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Upon growth on n-hexadecane (C16), n-tetracosane (C24), and n-hexatriacontane (C36), Dietzia sp. strain DQ12-45-1b
could produce different glycolipids, phospholipids, and lipopeptides. Interestingly, cultivation with C36 increased cell sur-
face hydrophobic activity, which attenuated the negative effect of the decline of the emulsification activity. These results
suggest that the mechanisms of biosurfactant production and cell surface hydrophobicity are dependent upon the chain
lengths of the n-alkanes used as carbon sources.

Recently, the biodegradation of crude oil constituents, such as
alkanes, through bioremediation of oil-polluted environ-

ments (1–3) and microbial enhanced oil recovery (MEOR) tech-
nology (4) has received worldwide attention. To date, a number of
microorganisms have been reported to degrade alkanes of differ-
ent chain lengths (5). A critical step in the biodegradation process
requires microorganisms to access hydrophobic alkanes by at least
two possible mechanisms. First, microorganisms produce sur-
face-active materials, including glycolipids, phospholipids, and
lipopeptides, to emulsify alkanes and achieve surfactant-mediated
access (6–12). Second, they increase the hydrophobic activity of
the cell surface to directly interact with alkanes (5, 13).

Although extensive research has been conducted on the pro-
duction of different biosurfactants and the cell surface hydropho-
bic activities, these studies were mainly restricted to alkanes with
chain lengths shorter than 18 carbon atoms (C18) (14–18). This
raises the question of how bacteria, such as those belonging to the
genus Dietzia, access hydrocarbons with chain lengths longer than
C18. It is unclear whether accessing longer alkanes requires the
production of surface-active materials that are similar to those
produced when shorter alkanes (i.e., �C18) are degraded. In ad-
dition, whether cell surface hydrophobicity contributes to the ac-
cession of longer alkanes is unknown. The aim of this study was,
therefore, to address these questions because degradation of al-
kanes longer than C18 is important for effective MEOR and biore-
mediation. We used a broad-spectrum alkane-degrading Dietzia
sp. strain, DQ12-45-1b (19, 20), and the results of our study re-
vealed that biosurfactant production and cell surface hydrophobic
activity changed when different-chain-length n-alkanes were used
as the sole carbon sources.

After Dietzia sp. strain DQ12-45-1b was incubated in mineral
salt medium (MSM) (21) amended with 0.3% (vol/vol) n-hexa-
decane (C16) and 0.05% (wt/vol) n-tetracosane (C24) and
n-hexatriacontane (C36) as the sole carbon sources, respectively,
the cultures were sampled at different time points and analyzed
for bacterial growth, alkane degradation, cell surface hydrophobic
activities, and emulsifying capacity of the culture broth. The bio-
surfactants were also extracted from the culture broth, and the
moieties of the glycolipid-like biosurfactant were additionally an-
alyzed. The transcripts of the glycolipid synthesis-related genes
were also analyzed by real-time reverse transcription-PCR (RT-

PCR). All experiments were performed in triplicate with various
controls. Detailed experimental procedures and methods are de-
scribed in the supplemental material.

Strain DQ12-45-1b could degrade C16, C24, and C36 n-alkanes
for growth (see Table S1 in the supplemental material), as was
previously reported (19, 20). Along with the growth and degrada-
tion of alkanes, the surface tension of the culture broth decreased
from approximately 62 mN m�1 to 27.78 � 1.97 and 45.97 � 2.19
mN m�1 at day 30 for C16 and C24 cultures, respectively, and to
48.66 � 0.51 mN m�1 at day 45 for the C36 culture (see Fig. S1 in
the supplemental material); this finding suggested that shorter
alkanes resulted in a higher emulsifying activity, which allowed
cells to access alkanes more easily. The C16, C24, and C36 culture
broths yielded 95.7, 25.4, and 15.8 mg liter�1 of crude biosurfac-
tant, respectively. Among them, 2 glycolipid compounds (16-A
and 16-B) (Fig. 1A) were detected in the C16 culture, while levels of
phospholipid and lipopeptide materials were negligible in the C16

culture (Fig. 1B and C). In the C24 culture, glycolipid (24-C) (Fig.
1A) and phospholipid (Fig. 1B) compounds were detected at rel-
atively equal amounts, with no instance of lipopeptide being de-
tected (Fig. 1C). One glycolipid (36-D) (Fig. 1A) and 2 lipopeptide
(Fig. 1C) compounds were detected in the C36 culture; however,
no phospholipids were detected (Fig. 1B). These results suggested
that the production of biosurfactant by strain DQ12-45-1b was
related to the length of the hydrocarbons. The biosurfactant activ-
ities of these materials were confirmed by oil displacement tests
performed after they had been scraped out of the preparative thin-
layer chromatography (TLC) plates (see the supplemental mate-
rial).

Since glycolipid-like materials were detected in all 3 cultures,
the structures of the 4 glycolipids (16-A, 16-B, 24-C, and 36-D)
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were analyzed by gas chromatography-mass spectrometry (GC-
MS). Three saccharide moieties were detected, including �-D-
glucopyranoside-�-D-fructofuranose (disaccharide unit) for both
16-A and 16-B, 6-deoxy-mannose for 24-C, and 2-methoxime-
gluconic acid for 36-D. The fatty acid moieties were also different
among the glycolipids. In glycolipid 16-A, only hexadecanoic acid
was detected, in contrast to the 5 acids detected in glycolipid 16-B,
some of which had unsaturated bonds. Six fatty acids with chain
lengths ranging from C12 to C19 and 11 fatty acids with chain
lengths ranging from C12 to C24 were detected in 24-C and 36-D,
respectively. These fatty acids also contained some unsaturated
bonds (Table 1). Of note, the fatty acid moieties in 16-B contained
fatty acids with chain lengths longer than C16, indicating that they
have originated from fatty acid synthesis processes.

