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We compare the whole-genome sequences of two multidrug-resistant clinical Acinetobacter baumannii isolates recovered in the
same patient before (ABIsac_ColiS susceptible to colistin and rifampin only) and after (ABIsac_ColiR resistant to colistin and
rifampin) treatment with colistin and rifampin. We decipher all the molecular mechanisms of antibiotic resistance, and we
found mutations in the rpoB gene and in the PmrAB two-component system explaining resistance to rifampin and colistin in
ABIsac_ColiR, respectively.

Acinetobacter baumannii is an emerging multidrug-resistant
(MDR) pathogen that is responsible for community- and hos-

pital-acquired infections that are difficult to control and to treat
(1, 2). This bacterium is intrinsically highly resistant to several
antimicrobial agents, but increasing resistance to other antibiotics
has been reported during the last decade, especially resistance to
carbapenems, and the antibiotic resistance of A. baumannii is now
recognized as a significant health problem because of the limited
options for antibiotic therapy (1, 2). In these MDR strains, colistin
is often the last resort for treatment, but colistin-resistant clinical
isolates have been reported recently leading to pan-drug-resistant
bacteria (1, 3, 4). We have recently reported such clinical pan-
drug-resistant bacteria in a French patient with a bloodstream
infection occurring after colistin therapy (4). An imipenem-resis-
tant but colistin- and rifampin-susceptible A. baumannii isolate
was recovered initially from a bronchoalveolar lavage (BAL) spec-
imen from this French patient who suffered from pneumonia
(ABIsac_ColiS). After 4 weeks of treatment with colistin and ri-
fampin, a colistin- and rifampin-resistant isolate was recovered
from a tracheal aspirate (ABIsac_ColiR). Here we report the
whole-genome sequence comparison of these two clinical isolates
to decipher whether the two MDR isolates actually were derived
from a single clone of a colistin- and rifampin-resistant isolate
being selected by antibiotic treatment.

High-throughput sequencing technologies are now wide-
spread and could be used in a real-time manner to decipher the
molecular support of any outbreak and/or MDR bacteria as re-
cently exemplified with whole-genome sequencing as a rapid and
powerful tool to elucidate the origin of the huge outbreak of Esch-
erichia coli responsible for hemolytic-uremic syndrome in Ger-
many (5) or the Haitian cholera outbreak (6). Genomic sequences
of ABIsac_ColiS and ABIsac_ColiR were sequenced using both
paired-end pyrosequencing strategy on the 454-Titanium instru-
ment and with an additive shotgun for ABIsac_ColiR (454 Life
Sciences, Branford, CT) (7) and SOLiD version 4 paired-end se-
quencing technology (Applied Biosystems, Foster City, CA) (8).
For genome annotation, all contigs from these two strains were
submitted to an online bioserver, the RAST server (RAST stands
for Rapid Annotation using Subsystems Technology) (http:
//www.theseed.org) (9) to predict protein-encoding genes, rRNA

and tRNA sequences, and assign function to these genes. Predicted
open reading frames (ORFs) by RAST server were confirmed by
BLASTP (E value 10E�8; identity � 30%; coverage � 50%) against
no redundant protein (nr) and clusters of orthologous groups of
proteins (COG) databases of the National Center for Biotechnol-
ogy Information (NCBI) (http://www.ncbi.nlm.nih.gov). tRNA
and rRNA genes were also verified on tRNAscan-SE Search Server
(http://lowelab.ucsc.edu/tRNAscan-SE) and RFAM (http://rfam
.sanger.ac.uk), respectively. Genome comparison was performed
by “in silico” DNA-DNA hybridization using BLASTN analysis on
a local bioserver to determine the full-length alignment between
two genome sequences and the coverage percentage using the cut-
off stringency of an E value at 1.00e�5. Genome alignment of
both A. baumannii ABIsac_ColiS and ABIsac_ColiR strains was
performed using Mauve alignment software (10). All antimicro-
bial resistance genes and mutated genes involved in antibiotic re-
sistance were retrieved from this functional annotation.

