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The DedA protein family is a highly conserved and ancient family of membrane proteins with representatives in most sequenced
genomes, including those of bacteria, archaea, and eukarya. The functions of the DedA family proteins remain obscure. How-
ever, recent genetic approaches have revealed important roles for certain bacterial DedA family members in membrane homeo-
stasis. Bacterial DedA family mutants display such intriguing phenotypes as cell division defects, temperature sensitivity,
altered membrane lipid composition, elevated envelope-related stress responses, and loss of proton motive force. The
DedA family is also essential in at least two species of bacteria: Borrelia burgdorferi and Escherichia coli. Here, we describe
the phylogenetic distribution of the family and summarize recent progress toward understanding the functions of the
DedA membrane protein family.

It is predicted that roughly 20 to 25% of polypeptides are integral
membrane proteins (1). In contrast, fewer than 1% of all known

protein structures in the Protein Data Bank are membrane pro-
teins, and the functions of many are only poorly understood (2, 3).
The Escherichia coli dedA gene (EcdedA) was given its name in a
1987 publication for its presence in the DNA sequence of a 9.7-kb
fragment between hisT and purF (downstream [of hisT] E. coli
DNA gene A) (4). For clarity, we will refer to the DedA family to
describe the protein family and EcDedA or EcdedA to describe
specifically the E. coli DedA protein or gene. Despite these rather
mundane origins, it is now appreciated that the DedA family is a
highly conserved protein family represented in most sequenced
genomes encoding membrane proteins of unknown function (5).
There are virtually thousands of prokaryotic homologs of bacte-
rial DedA proteins currently found in the NCBI protein database,
and many sequenced bacterial genomes encode multiple family
members (Table 1) (8). However, they remain difficult to classify,
as the polypeptides do not resemble known enzymes, transport-
ers, channels, or signaling proteins. While there are examples of
multidomain secondary transporters and enzymes in the database
containing DedA or “SNARE-associated” domains (9), DedA
family proteins are, in most cases, unique polypeptides with no
other commonly associated domains. The polypeptides belonging
to the DedA family typically contain 4 to 6 predicted transmem-
brane domains, between 200 and 250 amino acids, and a con-
served domain. This DedA domain contains both transmembrane
and cytoplasmic domains, as well as a likely amphipathic helix. A
strictly conserved amino acid sequence is not present across the
entire domain; however, there is at least one universally conserved
glycine residue which occurs in or near the potential amphipathic
helix (Fig. 1A) and is found in all defined DedA proteins (NCBI
Clusters of Orthologous Groups, COG0586; the DedA domain).
Here, we summarize recent progress toward understanding the
functions of DedA family membrane proteins.

PHYLOGENETIC DISTRIBUTION OF THE DedA FAMILY

To investigate the distribution of the DedA protein family, we
scanned a total of 350 sequenced bacterial genomes (10) and 100
sequenced archaeal genomes (11) found in the NCBI database
with Protein BLAST using amino acid sequences of all eight E. coli
DedA proteins. Using a very conservative Protein BLAST score (E
value, �10�4) as significant, we found that 33 (9.2%) bacterial

species and 27 (27%) archaeal species lack a significant DedA ho-
molog (Fig. 1B and C). The largest proportion of bacterial species
that lack a significant DedA homolog can be found in the phylum
Tenericutes (with 13/16 species lacking a clear DedA homolog),
followed by the Thermotogae (5/5) and Alphaproteobacteria (4/
46). As for the Archaea domain, the largest proportion of species
lacking a significant DedA homolog is in the Euryarchaeota (14/
70) and Crenarchaeota (12/24) phyla. However, it is important to
note that the majority of sequenced archaeal species fall within the
Euryarchaeota phylum (11).

