquot was plated to ensure complete
inactivation. Formalin treatment was repeated if complete loss of viability
was not achieved.

Generation of dcG9241 �bclA. The bclA gene (BCE_G9241_1212) in
B. cereus G9241 pBCXO1�/pBC210� (dcG9241) was replaced by an
omega element that contains a kanamycin resistance cassette (�kan),
based on a previously published method (43). The 1-kb sequence up-
stream from bclA was amplified by PCR with bclA-up-sense (5=-GTC
GAC CCA TAT ATA TAT ATC CTA TTC TTG TAC AAT TCT CTC CTC
TAG GAA CAT C) and bclA-up-antisense (5=-GAA TTC AAA TTC ACC
TCC ATA AAG CGT TCA TTA TAT AGT AGA TGC AAA ACC) primers;
the SalI and EcoRI restriction enzyme sites are in bold and underlined,
respectively. The 1-kb sequence downstream from the bclA gene was am-
plified by PCR with bclA-down-sense (5=-GAA TTC ACT TAG CAG TAA
AAC TGA TAT CAG TTT TAC TGC TTT TTC ATT GG) and bclA-down-
antisense (5=-GCG GCC GCC TAT TCT TTT CGC CAG TAA ATA CCG
AAA TCA TCA ATT TGA GTC ATA GG) primers; the EcoRI and NotI
restriction enzyme sites are underlined and italicized, respectively. Both
upstream and downstream PCR fragments were ligated into the pGEM-T
vector (Promega, Madison WI) to produce plasmids pBclA-U and
pBclA-D, respectively. The correct orientation of the 1-kb upstream re-
gion cloned into pBclA-U was verified by digestion with EcoRI and NotI.
The digested vector was used as the destination vector for ligation of the
1-kb downstream fragment obtained by EcoRI and NotI digestion of
pBclA-D to generate pBclA-UD. The �kan cassette was isolated from
pUTE618 by digestion with EcoRI and inserted between the upstream and
downstream fragments in pBclA-UD digested with EcoRI to construct
plasmid pBclA-U�D. The plasmid pBclA-U�D was digested with SalI to
isolate the �kan flanked by the upstream and downstream fragments and
subcloned into the pUTE583 shuttle vector to produce plasmid
p583BclA-U�D. This plasmid was transformed into Escherichia coli
TOP10 cells (Life Technologies, Grand Island, NY) for maintenance and
into E. coli INV110 cells (Life Technologies) to generate unmethylated
DNA for electroporation. The method for electroporation of p583BclA-
U�D into dcG9241 was modified from a previously published procedure
(44). Specifically, a 50-ml culture inoculated with 500 �l of an overnight
(O/N) culture of dcG9241 was grown in LB broth until the optical density
at 600 nm (OD600) was approximately 0.3. Glycine was added to a 3% final
concentration, and the culture was incubated 1 h longer. The culture was
placed on ice for 5 min and harvested by centrifugation at 8,000 � g, 4°C.
The bacterial pellet was washed three times with ice-cold E buffer (272
mM sucrose, 0.5 mM MgCl2, 0.5 mM K2HPO4, 0.5 mM KH2PO4) and
spun at 10,000 � g at 4°C in a microcentrifuge. The bacterial pellet was
then resuspended in 500 �l E buffer. Approximately 1.5 �g of p583BclA-
U�D, isolated from E. coli INV110, was electroporated into 100 �l
dcG9241 in a 2-mm electroporation cuvette at 200 �, 25 �F, and 1.5 kV.
LB broth (1 ml) was added immediately after electroporation, and the
transformation mixture was incubated for 2.5 h at 37°C. The transforma-
tion outgrowth was plated onto LB agar plates that contained Erm and
Kan and incubated O/N at 37°C. Transformants were restreaked, and a
single colony was used to inoculate 25 ml LB broth. After 8 h, 0.25 ml of
the culture was used as the inoculum for another 25-ml culture. The
subculture step was repeated three more times. Serial dilutions were
plated onto LB agar plates supplemented with Kan and grown O/N. Kan-
resistant colonies were patched onto LB agar plates supplemented with
Erm. Erm-sensitive patches were screened by PCR with bclA-up-ex, a
primer external to the cloned 1-kb upstream region (5=-GGT ACT TCC
GTT GCA AGT TTA AAC CAA AAT ATC GCT TCG), and Kan-test, a
primer internal to the �kan cassette (5=-GAC TTA CTG GGG ATC AAG
CCT GAT TGG GAG). In addition, extracts of spore surface proteins (34)
from dcG9241 and dcG9241 �bclA spores were isolated, separated by
SDS-PAGE, transferred to a nitrocellulose membrane, and probed with
anti-BclA (45) to further verify the deletion of bclA by the absence of BclA.