The transcripts of phosphomannomutase (AlgC)-encoding
gene homolog YMF1348 (accession no. JQ414011) and NADPH-
dependent ketoacyl reductase (RhlG)-encoding gene homolog
YMF0365 (accession no. JQ414010), which are key genes in gly-
colipid biosynthesis (see Table S2 in the supplemental material),
were detected by real-time RT-PCR (see Fig. S2 in the supplemen-
tal material). Both YMF1348 and YMF0365 were significantly in-
duced by n-alkanes compared to when cells were grown in a me-
dium containing glucose. However, the 2 genes had different
patterns of expression. In general, the transcriptional levels of
both YMF1348 and YMF0365 were higher in cells grown on C16,
with the lowest values being obtained for cells grown on C36, cor-
responding to the different amounts of glycolipids detected (see
Fig. S2). The different transcription levels might be related to the
different amounts of the precursors acetyl coenzyme A (acetyl-
CoA) and malate in cells, which may suggest the different upregu-
lation of genes in fatty acid biosynthesis, as detected in Alcanivorax
borkumensis SK2 (22).

Although glycolipids, phospholipids, and lipopeptides have
been reported as key microbial biosurfactants (6, 8, 10, 12), only 1
or 2 types (e.g., glycolipids, phospholipids, or lipopeptides) were
simultaneously detected in the degradation of hydrocarbons with
chain lengths of �C18 (15, 16, 23). However, strain DQ12-45-1b

could produce all the 3 types in various amounts when C16, C24,
and C36 were used as the sole carbon sources. Moreover, the si-
multaneous detection of different glycolipids, both with different
saccharide and acid moieties, in a Dietzia strain has not been re-
ported before.

The hydrophobicity of the cell surface, which is measured as
the surface hydrophobicity rate, plays an important role in the
microbial attachment onto other hydrophobic surfaces, such as
solid n-alkanes (24). In this study, the cell surface hydrophobicity
rates slightly increased with the incubation time from approxi-
mately 0.5% to 8.5% � 5.5% and 8.3% � 4.6% for C16 and C24

cultures, respectively, compared to approximately 4% in the con-
trol without any hydrocarbon. In contrast, the hydrophobicity
rate in C36 cultures could be as high as 23.9% � 3.7% (Fig. 2),
which caused more cells to attach to the solid surface of C36 than to
C24 (see Fig. S3 in the supplemental material). These results could
be attributed to the fact that glycolipids produced by C36 contain
longer organic acid moieties, resulting in higher hydrophobic ac-
tivities, or that lipopeptides (including the surfactin, iturin, and
fengycin classes) changed the cell hydrophobicity and cell contact
with hydrocarbons (6); therefore, when C36 was used as the sole
carbon source, the decline in the emulsification activity (see Fig.
S1 in the supplemental material) was compensated for by an in-
crease in the cell surface hydrophobic activity (Fig. 2), which at-
tenuated the negative impact of the long-chain length of C36 and
maintained cell growth, as indicated in our previous studies
(19, 20).

On the basis of these results, we hypothesized that bacteria
capable of degrading hydrocarbons of various chain lengths have
similar functions for producing different biosurfactants and
changing cell surface hydrophobic activity. These functions could
be attributed to the unique regulation of different genes and path-
ways. Similar results were reported when investigating the influ-
ence of other environmental factors on biosurfactant production
(22, 25–28). However, further investigation is required to verify
this hypothesis.

Nucleotide sequence accession numbers. The nucleotide se-

TABLE 1 Moieties of the glycolipids produced from C16, C24, and C36

by strain DQ12-45-1b

Fatty acid

Moiety ofa:

n-C16

n-C24 24-C n-C36 36-D16-A 16-B

C12H24O2 ND ND � �
C14H28O2 ND � � �
C15H30O2 ND ND � �
C16H30O2 ND ND ND � (7:1)
C16H32O2 � � � �
C17H34O2 ND ND ND �
C18H32O2 ND � (9:1, 12:1 and

9:1, 15:1)
ND � (9:1, 11:1)

C18H34O2 ND � (9:1) ND � (8:1)
C18H36O2 ND � � �
C19H38O2 ND ND � � (10-methyl)
C24H48O2 ND ND ND �
a The saccharide moieties are as follows: n-C16 16-A and 16-B, �-D-glucopyranoside-�-
D-fructofuranose; n-C24 24-C, 6-deoxymannose; and n-C36 36-D, 2-methoxime-
gluconic acid. ND, not detected. The format “n:1” represents an unsaturated bond at
the “nth” carbon atom.

FIG 1 Thin-layer chromatography (TLC) analysis of crude biosurfactant ex-
tract from the cultures sampled at day 15. Panels A, B, and C show the presence
and relative amounts of glycolipids, phospholipids, and lipopeptides from the
n-hexadecane (C16), n-tetracosane (C24), and n-hexatriacontane (C36) cul-
tures, respectively. In panel A, 2 glycolipids (16-A, Rf, 0.59; 16-B, Rf, 0.51) were
detected from the C16 culture, whereas glycolipids 24-C (Rf, 0.60) and 36-D
(Rf, 0.59) were detected from the C24 and C36 cultures, respectively. In panel B,
phospholipids (Rf, 0.62) were detected only in the C24 culture. In panel C,
lipopeptides were detectable only in the C36 culture, with 2 compounds de-
tected: CL-a (Rf, 0.79) and CL-b (Rf, 0.56).
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quences of YMF0365 and YMF1348 have been deposited in the
GenBank database under accession no. JQ414010 and JQ414011,
respectively.
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