The presence of a significant DedA homolog is not consistent
among organisms of similar habitats; for example, a significant
DedA homolog is present within Neisseria spp., Mycoplasma syno-
viae/M. fermentans, Anaplasma phagocytophilum, and Ehrlichia
chaffeensis but absent in Chlamydia, Ureaplasma, and Neorickett-
sia sennetsu (12–14). In fact, a DedA member is not present among
any of the sequenced Chlamydia/Chlamydophilia spp. or Urea-
plasma spp.; however, Neisseria spp. have multiple, and some very
significant (E value, �10�100) DedA homologs. Interestingly, the
majority of Mycoplasma spp. and Rickettsia spp. do not have any
significant DedA members, but DedA homologs are present
within the genera, e.g., Mycoplasma synoviae/M. fermentans and
Rickettsia felis/R. bellii (15, 16). The majority of Clostridium spp.
(including C. botulinum) do have a DedA homolog, whereas Clos-
tridium thermocellum does not (17–20). There are many addi-
tional genera in which the presence of a DedA homolog is variable,
for example, Psychrobacter, Bartonella, and Mycobacterium (21,
22). The significance of the observed distribution of the DedA
protein family is as yet unclear.

Another inconsistency in the distribution of DedA ho-
mologs is among the reduced genome symbionts and obligate
symbionts of various organisms. The DedA family is found in
the genomes of several symbionts, including Wigglesworthia
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glossinidia (23) and Buchnera spp. (24). Some symbionts that
lack a DedA homolog are “Candidatus Sulcia muelleri,” “Can-
didatus Amoebobhilus asiaticus,” “Candidatus Phytoplasma
mali,” “Candidatus Zinderia insecticola,” “Candidatus Carso-
nella ruddii,” “Candidatus Hodgkinia cicadicola,” and “Candi-
datus Tremblaya princeps” (reviewed in reference 25). The
possibility exists that this variability of the DedA distribution is
related to the genetic makeup and/or physiology of the symbi-
onts’ host species (26–28).

As for the archaeal domain, the distribution of DedA mem-
bers is quite unpredictable; one note of interest is that no se-
quenced genomes within the Halobacteriales or Sulfolobales or-
der lack a significant DedA homolog. Also, the reduced
genomes of archaeal species “Candidatus Parvarchaeum spp.”
and “Candidatus Micrarchaeum acidiphilum” all contain a sig-
nificant DedA homolog (29). The presence of DedA homologs
within several reduced genomes, both bacterial and archaeal,
further supports the essentiality of the DedA protein family for
species viability. Published phylogenetic trees of the bacterial
and archaeal domains were used as a guide for investigating the
distribution of DedA members (10, 11).

In regard to the distribution of the DedA protein family,
there may be subtle differences between organisms that lack a
DedA homolog, which has allowed for a select few to counter-
act the necessity of DedA proteins. For example, it is possible
that other proteins have taken over their role or that symbiotic
relationships enable this selective genotypic evolution. Regard-
less, these species have found a way to exist without the DedA
protein family. It is important to note, however, that the iden-
tification of significant DedA homologs using a strict BLAST
score cutoff (E value, �10�4) may have overlooked DedA fam-
ily members with lower sequence identity to the E. coli DedA
proteins.

MUTATIONS IN E. COLI yghB AND yqjA ARE SYNTHETICALLY
LETHAL AT ELEVATED TEMPERATURES AND LEAD TO
DEFECTS IN CELL DIVISION, ELEVATED STRESS, AND
MEMBRANE DEFECTS

The E. coli genome encodes eight predicted members of the DedA
family (yqjA, yghB, yabI, yohD, EcdedA, ydjX, ydjZ, and yqaA).
Our interest in the DedA family was initiated by the observation
that simultaneous deletion of yqjA and yghB from E. coli results in
a strain (named BC202) that is temperature sensitive for growth
and displays striking defects in cell division (Fig. 2A and B) (5, 30).
YghB and YqjA are proteins of 219 and 220 amino acids, respec-
tively, displaying 61% amino acid identity to each other and pos-
sessing likely four membrane-spanning domains with cytoplas-
mic N and C termini (Fig. 3). The other six E. coli homologs
display roughly 25 to 30% amino acid identity with each other and
YghB/YqjA.