Purification of dcG9241 exosporium. The exosporium from
dcG9241 spores was isolated according to previously published protocols
(46, 47). Briefly, dcG9241 spores in water were filtered through a 1.6-�m
glass fiber filter to remove any debris and diluted into phosphate-buffered
saline (PBS) with 0.5 mM EDTA and protease inhibitor cocktail set VII
(EMD Millipore Chemicals, Billerica, MA). Spores were disrupted by son-
ication with a Fisher Scientific model 705 Sonic Dismembrator (Thermo
Fisher Scientific, Pittsburgh, PA) on ice for 5 min at 40% power with 15 s
on and 30 s off. After this sonication step, the lysed spores were pelleted
twice by centrifugation at 15,000 � g for 20 min at 4°C. The supernatants
from both centrifugation steps were pooled and filtered through a
0.45-�m polyvinylidene difluoride (PVDF) filter to remove residual spore
debris. The filtered supernatant was subjected to centrifugation at 40,000
rpm in a Ti50 rotor. The supernatant was removed, and the exosporium
pellet was resuspended in PBS and stored at �80°C.

Immunization and challenge of BALB/c mice. All B. anthracis Ames
work was done under animal biosafety level 3 (ABSL3) conditions in
accordance with Institutional Animal Care and Use Committee regula-
tion at the U.S. Army Medical Research Institute of Infectious Diseases.
On days 1 and 15, 6- to 8-week-old female BALB/c mice (National Cancer
Institute, Frederick, MD) were immunized s.c. with 200 �l of either 1 �
108 B. cereus FIS in 0.3% alhydrogel (Sigma-Aldrich, St. Louis, MO) or 30
�g purified dcG9241 exosporium in 0.3% alhydrogel. Sera were collected
from BALB/c mice on days 14 and 28 and combined into three separate
pools for each vaccine group. On day 29, mice were challenged either
intraperitoneally (i.p.) with 3 � 103 spores (5 to 10 times the median lethal
dose [LD50]) or i.n. with 5 � 106 spores (70 to 120 times the LD50) of B.
anthracis Ames or B. anthracis Ames �bclA (39, 48, 49). The mice were
monitored for morbidity and mortality for 14 days postchallenge. Signif-
icant differences in survival after challenge were determined by Fisher’s
exact test, Kaplan-Meier survival analysis, and log rank tests with SAS
version 8.2 (SAS Institute Inc., Cary, NC). GraphPad Prism version 5.03
(GraphPad Software Inc., La Jolla, CA) was used to calculate the median
time to death (MTTD) and to test for significant differences among the
groups with a nonparametric Kruskal-Wallis test and Dunn’s multiple-
comparison test. P values of �0.05 were considered statistically signifi-
cant.

ELISA to detect anti-spore antibodies. The direct binding of antibod-
ies in immune mouse sera to B. anthracis Ames or B. anthracis Ames �bclA
spores was assayed by enzyme-linked immunosorbent assay (ELISA) as
previously described (34, 50, 51). Specifically, irradiation-sterilized spores
(1 � 107 spores/well) were added to an Immulon II HB microplate
(Thermo Fisher Scientific) and allowed to incubate O/N at 4°C. The plate
was washed three times with PBS containing 0.1% Tween 20 (PBS-T) and
then blocked with PBS containing 0.5% Tween 20 and 5% milk for 24 to
48 h at 4°C. The three serum pools from each vaccine group were diluted
into the blocking buffer and serially diluted in triplicate. After incubation
at 37°C for 1 h, the plate was washed as before and goat anti-mouse
horseradish peroxidase-conjugated IgG (KPL, Inc., Gaithersburg, MD)
diluted 1:1,000 was added. After 1 h of incubation at 37°C, the plate was
washed with PBS-T six times and the horseradish peroxidase substrate was
added [2,2=-azinobis(3-ethylbenzthiazolinesulfonic acid) (ABTS) 2-com-
ponent microwell peroxidase substrate kit; KPL, Inc.]. The plate was in-
cubated at 37°C for 30 min and the absorbance at 405 nm (A405) read on
a microplate reader (BioTek Instruments, Winooski, VT). The reported
average A405 value was the mean A405 value from triplicate samples from
each pool. ELISA data were analyzed with SPSS version 20.0.0 (IBM Inc.,
Armonk, NY). Overall differences in antispore antibody titers among im-
munization groups were compared by two-way analysis of variance
(ANOVA), adjusting for differences among dilutions, followed by Tukey
pairwise post hoc comparisons. Differences at a given dilution were ana-
lyzed by one-way ANOVA followed by Tukey pairwise post hoc compari-
sons.

