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Three Candida tropicalis isolates were obtained from a patient with acute lymphoblastic leukemia. The first isolate was suscepti-
ble to all drug classes, while isolates 2 and 3, obtained after 8 and 8.5 weeks of caspofungin treatment, respectively, were resistant
to the three echinocandins. Multilocus sequence genotyping suggested a clonal relation among all isolates. FKS1 sequencing re-
vealed a stepwise development of a heterozygous and finally a homozygous mutation, leading to S80S/P and S80P amino acid
substitutions.

It is well recognized that long-term antifungal treatment en-
tails a risk for in vivo selection of resistant fungi. Accordingly,

an increasing number of reports demonstrate acquired echino-
candin and azole resistance associated with both hetero- and
homozygous mutations in the FKS and ERG11 genes, which
encode antifungal target proteins in Candida (1–6). This is of
clinical importance, as resistant Candida isolates are associated
with breakthrough candidiasis, treatment failures, and in-
creased mortality (7). Candida tropicalis is identified as one of
the five most common pathogenic Candida species, with a geo-
graphically determined proportion ranging from 3 to 66% of
candidemia cases (8–10). Unfortunately, acquired fluconazole
resistance is increasing, with ranges from approximately 7% in
Denmark (9) to 9% in a global study (11) and 40% in Japan
(12). Based on such findings, echinocandins are increasingly
being utilized in the management of candidiasis caused by C.
tropicalis (10, 13–15).

In this study, we analyzed three sequential C. tropicalis isolates
(isolates 1, 2, and 3) obtained over a 4-month period from a pa-
tient with acute lymphoblastic leukemia who had been referred
for allogeneic bone marrow transplantation. The patient was ini-
tially blood culture positive on 19 December 2010 for C. tropicalis
(isolate 1) while receiving voriconazole prophylaxis. Caspofungin
treatment was initiated (70/50 mg/day [70 mg on day 1 as a load-
ing dose, followed by 50 mg daily thereafter]) (Fig. 1) and contin-

ued for a total of 8.5 weeks, interrupted by a 3-week fluconazole
step-down treatment (Fig. 1). During the initial caspofungin
treatment, nine serum samples tested positive for Candida man-
nan antigen, peaking at 479 pg/ml but stabilizing around 250
pg/ml on 20 January 2011 (Fig. 1). C. tropicalis was again detected
in the blood on 5 March 2011 (isolate 2, after approximately 8
weeks of caspofungin treatment), and treatment was switched to
amphotericin B (3 mg/kg/day) on 9 March. The patient was blood
culture negative from 16 March, but the final C. tropicalis isolate
(isolate 3, after approximately 8.5 weeks of caspofungin treat-
ment) was obtained on 18 March from an oral swab, and treat-
ment was changed to posaconazole (800 mg/day) on 31 March
2011. A Hickman catheter was kept in place, but sterilization was
attempted with acid and fluconazole lock. Susceptibility testing
was done according to EUCAST EDef 7.2 (azoles, anidulafungin,
and micafungin) (16) and by Etest (amphotericin B and caspofun-
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FIG 1 Systemic antifungal treatment of the leukemic patient illustrated in boxes with drugs administered as daily doses (dd.). Nine serum samples were positive
for Candida mannan antigen during the first caspofungin treatment period, and subsequently, several positive blood cultures were obtained. Three isolates
(isolates 1, 2, and 3) were chosen and sequenced for resistance mechanisms and genotyping.

614 aac.asm.org Antimicrobial Agents and Chemotherapy p. 614–617 January 2013 Volume 57 Number 1