The E. coli mutant BC202 (�yqjA �yghB) displays several in-
triguing phenotypes that reflect important functions for the DedA
family. As mentioned, BC202 grows at 30°C but not 42°C (Fig. 2A)
and does not complete cell division, forming chains of cells (5).
We have demonstrated that the periplasmic amidases AmiA and
AmiC are not exported to the periplasm in BC202 and that this is
responsible for the cell division defect (Fig. 2B) (30). These ami-
dases are normally exported across the inner membrane via the
twin arginine transport (Tat) pathway in E. coli (31), a Sec-inde-
pendent protein export pathway found in many bacteria and also
present in archaea and plants (32–35). AmiA and AmiC are re-
quired for normal cell division and envelope integrity (36), and
�tat mutants display cell division defects due to loss of amidase
export (31, 37). However, E. coli �tat (T. Palmer, personal com-
munication) and �ami mutants are not temperature sensitive for
growth, unlike BC202. Therefore, the temperature sensitivity of
BC202 is independent of the cell division phenotype. BC202 is also
not hypersensitive to antibiotics or detergents (5), likely signifying
the presence of an intact outer membrane, unlike the situation
with �tat mutants (37, 38) and mutants lacking periplasmic ami-
dases (36). Interestingly, while the Borrelia �bb0250 strain (de-
scribed below) also exhibits cell division defects (Fig. 2D), the B.
burgdorferi genome does not encode a functional twin arginine
pathway or any predicted Tat substrates (39), indicating that the
DedA family is involved in functions independent of the Tat path-
way.

A number of extracytoplasmic stress response pathways are
activated in BC202 under permissive growth conditions (see the
accompanying paper by Sikdar et al [40]). E. coli responds to ex-
tracytoplasmic stress by activating one or more of several well-
known stress response pathways such as the �E, Cpx, Psp, Bae, and
Rcs pathways, which help the cells detect and combat alterations
in their cell envelope when challenged with conditions that com-
promise envelope integrity (41). The Cpx and �E pathways are
activated in response to disruptions in the folding of envelope
proteins and loss of outer membrane integrity, and they have par-
tially overlapping regulons (41–44). The Psp (phage shock pro-
tein) response is activated by perturbations in the integrity of the
inner membrane by conditions that result in dissipation of the
proton motive force (PMF) and/or change the physiological redox
state of the cell (extreme heat shock, exposure to ethanol, iono-
phores, and pIV secretin stress) (45–47). The Bae stress response is
induced by toxic compounds such as indole and ethanol (41, 48,

TABLE 1 Numbers of DedA family proteins (amino acid BLAST E
value, �0.02) found in sequenced genomes of representative bacterial
and archaeal speciesa

Bacterial strain
No. of DedA
family homologs

Escherichia coli K-12 8c

Salmonella enterica SL480 6
Pseudomonas aeruginosa PAO1 5
Helicobacter pylori J99 2
Vibrio cholerae El Tor N16961 3
Caulobacter crescentus CB15 3
Neisseria meningitidis Z2491 3
Borrelia burgdorferi B31 1b

Bacillus subtilis strain 168 6
Bacillus anthracis strain Ames 8
Mycobacterium tuberculosis H37Rv 4
Chlamydia trachomatis D/UW-3/CX 0
Synechocystis sp. strain PCC6803 3
Halobacterium salinarum NRC-1 1
a Significant homologs (Protein BLAST E value, �0.02) of E. coli YqjA, YghB, DedA,
YohD, YabI, YdjZ, YdjX, and YqaA were included in the numbers of proteins displayed
in the second column.
b The B. burgdorferi B31DedA family gene BB0250 has been demonstrated to be
essential (7).
c The DedA gene family in E. coli K-12 is collectively essential (6). Reproduced from
reference 7 and modified with permission. Accession numbers for each listed gene are
available (7).
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FIG 1 Phylogenetic analysis of the DedA protein family. (A) Alignment of E. coli DedA proteins and homologs found in Borrellia burgdorferi, Mycobacterium
bovis, and Helicobacter pylori from the NCBI database to illustrate the DedA domain, COG0586 (boxed in region). Predicted transmembrane (TM) domains are
highlighted in green, and partial TM regions, possibly amphipathic helixes, are highlighted in blue. The singularly conserved amino acid residue of the DedA
domain (glycine) is in bold. Of interest, the only conserved glycine residue is in or near the amphipathic helix for all aligned members. The TM prediction
software used was TMHMM (84). (B and C) Bacterial (B) and archaeal (C) domain representative trees are shown. Numbers in red demonstrate the proportion
of species lacking a significant DedA homolog (Protein BLAST E value, �10�4) in each bacterial (B) or archaeal (C) phylum. Otherwise, all species of each
phylum contain at least one significant DedA homolog (numbers in blue). Phylogenetic trees were constructed with MEGA (85), using a single 16S rRNA
sequence from a representative species of each phylum. Previously published phylogenetic trees for both Bacteria (350 species) (10) and Archaea (100 species)
(11) were used as a basis for phylogenetic analyses, though additional species were investigated; presented values are solely from published trees. Significant DedA
homologs are found within the Thermotogae phylum although not in the five completed genomes analyzed.