Expression and purification of exosporium proteins. All recombi-
nant exosporium proteins used in this study (Table 2) were described
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previously (34). The proteins were expressed in E. coli BL21(DE3)pLysS
cells grown overnight at 30°C in autoinducing LB medium (ForMedium;
Hunstanton, Norfolk, United Kingdom) with Amp. Cultures were har-
vested by centrifugation and frozen at �20°C until needed. Frozen cell
pellets were resuspended in 1� Bugbuster (EMD Millipore Chemicals)
with Benzonase nuclease (EMD Millipore Chemicals) and protease inhib-
itor cocktail set VII (EMD Millipore Chemicals) and incubated for 15 min
at room temperature (RT) with gentle rocking. The lysates were diluted
approximately 7-fold into 9 M urea, 20 mM Tris (pH 7.5), and 500 mM
NaCl and incubated for an additional 15 min at RT with gentle rocking.
The denatured cell lysates were clarified by centrifugation at 13,000 � g
and 10°C for 15 min. The supernatants were transferred to clean tubes and
gently rocked with Ni-nitrilotriacetic acid (NTA) resin (Qiagen Inc., Va-
lencia, CA) for 30 min at RT. The resin was washed with 9 resin volumes
of 7 M urea, 20 mM Tris (pH 7.5), 500 mM NaCl, and 10 mM imidazole.
The protein was eluted from the resin in 4 resin volumes of 7 M urea, 20
mM Tris (pH 7.5), 500 mM NaCl, and 500 mM imidazole and then stored
at �20°C.

Immuno-dot blots. All dot blots were done on a 96-well Minifold I
Dot-Blot apparatus (Whatman, Piscataway, NJ) with a 0.45-�m nitrocel-
lulose membrane (Bio-Rad Laboratories, Hercules, CA). Each well of the
dot blot apparatus was prefilled with 200 �l of PBS to which 10 �l of each
sample was added. Samples were loaded in triplicate across each row; wells
A1 to A3 contained only buffer (i.e., negative control), wells A4 to A9
contained diluted normal mouse sera, and the remainder of the wells
contained the purified protein samples. Vacuum was applied to the dot
blot apparatus to bind the samples to the membrane. Once each well

emptied, the vacuum was removed, the wells were washed with 200 �l
PBS, and the vacuum was reapplied. The membrane was removed from
the apparatus and blocked in PBS-T and 5% milk for 2 h at RT. The day 28
mouse antisera (pooled from each vaccine group) were added to the
membranes at a final concentration of 40 �g/ml in PBS-T and 5% milk
and incubated O/N at 4°C (the protein concentration in each pooled
antiserum sample was calculated from the absorbance at 280 nm mea-
sured on a NanoDrop 1000 spectrophotometer [Thermo Fisher Scien-
tific] with the estimate that a 0.1% protein solution has an absorbance at
280 nm of 1.0 in a 1-cm path length). The membrane was washed several
times with PBS-T and incubated for 2 h at RT with 0.125 �g/ml goat
anti-mouse IgG–Alexa Fluor 488 conjugate (Life Technologies). The
membrane was washed once with PBS-T and several times with PBS be-
fore visualization on an ImageQuant LAS 4000 (GE Healthcare Biosci-
ences, Piscataway, NJ). All membranes were imaged with identical set-
tings. Integrated spot intensities were determined with ImageQuant TL
array version 7.0 software (GE Healthcare Biosciences) with the back-
ground for each spot calculated from the average value of the baseline
surrounding the spot. Analyses of the data were done in GraphPad Prism
version 5.03 (Graph Pad Software Inc.); the triplicate integrated spot in-
tensities for each sample were averaged and then normalized between 0
and 100%, the average values for the PBS/no-protein blank and BA_5610,
respectively. Baseline correction was calculated by subtraction of the PBS-
serum group normalized value from each sample. Comparisons among
the normalized pooled antisera responses to a given protein for each vac-
cine group were done by two-way ANOVA followed by Bonferroni post-
tests with GraphPad Prism version 5.03 (Graph Pad Software Inc.).

RESULTS
Immunization with inactivated B. cereus spores protects
BALB/c mice from B. anthracis Ames or Ames �bclA challenge.
We previously reported that live spores of dcG9241, a plasmid-
cured derivative of B. cereus G9241, is avirulent in mice (18). In a
preliminary study, we found that vaccination with live dcG9241
spores completely protected A/J mice against i.n. and s.c. chal-
lenge with 10 times the LD50 of B. anthracis Sterne spores (data not
shown). Since dcG9241 does not produce toxins or capsule, we
concluded that antibodies against spore components or vegetative
antigens were sufficient to protect the mice from infection with
the attenuated B. anthracis strain. Here we asked whether spores
from nontoxigenic, nonencapsulated B. cereus strains could pro-
tect mice from challenge with the fully virulent B. anthracis Ames
strain. We used formalin to inactivate spores of dcG9241 and 569-
UM20, a derivative of the laboratory isolate B. cereus 569 (52)
produced by UV mutagenesis (40); spores were inactivated to pre-
vent outgrowth of the vegetative form and thus to allow attribu-
tion of any protection to the spore components themselves. We
vaccinated BALB/c mice twice, 2 weeks apart, with 569-UM20 or
dcG9241 FIS or with exosporium isolated from dcG9241 and then
challenged the mice with a lethal dose of B. anthracis Ames spores
on day 29. As shown in Table 3, s.c. immunization with 569-
UM20 or dcG9241 FIS protected 40 to 60% of mice challenged by
i.n. or i.p. inoculation. In addition, the MTTD for those mice that
succumbed to infection after immunization with FIS from either
strain was significantly longer (14 and 11 days for dcG9241 and
569-UM20, respectively) than that for mice given the adjuvant
control (3 days) (Table 3). In contrast, vaccination with the iso-
lated exosporium conferred no protection against B. anthracis
Ames challenge. These results demonstrate that immunization
with FIS alone from two nontoxigenic, nonencapsulated B. cereus
strains can partially protect mice from challenge with the virulent
B. anthracis Ames.