The assembly of the paired-end and shotgun sequences from
A. baumannii ABIsac_ColiS gave a chromosome size of 3,771,873
bp with 38.77% GC content assembled into 275 contigs with the
length of the contigs ranging from 902 bp to 98,458 bp and two
plasmids of 68,612 bp (pABIsac_A) and 9,893 bp (pABIsac_B).
With paired-end and shotgun sequences from A. baumannii
ABIsac_ColiR, the assembly process gave a chromosome size of
3,785,453 bp with 38.84% GC content assembled into 108 contigs
with the length of the contigs ranging from 1,077 bp to 192,975
bp and two plasmids of 68,347 bp (pABIsac_C) and 9.879 bp
(pABIsac_D) (Table 1). The two plasmids have 96% sequence
identity (small plasmids) and 99% sequence identity (large plas-
mids) to plasmids p2ABTCDC0715 and p1ABTCDC0715 previ-
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ously reported in A. baumannii in Taiwan (11). “In silico” DNA-
DNA hybridization and Mauve alignment demonstrate that these
two strains, ABIsac_ColiS and ABIsac_ColiR, were likely the same
clone (Fig. 1 and Table 1) as previously suggested using pulsed-
field gel electrophoresis (PFGE) and multilocus sequence typing
(MLST) analysis (12). Differences between the two strains consist
mainly of the loss of a prophage in A. baumannii ABIsac_ColiR com-
pared to ABIsac_ColiS. The loss of the prophage in ABIsac_ColiR
may explain the impaired virulence of this strain (4) as recently
demonstrated for Pseudomonas aeruginosa in the context of the
Liverpool epidemic strain in cystic fibrosis patients (13). Table 2
lists the antibiotic resistance-encoding genes found in the two A.
baumannii genomes. Resistance to sulfonamides (sul1 gene) and
aminoglycosides (aadB and aadA2 genes) were located on the
chromosome within a 7.8-kb class 1 integron (Fig. 2). Interest-
ingly, the chromosomal blaOXA23-like gene was located in trans-
poson Tn2006 in a 16.7-kb genomic island (Fig. 2) that completely
replaced the 86-kb genomic region previously reported in A. bau-
mannii strain AYE (14) within the comM gene. Finally, resistance to
colistin, rifampin, and fluoroquinolones in ABIsac_ColiR were me-
diated by point mutation on target genes (Table 2). Rifampin
resistance was likely due to a D525Y mutation in the rifampin
resistance-determining region (RRDR) of the rpoB gene (Table 2).

The same mutation responsible for rifampin resistance has re-
cently been found in an A. baumannii strain isolated in Italy (15).
This mutation has also been reported in Mycobacterium tubercu-
losis rifampin-resistant isolates (16, 17). Finally, resistance to
colistin in strain ABIsac_ColiR was likely due to mutations in the
pmrA gene with E changed to D at position 8 [pmrA(E8D)] (Table
2). These two proteins constitute a two-component system (PmrAB)
involved in the modification of lipid A, the major constituent of the
lipopolysaccharide (LPS) membrane, and mutations in the PmrAB
two-component system have been reported recently in in vitro-se-
lected A. baumannii strains (18). Mutations or disruption of the A.
baumannii lipid A biosynthesis genes lpxA and lpxC by insertion se-
quence ISAba11 resulting in complete loss of lipopolysaccharide pro-
duction has also been shown to be responsible for colistin resistance
in vitro (19, 20) but was not found in our clinical isolate. To the best of
our knowledge, the mutation in the PmrAB (18) two-component
system is novel and reported for the first time in a clinical isolate that
was likely selected because of colistin therapy.

In conclusion, the present work demonstrated that real-time
whole-genome sequence comparison is a powerful tool to deci-
pher all antibiotic resistance determinants in clinical microbiol-
ogy when outbreak and/or novel MDR bacteria are isolated from
clinical specimens.

TABLE 1 Genome features of A. baumannii ABIsac_ColiS and ABIsac_ColiR strains compared to other A. baumannii strains

A. baumannii strain
Bacterial chromosome
or plasmid

EMBL or
GenBank
accession no. Size (bp)

% GC
content

No. of
CDSa

No. of
tRNAs

5S-23S-16S
operons

Full alignment length (bp) with
cutoff E value of 1.00e�5
(% Cov)b

Our strains
ABIsac_ColiS Chromosome CAKA01000001 to

CAKA01000275
3,771,873 38.77 3,581 63 4 3,785,394 (99.99)

pABIsac_A 68,612 33.19 97 0 0
pABIsac_B 9,893 36.91 12 0 0

ABIsac_ColiR Chromosome CAKB01000001 to
CAKB01000108

3,785,453 38.84 3,624 65 4

pABIsac_C 68,347 33.18 99 0 0
pABIsac_D 9,879 36.92 13 0 0

Other strains
TCDC-AB0715 Chromosome CP002522 4,138,388 39 3,851 42 4 3,710,086 (98.01)
AYE Chromosome CU459141 3,936,291 39.4 3,607 72 6 3,470,222 (91.67)
ATCC 17978 Chromosome CP000521 3,976,747 38.9 3,351 69 5 3,429,245 (90.59)
SDF Chromosome CU468230 3,421,954 39.2 2,913 72 5 2,665,462 (70.41)

a CDS, coding sequences.
b In silico DNA-DNA hybridization of A. baumannii ABIsac_ColiR genome with respect to other A. baumannii genomes. % Cov, percent coverage.