January 2013 Volume 195 Number 1 jb.asm.org 5

http://jb.asm.org


49). Finally, the Rcs pathway is activated by stresses that affect
envelope composition (50–53) or the integrity of the peptidogly-
can layer (54).

We observed that the Cpx, Psp, Rcs, and Bae stress responses
are induced in BC202 under permissive growth conditions while
�32 (controlling the cytoplasmic heat shock response) and �E are
not significantly induced (40). This nonspecific induction of mul-
tiple envelope stress responses is reminiscent of a general loss of
envelope integrity when challenged with certain stresses such as
growth in 5% ethanol (41). These findings demonstrate the criti-
cal importance of certain DedA family members in proper enve-
lope function of E. coli.

It has been previously demonstrated that dissipation of the
PMF results in induction of the Psp stress response (45, 55). Effi-
cient Tat-mediated export of substrates also relies on optimal
PMF (56, 57). The PMF in E. coli is comprised of two compo-

FIG 2 Characteristics of DedA family mutants. (A) BC202 (�yghB::Kanr

�yqjA::Tetr) grows at 30°C but not at 42°C (5). The �yghB and �yqjA single
mutants grow at all temperatures (not shown) (5, 62). (B) Cell division defects
of BC202 are caused by failure to export periplasmic amidases via the twin
arginine transport pathway. W3110 (left) and BC202 (right) transformed with
plasmid pTB28 expressing AmiC-green fluorescent protein (GFP) fusion pro-
tein (31) were grown at 30°C and visualized with differential interference con-
trast (DIC) and fluorescence microscopy. The bright fluorescence observed in
the right panel is due to cytoplasmic accumulation of AmiC-GFP (30). Expres-
sion of wild-type yghB from a plasmid restores wild-type appearance and
AmiC export to BC202 (not shown) (30). (C) The E. coli DedA family is
collectively essential at all temperatures. BAL801 (W3110, �ydjXYZ::cam
�yabI772 �EcdedA726 �yohD762 �yqjA785 �yqaA770 �yghB781::kan pBAD-
EcdedA) fails to grow when EcDedA expression from a plasmid is repressed by
growth in glucose (6). (D) The sole DedA family member of Borrelia burgdor-
feri is essential (not shown), and depletion of the protein causes cell division
defects (7). B. burgdorferi DXL-01 (�bb0250, pWTD0250 expressing bb0250
behind a borrelia-optimized lac promoter [86]) was cultured with either 1 mM
(top) or 0 mM (bottom) IPTG (isopropyl-�-D-thiogalactopyranoside) for 4 to
5 days and visualized by scanning electron microscopy. Depletion of BB0250
causes membrane bulging (arrow) and cell division defects. Images A to D are
reproduced with permission (5–7, 30).