TABLE 2 B. anthracis genes expressed in this studya

Ames locus
tag

Sterne locus
tag Protein name

BA0108 BAS0108 Translation elongation factor Tu
BA0252 BAS0238 Alanine racemase
BA0355 BAS0340 CotB homolog
BA0803 BAS0766 CotJC
BA0804 BAS0767 CotJB
BA0805 BAS0768 CotJA
BA1222 BAS1130 BclA
BA1234 BAS1141 CotZ1/ExsY
BA1237 BAS1144 BxpB/ExsFA
BA1238 BAS1145 CotZ2/CotY
BA1489 BAS1378 Fe-Mn superoxide dismutase

(SOD15)
BA1786 BAS1655 ExsE
BA2150 NAb ExsG
BA2162 BAS2008 BxpA
BA2292 BAS2138 Hypothetical protein (p2138)
BA2332 BAS2174 BxpC
BA2554 BAS2377 ExsK
BA2617 BAS2439 ExsD
BA2888 BAS2693 Inosine-uridine-preferring nucleoside

hydrolase
BA3211 BAS2986 Hypothetical protein (p2986)
BA3668 BAS3402 Glycosyl hydrolase, family 18
BA3906 BAS3619 CotE
BA4266 BAS3957 Hypothetical protein (p3957)
BA4499 BAS4177 Mn superoxide dismutase (SODA1)
BA4722 BAS4383 ThiJ/PfpI family protein
BA4898 BAS4544 Small, acid-soluble spore protein B
BA5640 BAS5241 Cell wall hydrolase
BA5641 BAS5242 YwdL
BA5699 BAS5303 Hypothetical protein (p5303)
a See reference 34.
b NA, not applicable.
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Previous reports showed that immunization with the immu-
nodominant spore protein BclA can enhance protection from
challenge with B. anthracis, especially when BclA is administered
as part of a vaccine regimen that includes PA (27, 31, 33). To
determine whether BclA contributed to the protection we ob-
served after immunization with intact spores, we immunized
BALB/c mice on days 1 and 15 with dcG9241 �bclA FIS and chal-
lenged them on day 29 with a lethal dose of B. anthracis Ames. We
observed 80% and 100% survival after i.n. and i.p. challenge, re-
spectively, with B. anthracis Ames (Table 3). The percent survival
afforded by immunization with dcG9241 �bclA FIS compared to
immunization with dcG9241 FIS (P � 0.029) or 569-UM20 FIS
(P � 0.0016) was statistically significant for the i.p. challenge route
but only suggestive for the i.n. challenge route. The increased sur-
vival trend for the dcG9241 �bclA FIS-immunized mice suggests
that removal of the immunodominant protein BclA from the vac-
cine may provide a beneficial effect. These findings parallel previ-
ous observations that the presence of BclA on the spore surface
occludes immunogenic antigens and that the removal of BclA
makes these antigens more available to the host immune system
(33, 34, 45, 53, 54).

To determine whether the presence of BclA on the spore sur-
face of the challenge strain hinders the protective capacity of an-
tibodies generated against other, less abundant or less accessible
spore proteins in response to the vaccination regimen, we chal-
lenged immunized mice with B. anthracis Ames �bclA spores. De-
letion of bclA from B. anthracis Sterne or Ames does not reduce the
virulence of either strain in mice (39, 55). Immunization with FIS
from any of the strains tested provided significant protection from
lethal i.n. or i.p. challenge with B. anthracis Ames �bclA; however,
purified exosporium failed to confer protection (Table 3). As with
B. anthracis Ames challenge, we observed a trend toward increased
protection from B. anthracis Ames �bclA challenge in mice that

were immunized with dcG9241 �bclA FIS compared to mice im-
munized with dcG9241 FIS or 569-UM20 FIS. Overall, these re-
sults show that immunization with B. cereus FIS partially or com-
pletely protects mice from B. anthracis Ames and Ames �bclA i.p.
and i.n. challenge and that BclA is not a major contributor to the
protection afforded by FIS; in fact, the presence of BclA may ac-
tually impede the capacity of the host immune system to recognize
and respond to other immunogenic spore proteins.