FIG 1 Mauve alignment of A. baumannii ABIsac_ColiS and ABIsac_ColiR genomes.
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TABLE 2 Antibiotic resistance genes in A. baumannii ABIsac_ColiR genome

Antibiotic class Gene
Size
(aa)a Functionb

Organism with the
best BLAST hit
in GenBank

% aa
identity E value

Beta-lactams ampC 432 Class C beta-lactamase (transpeptidase
superfamily)

A. baumannii
ACICU

100 0

350 Predicted Zn-dependent hydrolase of the beta-
lactamase fold

A. baumannii
ACICU

100 0

309 Metallo-beta-lactamase domain protein A. baumannii
6014059

100 1e�177

blaOXA-23 273 Class D carbapenemase OXA-23 A. baumannii
TCDC-AB0715

100 1e�159

414 Beta-lactamase class A A. baumannii
ACICU

100 0

blaOXA-82(blaOXA-51-like) 274 Class D carbapenemase OXA-82 A. baumannii
ABNIH3

100 1e�159

288 Metallo-beta-lactamase domain protein A. baumannii
ACICU

100.00 1e�171

ampC 384 Beta-lactamase/D-alanine carboxypeptidase
(transpeptidase superfamily)

A. baumannii
MDR-ZJ06

99.00 0

810 Predicted hydrolase of the metallo-beta-lactamase
superfamily (class C beta-lactamase)

A. baumannii
TCDC-AB0715

99.00 0

227 Putative metallo-beta-lactamase A. baumannii
AB056

99 1e�168

Aminoglycosides adeT 335 RND-type efflux pump involved in aminoglycoside
resistance/substrate-binding protein, aliphatic
sulfonate family

A. baumannii SDF 100 0

adeT 355 RND-type efflux pump involved in aminoglycoside
resistance/TRAP-type C-4-dicarboxylate
transport system, periplasmic component

A. baumannii
1656-2

99 0

334 RND-type efflux pump involved in aminoglycoside
resistance/transporter

A. baumannii AYE 99 0

aphA6 259 Aminoglycoside 3=-phosphotransferase/kanamycin
resistance protein

A. baumannii
AB058

99.60 1e�143

aadB 198 Aminoglycoside-2�-adenylyltransferase/gentamicin
resistance protein

Salmonella enterica
serovar
Typhimurium

100 1e�111

aadA2 259 Aminoglycoside adenylyltransferase/streptomycin
adenylyltransferase

Yersinia pestis
biovar
Orientalis IP275

99.614 1e�147

329 Aminoglycoside phosphotransferase A. baumannii
ACICU

100 0

Macrolides macB 664 Macrolide-specific efflux protein MacB/ABC
transporter permease

A. baumannii
ACICU

100 0

macA 446 Macrolide-specific efflux protein MacA/membrane
fusion protein

A. baumannii
ACICU

100 0

Sulfonamide sul1 279 Dihydropteroate synthase E. coli FVEC1412 100 0

Bicyclomycin 514 Bicyclomycin resistance protein A. baumannii AYE 100 1e�139

Chloramphenicol cmr 409 Major facilitator superfamily
multidrug/chloramphenicol efflux transporter

A. baumannii AYE 99.76 0

catB2 210 Chloramphenicol acetyltransferase A. baumannii AYE 100 1e�122

Colistin pmrA mutated (E8D) 224 Transcriptional regulatory protein/polymyxin
resistance protein

A. baumannii AYE 99.55 1e�126

Rifampin rpoB mutated (D525Y) 1362 DNA-directed RNA polymerase subunit beta A. baumannii AYE 99.93 0

Fluoroquinolones gyrA mutated (S83L,
G145D, S218G,
L644P, T872A)

905 DNA gyrase, A subunit/type IIA topoisomerase A. baumannii AYE 99 0

parC mutated (S84L,
E208G, S467G,
A661V)

740 DNA topoisomerase IV subunit A/ParC A. baumannii AYE 99 0

a aa, amino acids.
b RND, resistance-nodulation-cell division; TRAP transporter, tripartite ATP-independent periplasmic transporter.
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Nucleotide sequence accession numbers. All contig and plas-
mid sequences of these two MDR isolates of A. baumannii have
been submitted to EMBL database under accession numbers
CAKA01000001 to CAKA01000275 for A. baumannii ABIsac_
ColiS and accession numbers CAKB01000001 to CAKB01000108
for A. baumannii ABIsac_ColiR.
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