FIG 3 Potential physiological roles of E. coli YqjA and YghB. (A) Formation of
YqjA homodimer as proposed for LeuT family members (8) transports pro-
tons into the cell coupled with symport or antiport of an uncharacterized
substrate. The proposed function of YqjA here is similar to that of the Na�/
K�-H� antiporter MdfA (61, 74) with a significant role in pH/PMF homeo-
stasis. Heterodimerization with YghB or an unknown partner is also a possi-
bility here. (B) An alternative model demonstrating an indirect role for YqjA in
pH/PMF homeostasis. Regulation of activity or functional modulation of RC
(respiratory complexes), ME (metabolic enzymes), or certain classes of trans-
porters (T) such as MdfA, all of which participate in the pH/PMF homeostasis
mechanism in E. coli. The topological model of YqjA, comprising 4-transmem-
brane helices with cytoplasmic N and C termini, is derived from previously
published data (87), SOSUI topological prediction software (88), and unpub-
lished observations. IM, inner membrane.
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nents—the transmembrane electrical membrane potential differ-
ence, �� (� �in � �out), with �in (electrical potential inside)
being more negative than �out (electrical potential outside), and
the transmembrane pH difference, �pH (� pHin � pHout), with
pHin (intracellular pH) being more alkaline than pHout (extracel-
lular pH) under normal growth conditions. We found that BC202
exhibits a significant loss of membrane potential compared to
parent strain W3110 using the membrane-permeating dye JC-1,
consistent with the observed activation of the Psp pathway in
BC202 (40). BC202 (as well as the single �yqjA mutant [58]) can-
not survive at elevated pH, but temperature sensitivity of BC202 is
rescued when it is grown at a lower pH (pH 6.0) or when the mdfA
(cmr) gene is overexpressed (40). MdfA is a member of the major
facilitator superfamily involved in drug efflux and is an Na�/
K�-H� antiporter (59). It is likely that BC202 is unable to main-
tain the PMF and requires protons outside the cell to be exchanged
with sodium/potassium ions. The single �mdfA mutant is also
sensitive to mild alkaline pH and grows poorly at neutral pH (60).
MdfA is unique in that it is capable of transporting diverse sub-
strates across the membrane using both components of the elec-
trochemical gradient (�	 and �pH) for electrogenic transport of
neutral compounds, while using only �pH for electroneutral
transport of cationic compounds (61). These observations collec-
tively suggest that YqjA/YghB may play a more general role in
membrane protein function or quality control and may be neces-
sary for the homeostasis of the PMF. Whether YqjA/YghB are true
transporters or are required for sensing and/or maintaining the
PMF is not yet clear (see below and Fig. 3).

DedA FAMILY GENES ARE COLLECTIVELY OR INDIVIDUALLY
ESSENTIAL IN BACTERIA

As stated above, the E. coli genome contains eight members of the
DedA family. Each of these DedA homologs (yqjA, yghB, yabI,
yohD, EcdedA, ydjX, ydjZ, and yqaA) is individually nonessential,
as the single gene knockouts have been made and are available
from the Keio collection (62). The study of the essentiality of the
DedA family in E. coli was stymied due to this high level of genetic
redundancy. However, we have recently succeeded in creating a
number of strains with deletions of all members of this family
(BAL800 series) (6). Each BAL800 strain requires expression of a
DedA family member in trans from a hybrid plasmid. Growth of
these strains is dependent upon the presence of an inducing agent
(in this case, arabinose) in the growth media. Growth in the
presence of glucose results in cell lysis (Fig. 2C). Further anal-
ysis of the BAL800 series mutants promises to provide a greater
understanding of the essential functions of the DedA mem-
brane protein family.

The genome of Borrelia burgdorferi, the cause of Lyme disease,
possesses only a single DedA family gene, annotated bb0250 (Ta-
ble 1) (63). In order to investigate the essentiality of the DedA
family and to expand our knowledge of DedA family function, we
created a B. burgdorferi �bb0250 knockout. Strikingly, bb0250 is
essential in its host organism and depletion of BB0250 protein,
expressed behind an inducible promoter, results in cell death pre-
ceded by defects in cell division (Fig. 2D) (7). In other words, the
Borrelia mutant phenotypes resemble those of BC202, with the
exception being that bb0250 is essential at all temperatures. In
addition, cloned bb0250 can fully complement the growth and cell
division phenotypes of BC202 even though BB0250 displays only

19% amino acid identity to E. coli YqjA (and less to YghB) (7).

These results demonstrate conservation of function of DedA fam-
ily proteins found in two distantly related species of Gram-nega-
tive bacteria.