Antisera from B. cereus FIS-immunized mice are reactive
with intact B. anthracis spores. To assess the serum antibody
response against inactivated B. anthracis Ames or B. anthracis
Ames �bclA spores, we used an ELISA to analyze pooled antisera
collected from each vaccination group on days 14 and 28. The day
14 antisera reacted only minimally with spores (data not shown),
but the day 28 antisera exhibited a strong antispore response (Fig.
1). The day 28 antisera from mice immunized with dcG9241 or
569-UM20 FIS were significantly more reactive with irradiated B.
anthracis Ames and B. anthracis Ames �bclA spores (P � 0.001)
than were antisera from the PBS/alhydrogel group. Despite the
strong protection from B. anthracis Ames and B. anthracis Ames
�bclA challenge that we observed in dcG9241 �bclA FIS-immu-
nized mice, the overall antispore titers in the antisera from mice
immunized with dcG9241 �bclA FIS differed significantly (P �
0.001) only from those for the PBS/alhydrogel group when tested
against B. anthracis Ames �bclA spores. However, the reactivity of
antisera from mice immunized with dcG9241 �bclA FIS against
both B. anthracis Ames spores and B. anthracis Ames �bclA spores
differed significantly from the antibody response generated by
mice immunized with dcG9241 FIS or 569-UM20 FIS (P � 0.001).
Furthermore, immunization with dcG9241 �bclA FIS elicited a
significantly lower antibody response against Ames spores and a
higher response against Ames �bclA spores than did immuniza-

TABLE 3 Survival and times to death for vaccination studies

B. anthracis
challenge strain

Challenge
route Vaccine Survivala,c MTTD (days)b,c

Ames Intranasal PBS/alhydrogel 0/20 (0) 3
dcG9241 exosporium 0/10 (0) 3.5
569-UM20 FIS 10/20 (50)*** 11**
dcG9241 FIS 11/20 (55)*** 14***
dcG9241 �bclA FIS 8/10 (80)**** 14***

Intraperitoneal PBS/alhydrogel 2/20 (10) 2
dcG9241 exosporium 1/10 (10) 3
569-UM20 FIS 8/20 (40) 3.5
dcG9241 FIS 12/20 (60)** 14***
dcG9241 �bclA FIS 10/10 (100)**** 14***

Ames �bclA Intranasal PBS/alhydrogel 0/10 (0) 3
dcG9241 exosporium 0/10 (0) 3
569-UM20 FIS 4/10 (40) 7.5*
dcG9241 FIS 5/10 (50)* 9.5*
dcG9241 �bclA FIS 8/10 (80)** 14***

Intraperitoneal PBS/alhydrogel 0/10 (0) 2
dcG9241 exosporium 0/10 (0) 2.5
569-UM20 FIS 7/10 (70)** 14**
dcG9241 FIS 9/10 (90)*** 14***
dcG9241 �bclA FIS 9/10 (90)*** 14***

a Number of survivors/number challenged (percent survival).
b MTTD, median time to death.
c Values that are statistically different from that for the PBS/alhydrogel group are indicated by asterisks (****, P � 0.0001; ***, P � 0.001; **, P � 0.01; and *, P � 0.05).
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tion with dcG9241 FIS or 569-UM20 FIS. Consistent with the
survival data, the antispore titers generated in response to vacci-
nation with isolated exosporium were similar to those in response
to the PBS/alhydrogel control. Taken together, these data demon-
strate that vaccination followed by one boost with FIS elicits a
robust antispore antibody response in mice at 28 days after the
initial immunization. In addition, these findings strongly suggest
that the presence of BclA alters the immune response to other
spore surface antigens and that other spore proteins contribute to
protection.