http://dx.doi.org/10.1128/AAC.01193-12
http://aac.asm.org


gin). Etest was chosen for caspofungin susceptibility testing, as the
biological potency of pure substance has been associated with an
unacceptable lot-to-lot variation, with the most recently obtained
powder giving rise to elevated MICs (17–19). Echinocandin sus-
ceptibility was evaluated using the EUCAST breakpoint for anidu-
lafungin EUCAST MICs (susceptibility [S] � 0.06 mg/liter) but
adopting the revised CLSI breakpoint for interpretation of caspo-
fungin Etest results (S � 0.25 mg/liter) (20, 21). CLSI breakpoints
were adopted for interpretation of the caspofungin Etest MICs as
recommended by the manufacturer, as this has been found to be
appropriate for Candida albicans and C. tropicalis (22). EUCAST
breakpoints for micafungin have not yet been established, but 185
of 186 wild-type C. tropicalis isolates tested in our laboratory had a
EUCAST MIC of �0.03 mg/liter, which was used to define sus-
ceptibility. Two unrelated isolates of C. tropicalis (REF-1 and
REF-2) were included as wild-type FKS1 reference isolates. The
FKS1 gene was amplified and sequenced using primers targeting
hot spot 1 (FKS1-F, TCATTGCTGTGGCCACTTTAG; FKS1-R,
TAGAATGAACGACCAATGGAGA) and hot spot 2 (FKS8-F, CT
CCTGCCGTTGATTGGATTA; FKS8-R, ACCACCAACGGTCA
AATCAG) and compared to the C. tropicalis FKS1 reference se-
quence (GenBank accession no. EU676168). Genetic relatedness
was analyzed by multilocus sequence typing (MLST) based on
polymorphisms in 6 sequenced housekeeping genes (ICL1,
MDR1, SAPT2, SAPT4, XYR1, and ZWF1a) as described previ-
ously (23) by applying the PubMLST database, covering 205 dip-
loid sequence types (http://pubmlst.org/ctropicalis).

Isolate 1 and the two reference isolates were susceptible to all
tested antifungals, whereas isolates 2 and 3 were categorized as
echinocandin resistant (Table 1). Isolate 1, REF-1, and REF-2
were wild type in both hot spot 1 and 2 in the FKS1 sequence, while
isolate 2 harbored a heterozygous T238C mutation and isolate 3 a
homozygous T238C mutation in hot spot 1 of FKS1, leading to
S80S/P and S80P amino acid substitutions, respectively. The
MLST data suggested that isolates 1, 2, and 3 were clonally related,
since the diploid sequences in the 6 housekeeping genes were
100% identical (Table 1).

In vivo selection for echinocandin resistance has been demon-
strated for several Candida species, including C. albicans (1, 24–
27), C. glabrata (24, 28–31), C. krusei (5, 24, 32), and C. parapsi-
losis (33). However, to our knowledge, this is the first study to
demonstrate the stepwise in vivo progression of a wild-type C.
tropicalis strain to a homozygous fks1 mutant exhibiting echino-
candin resistance. Even the heterozygous mutant isolate was clas-
sified as echinocandin resistant, with a significant �3 to 7 two-
fold-dilution step increase in echinocandin MICs, illustrating the

significance of the S80 codon in FKS1 in C. tropicalis. Nevertheless,
the MICs indicated that the homozygous mutant (isolate 3) may
be slightly more resistant to echinocandins (at least 1 dilution step,
as suggested by the increase in anidulafungin and micafungin
MICs). Other homozygous mutations in C. tropicalis fks1 have
been associated with elevated echinocandin MICs and amino acid
substitutions, including L79W (4), F76S (6), and F76L (34).
Moreover, heterozygous S80S/P mutants that display echinocan-
din resistance have been found (34, 35), but interestingly, the ho-
mozygous S80P mutation has not been described previously. This
is in contrast to the findings for C. albicans, where a homozygous
alteration at the corresponding codon (S645) has been detected in
several resistant isolates (17, 36–38). Several factors may contrib-
ute to this difference. First, fitness cost when the second allele is
mutated may vary, as supported by previous observations associ-
ating homozygous fks1 mutations in C. albicans with both fitness
and virulence costs (39). Second, the resistance conferred by the
heterozygous mutation may be sufficient to allow escape in S80S/P
C. tropicalis during caspofungin treatment, whereas the homozy-
gous variant may be required for high-level echinocandin resis-
tance in C. albicans (37, 40).

Our and related studies contribute to the overall understand-
ing of resistance development in vivo as a consequence of antifun-
gal treatment, including understanding the duration of treatment
and which compounds allow selection of resistant mutants. Fi-
nally, this study may assist in determining treatment guidelines for
the management of C. tropicalis infections, as the development of
echinocandin resistance should be acknowledged as a rising con-
cern in the treatment of patients with long-term echinocandin
exposure.
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