Four of the eight E. coli DedA family genes can restore normal
growth and cell division to BC202 when expressed from a plasmid
(yqjA, yghB, yabI, and yohD), while four cannot (ydjX, ydjZ,
EcdedA, and yqaA). We have categorized the eight E. coli DedA
family genes as C (complements BC202) or NC (does not comple-
ment BC202). Interestingly, the plasmid required for isolation of
BAL800 mutants can harbor a gene from either the C group (i.e.,
yqjA) or the NC group (i.e., EcdedA). In regard to cell division and
temperature sensitivity, the phenotype of the BAL800 family mu-
tants depends upon whether the cloned DedA family gene belongs
to the C or NC group. When yqjA (C group) is expressed from the
inducible promoter in such a strain, the cell division defects and
temperature sensitivity are corrected. When EcdedA (NC group)
is expressed from the inducible promoter, the mutant still exhibits
cell division defects and is temperature sensitive for growth but is
viable at 30°C as long as an inducing agent is supplied. Thus, we
can create a BAL800 series mutant just as easily if a gene is ex-
pressed belonging to the C group as from the NC group (though
not all possible mutants have been isolated to date). These results
suggest that all E. coli DedA family genes share a function that is
required for survival and is independent of the cell division defects
and temperature sensitivity of BC202 (6). Why are there so many
DedA proteins in E. coli and other organisms (Table 1)? We can-
not answer this question at present, but we may speculate that we
are witnessing protein evolution in progress, with certain mem-
bers duplicated and acquiring new functions (i.e., C group) while
still retaining older ancestral functions.

DedA PROTEINS AS POTENTIAL DRUG TARGETS AND ROLES
IN VIRULENCE

Recent reports suggest that members of the DedA family may
represent potential drug targets and may play roles in virulence in
some species. The genomes of most Mycobacterium species encode
multiple DedA proteins (Table 1), and one DedA homolog
(BCG2664) from M. bovis is possibly the target for the antibiotic
halicyclamine A, as bcg2664 confers resistance to this drug when
overexpressed in M. smegmatis (64). Halicyclamine A was first
isolated from the marine sponge Haliclona sp. and was originally
thought to inhibit IMP dehydrogenase (IMPDH), but this turned
out not to be the case (65, 66). There exists a possibility that hali-
cyclamine A and/or derivatives of this drug may act as general
inhibitors of the DedA membrane protein family. Alternatively,
DedA proteins may promote the efflux of antibiotics when over-
expressed in these species.

Cationic peptides are important components of the host innate
immune system. DedA family proteins appear to be required for
resistance to cationic peptides in both Salmonella enterica and
Neisseria meningitidis. In Salmonella, YqjA is regulated by PhoP
and required for resistance to protamine and the alpha helical
cationic peptide magainin 2 (but not polymyxin) (67). Often, re-
sistance to cationic peptides requires covalent modifications to
lipid A (68), but the Salmonella �yqjA strain exhibits a wild-type
lipid A profile (67). Therefore, it is not yet clear what role YqjA
plays in cationic peptide resistance in Salmonella. Similarly, a
Neisseria NMB1052 (dedA) mutant was found to be hypersensi-
tive to polymyxin (69). Neisseria uses a combination of lipopoly-
saccharide (LPS) modification, efflux pumps, and type IV pilin
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secretion to resist effects of cationic peptides (69, 70). Again, the
role of DedA genes in promoting resistance to cationic peptides
remains unclear, but the similarity of these two mutants in their
cationic peptide sensitivity is intriguing.

Type III secretion is used by a number of Gram-negative
pathogens to deliver effector proteins to host cells (71, 72). A
screen for Yersinia pestis insertion mutants defective in type III
secretion identified the DedA family gene ctgA (formerly y0447,
encoding a polypeptide most closely related to E. coli YabI). This
mutant, termed CHI 1345, was found to have impaired secretion
of Yops and attenuated virulence in a mouse infection model (73).
While likely not playing a direct role in this protein secretion path-
way, CtgA may be required to maintain specific membrane prop-
erties that are required for the efficient assembly and/or operation
of the type III secretion system (see next section).

PUTATIVE FUNCTIONS FOR DedA FAMILY MEMBERS

Based upon the mutant phenotypes described above, we can hy-
pothesize potential functions of DedA family members. In E. coli,
YqjA and YghB are together required for several cellular functions,
all involving inner membrane proteins or protein complexes. For
example, BC202 is defective in cell division due to inefficient func-
tion of the Tat pathway (30) and has an altered membrane phos-
pholipid composition possibly due to an inefficiency in certain
lipid synthesis pathways (5). The altered membrane composition
is a property shared with the B. burgdorferi DedA family mutant
(7). In addition, BC202 cannot survive at elevated pH (pH 8.8),
but temperature sensitivity and cell division are rescued when it is
grown at a lower pH (pH 6.0) or when the mdfA gene encoding an
Na�/K�-H� antiporter is overexpressed (40). These observations
collectively suggest that these DedA family proteins may play a
more general role in membrane protein function or quality con-
trol and may play a role in maintenance of the PMF.