Antisera from B. cereus FIS-immunized mice are reactive
with potentially novel spore surface immunogens. To identify
specific B. anthracis proteins to which antibodies were raised in
response to vaccination with B. cereus FIS, we tested the reactivity
of the day 28 mouse antisera pooled from each vaccination group
with a previously reported panel of recombinant spore surface
proteins (34) (Fig. 2A). We observed the highest reactivity of the
antisera to the cell wall hydrolase (BA_5640) for all of the vaccine
groups, including the PBS/alhydrogel group, so we used the cell
wall hydrolase signal intensity for the 100% data normalization
value. As predicted by the survival and ELISA data, the reactivity
of the exosporium vaccine group antisera did not differ signifi-
cantly from that of the PBS/alhydrogel control group antisera to-
ward any of the proteins in the panel. Compared to the PBS/
alhydrogel control group antisera, the antisera from at least one of
the FIS-immunized groups reacted significantly with 11 spore
proteins (P � 0.001) (Fig. 2B). A comparison of the reactivities of
antisera against dcG9241 FIS and dcG9241 �bclA FIS with the
spore protein panel further illustrated the role of BclA in spore
antigen availability; immunization with dcG9241 �bclA FIS re-
duced the antibody response against BclA, ExsK, and p3957 and
increased the response against CotZ1/ExsY, CotZ2/CotY, p2138,
inosine-uridine-preferring nucleoside hydrolase, glycosyl hydro-
lase family 18, and CotE compared to immunization with
dcG9241 FIS. We conclude that FIS-immunized mice generate
antibodies against several proteins that are localized to the acces-
sible surface of the spore and that reactivity of the antisera with
some of these proteins is directly related to the presence or absence
of BclA on the spore surface.

DISCUSSION

The consensus from the literature is that immunization with B.
anthracis live spores, inactivated spores, or spore components re-
quires PA to protect mice against challenge with virulent B. an-
thracis (27, 31–35, 56, 57). Despite this requirement for PA, all of
these examples demonstrate the capacity of spore antigens to con-
tribute to vaccine efficacy. In this study, we not only provided
further evidence for the contribution of spore components toward
vaccine efficacy but also showed that immunization with FIS from
nontoxigenic, nonencapsulated B. cereus strains 569-UM20,
dcG9241, and dcG9241 �bclA protected mice from the highly vir-
ulent B. anthracis Ames strain without the addition of exogenous
PA to the vaccine regimen. Furthermore, to our knowledge, inac-
tivated B. cereus spores have never been tested as an anthrax vac-
cine in mice, animals that are inherently difficult to protect from a
virulent B. anthracis challenge (28, 58). Thus, the novelty of our
protection experiments is in the use B. cereus inactivated spores
and in the absence of any form of PA.

Brossier et al. showed that administration of FIS in conjunc-
tion with PA elicits a response that completely protects mice and
guinea pigs from s.c. challenge with virulent B. anthracis 9602, an
encapsulated, toxigenic strain of B. anthracis with virulence simi-
lar to that of Ames; either FIS or PA alone provide only minor
protection in guinea pigs and no protection in mice (32). A fol-
low-up study by Gauthier et al. showed that vaccination with FIS
plus PA protects guinea pigs from i.n. challenge with B. anthracis
9602 but fails to protect mice (35). In those experiments, the FIS
vaccine strain was B. anthracis RPLC2, a nontoxigenic Sterne de-
rivative (32, 35). We hypothesize that differences in B. cereus spore
composition or antigen presentation compared to B. anthracis
RPLC2 spores contributed to the efficacy of B. cereus FIS in our
experiments. However, we cannot rule out that experimental dif-
ferences between our FIS vaccination studies and those previously
reported could have contributed to our increased FIS vaccine ef-
ficacy. These experimental differences include (i) the use of Swiss
outbred mice versus BALB/c mice, (ii) challenge with B. anthracis
9602 versus B. anthracis Ames, (iii) the number of spores admin-
istered, and (iv) the time between vaccination and challenge. The
use of different mouse strains probably makes little difference

FIG 1 Antisera from B. cereus FIS-immunized mice reacted with B. anthracis Ames or B. anthracis Ames �bclA spores. The spore-binding activity of the day 28
prechallenge antisera from each of the vaccine groups, i.e., dcG9241 FIS (�), dcG9241 �bclA FIS (Œ), 569-UM20 FIS (�), dcG9241 exosporium (�), or
PBS/alhydrogel alone (�), was determined by ELISA. (A) Postvaccination, prechallenge antiserum reactivity with inactivated wild-type B. anthracis Ames spores;
(B) postvaccination, prechallenge antiserum reactivity with inactivated B. anthracis Ames �bclA spores. Asterisks indicate dilutions that were significantly
different (P � 0.05) from the same dcG9241 �bclA FIS dilution.
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from a virulence viewpoint because the LD50 values for the related
strain B. anthracis Vollum 1B vary by at most only 10-fold between
Swiss outbred and BALB/c mice (58). The LD50 values for B. an-
thracis Ames and 9602 are similar for i.p. inoculation (32, 49), but
B. anthracis 9602 is 10- to 100-fold less virulent than Ames by i.n.
administration (35, 48, 59). Since the challenge doses in each ex-
periment were based on LD50 values for each bacterial challenge
strain in a given mouse strain, the actual number of spores admin-
istered also should not contribute to the different FIS vaccination
outcomes between our study and previous reports. Lastly, in our
experiments, we challenged the mice 2 weeks after the booster
injection, while the challenge occurred 3 weeks after the boost in
the previously reported FIS studies. Since our mice were chal-
lenged 1 week earlier than mice in the other study, our mice actu-
ally had less time to mount an immune response. Therefore, the
time between vaccination and challenge most likely did not con-
tribute to the different outcomes. We contend that the most sig-
nificant difference between our experiments and those of others
was the choice of vaccine strain. The increased survival rates in the
dcG9241 and dcG9241 �bclA FIS-vaccinated mice were all statis-
tically significant compared to those for the PBS/alhydrogel con-

trols, while the increased protection afforded by 569-UM20 FIS
vaccination was only variably significant (Table 3). This trend
suggests that vaccination with either dcG9241 or dcG9241 �bclA
FIS is more protective, a finding that highlights the importance of
the strain chosen for the FIS vaccine.

BclA is highly immunogenic and is the major immunogen on
the spore surface (47). However, here we demonstrated that the
presence of BclA on FIS did not contribute to better protection
against Ames challenge; in fact, the increased survival trend ob-
served in the dcG9241 �bclA FIS vaccination group suggests that
removal of BclA from the spore surface is beneficial to the FIS
vaccine. Thus, mice vaccinated with dcG9241 �bclA FIS were bet-
ter protected than those vaccinated with the BclA-positive strain
dcG2941 or 569-UM20 FIS, although this enhanced protection
was statistically significant only for the i.p. challenge route. The
relative lack of importance of BclA in protection is supported by
the observations that B. anthracis Sterne FIS and Sterne �bclA FIS
induce similar gamma interferon responses in mouse splenocytes
(60) and that BclA can occlude other spore surface antigens from
the host (34, 39, 53). Thus, removal of BclA from the spore sur-
face, as we did genetically, would allow these potential antigens to

FIG 2 Antisera from FIS-immunized mice react with purified spore proteins. (A) Twenty-nine spore proteins were purified, blotted to a nitrocellulose
membrane in triplicate, and probed with the day 28 prechallenge antisera from the different immunization groups. The format for each dot blot is shown at the
top left. (B) Normalized signal intensities for the 569-UM20 FIS, dcG9241 FIS, or dcG9241 �bclA FIS antisera that reacted with proteins from the spore protein
panel. The error bars represent one standard error of the mean.
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be better recognized and presented to the host immune system.
The B. anthracis Ames and Ames �bclA ELISAs further support
this hypothesis. When Ames spores were probed with antisera
from FIS-immunized mice, the BclA-positive FIS groups dis-
played the highest reactivity and were statistically significantly dif-
ferent from the PBS/alhydrogel and dcG9241 �bclA FIS groups;
however, when Ames �bclA spores were probed, the antiserum
pool from the dcG9241 �bclA FIS group displayed the highest
reactivity and was statistically significantly different from the PBS/
alhydrogel and the BclA-positive groups. The survival data com-
bined with ELISA data suggest that protective antigens other than
BclA are present on the spore surface and that the lack of BclA on
the dcG9241 �bclA FIS surface is the reason that this group was
protected most effectively from B. anthracis Ames challenge.

The immuno-dot blots show the postvaccination, prechallenge
antiserum reactivity with 11 spore proteins from the recombinant
spore protein panel and also demonstrate the contribution of BclA
toward antigen availability. In addition to BclA (BA_1222), the
proteins ExsK (BA_2554) and p3957 (BA_4266) reacted less with
the dcG9241 �bclA FIS group’s antisera than with the dcG9241
FIS group’s antisera. BclA is required for ExsK to form high-mo-
lecular-weight complexes on the surface of the exosporium (54), and
therefore, removal of BclA from the spore would inhibit localization
of ExsK on the spore surface. The possible requirement of BclA to
localize the hypothetical protein p3957 to the spore surface is cur-
rently unknown. Six proteins were more reactive with antisera raised
by immunization with BclA-negative FIS: CotZ1/ExsY (BA_1234),
CotZ2/CotY (BA_1238), p2138 (BA_2292), inosine-uridine-prefer-
ring nucleoside hydrolase (BA_2888), glycosyl hydrolase family 18
(BA_3668), and CotE (BA_3906). Both CotZ1/ExsY and CotZ2/
CotY form multimeric complexes with BclA and BxpB/ExsFA (46,
61), and this complex may prevent recognition of CotZ1/ExsY and
CotZ2/CotY by the host immune system. There are no reports of
direct interactions between BclA and any of the remaining four pro-
teins. The increased signal of the dcG9241 �bclA FIS antisera versus
dcG9241 FIS antisera with the remaining four proteins may be due to
the proximity of these proteins to BclA on the spore surface. Of note,
the 569-UM20 FIS antisera and dcG9241 �bclA FIS antisera had sim-
ilar reactivities with three of these six proteins, CotZ1/ExsY, CotZ2/
CotY, and glycosyl hydrolase, an observation that could suggest that
the accessible spore surface of 569-UM20 is sufficiently different from
the dcG9241 spore surface to permit generation of antibodies toward
these proteins. A BLAST query (62, 63) of the B. cereus G9241 BclA
amino acid sequence against the nonredundant protein sequences
database limited to B. cereus 569 (B. cereus ATCC 10876) yielded two
possible BclA homologs present in 569-UM20, BCERE0002_43750
and BCERE0002_21830. The 569-UM20 homologs are 69 and 77
amino acids larger than the G9241 BclA homolog, and they have a
relatively low amino acid sequence identity (	37% as calculated by a
global alignment with ALIGN [64, 65]) (data not shown). Regardless
of which gene product is the true BclA homolog, both proteins are
sufficiently different from the BclA protein encoded by dcG9241 to
alter spore surface accessibility of 569-UM20 toward CotZ1/ExsY,
CotZ2/CotY, and glycosyl hydrolase. The increased reactivity of the
569-UM20 FIS antisera toward the two remaining proteins, the CotB
homolog (BA_0355) and ExsD (BA_2617), may also be explained by
the probability of a different spore surface morphology between these
two bacterial strains. The differences in reactivity between dcG9241
and 569-UM20 FIS antisera could also be a result of amino acid se-
quence variations between the spore protein homologs of these two

species, which, in turn, could provide them with different antigenic
properties.

Of the 11 antiserum-reactive proteins, six have been previously
identified as vaccine candidates. Rabbit antiserum generated
against live B. anthracis Sterne spores was previously found to be
reactive with glycosyl hydrolase in a screen to find novel vaccine
candidates (66). BclA, CotZ1/ExsY, ExsK, ExsD, and p3957 were
detected by rabbit polyclonal antiserum 311001-01 generated
against inactivated whole spores (34). Of these six proteins, all but
ExsD and glycosyl hydrolase were previously evaluated as vaccine
candidates in conjunction with PA (27, 31, 33, 34); only vaccina-
tion with BclA provided some protection to mice from either B.
anthracis Sterne (31) or Ames (27) challenge. It should be noted
that all of the previously tested vaccine proteins were cloned from
B. anthracis Sterne and that amino acid sequence differences exist
between B. anthracis Sterne and the B. cereus G9241 protein ho-
mologs. The amino acid sequence identities between the G9241
and Sterne proteins are as follows: BclA, 66.5%; CotZ1/ExsY,
82.2%; ExsK, 54.8%; and p3957, 85.6% (global alignment and
percent identity for each pair of protein sequences was calculated
with ALIGN [64, 65]) (data not shown). It is possible that the
G9241 variants of these previously tested proteins may perform
better as vaccine components than the Sterne counterparts. In
addition, there are likely other spore proteins that have yet to be
recognized.

The complete lack of efficacy of vaccination with purified
dcG9241 exosporium was unexpected. There are several possible
explanations for this finding. First, the lack of a significant re-
sponse to exosporium as indicated by the ELISA data suggests that
insufficient amounts of the exosporium were used for immuniza-
tion. Steichen et al. reported the generation of antibodies directed
toward purified exosporium in which they injected BALB/c mice
with 50 �g of purified exosporium initially in complete Freund’s
adjuvant and then 4 more times in saline every 3 days (47). In our
experiments we used 30 �g of exosporium injected with an alhy-
drogel adjuvant only twice, 2 weeks apart. The difference between
30 �g and 50 �g is probably not significant and most likely would
not explain the lack of an immune response. However, the in-
creased time between boosters, the decreased injection frequency,
and the choice of adjuvant used in our experiments all could have
contributed to the lack of a robust host immune response from
purified exosporium. Furthermore, it is also possible that purified
exosporium has a short half-life in the mouse, which could reduce
its immunogenicity. While we could have increased the frequency
of the immunizations, we wanted the immunization schedule to
be the same for all groups. It is also possible that the method we
used to isolate exosporium resulted in the loss of protective spore
antigens. The procedure incorporated sonication to disrupt the
spore particle, a low-speed centrifugation step to remove nonlysed
spores and debris, and a high-speed ultracentrifugation step to
pellet the exosporium-containing outer spore membrane frac-
tion. With such a procedure, any proteins not tightly associated
with or integral to the outer spore membrane could have been lost
during the purification process. Another possible explanation for
the ineffectiveness of the exosporium as a vaccine is that the spore
particle itself may act as a scaffold for antigen presentation, may
protect the antigens from degradation, or may act as an additional
adjuvant. The approximate size of spores may alter the immune
response or antigen presentation, as observed with the use of syn-
thetic microparticles in other vaccine platforms (67). A require-
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ment for a scaffold could explain the lack of protection afforded by
immunization with recombinant spore proteins alone in previous
studies; however, it is also possible that antibodies against these
spore proteins simply were not protective in the absence of PA and
that an effective vaccine comprised solely of spore proteins re-
mains to be discovered.
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