The membrane potential, ��, of BC202 is significantly lower
than that of the wild type, resulting in induction of the Psp stress
response under permissive growth conditions (40). It is possible
that under permissive growth conditions, the PMF homeostasis
mechanism is inefficient in BC202 while under nonpermissive
conditions the PMF falls below the minimum necessary threshold,
leading to cell death. The Na�/K�-H� antiporter MdfA partici-
pates in PMF homeostasis by catalyzing the import of protons into
the cytoplasm coupled with the export of monovalent cations
(60). The resulting influx of protons lowers the cytoplasmic pH
and necessitates bacterial adaptation and survival during exposure
to alkaline conditions. Similarly, growth of E. coli in media of low
pH reinforces the PMF by providing an enhanced �pH compo-
nent and promotes the influx of protons into the cytoplasm (74).
As the pH homeostasis mechanism is physiologically linked to the
PMF homeostasis mechanism (74), it is probable that the intra-
cellular pH of BC202 is altered (likely more alkaline than normal).
This also explains why conditions promoting proton influx in
BC202 alleviate temperature sensitivity and cell division defects.

An analysis of protein evolutionary relationships using a novel
software program called AlignMe revealed that bacterial DedA
family proteins may share structural motifs with the LeuT protein
superfamily (8). LeuT is a bacterial homolog of the neurotrans-
mitter sodium symporter (75) and vSGLT of the solute:sodium
symporter family. These protein families share certain structural
similarities, including two sets of five transmembrane helices that
share a pseudo 2-fold axis of symmetry along the plane of the

membrane (76). It is important to note that the evolutionary re-
lationship of the DedA and LeuT families is derived not from
amino acid content but from hydrophobicity profiles and there-
fore would not turn up in a simple BLAST search. The data from
the study by Khafizov et al. also suggest that DedA family proteins
may adopt dual topologies in the membrane (8).

Since DedA family proteins may share structural motifs with
LeuT-type transporters (8), it is possible that E. coli YqjA and
YghB form homo- and/or heterodimers and participate in PMF
homeostasis in a manner similar to that of MdfA. This would
require these functional complexes to display a proton symporter
or antiporter activity (Fig. 3A). This is also consistent with a pro-
posed role for a DedA family protein in the uptake of selenite in
Ralstonia metallidurans (77) and the occurrence of DedA domains
in secondary transporters of the tripartite ATP-independent
periplasmic transporter (TRAP-T) family (9). A second possibility
is that these proteins regulate the function/activity of a crucial
component(s) of the PMF homeostasis mechanism—such as re-
spiratory complexes, metabolic enzymes, or distinct Na�/K�-H�

transporters like MdfA (Fig. 3B) (74). This model also derives
support from the regulation of yqjA by the CpxAR two-compo-
nent system. YqjA is an important member of the Cpx regulon in
E. coli (58, 78), and deletion of either cpxR or yqjA renders E. coli
sensitive to alkaline pH, demonstrating the necessity of YqjA for E.
coli to adapt and survive under alkaline conditions (58). yqjA is
also in an operon with mzrA (previously known as yqjB or ecfM),
encoding a protein that links the Cpx pathway to the EnvZ/OmpR
two-component system (79). (Remarkably, while yghB is not part
of the Cpx regulon, its transcription is strongly induced by the
quorum-sensing molecule autoinducer-2 [AI-2] [80].)

EUKARYOTIC DedA GENES

While this review focuses upon the functions of the bacterial DedA
family proteins, some information on the roles DedA proteins
play in multicellular organisms is available. A BLAST search re-
veals the presence of hundreds of DedA family homologs in eu-
karyotes (most closely related to E. coli YdjX or YdjZ). Many DedA
genes, even in bacteria, are annotated “SNARE-associated Golgi
protein.” This is in reference to the reported physical association
of protein Tvp38 (an E. coli YdjX homolog) from Saccharomyces
cerevisiae with T-SNARE found in purified Tgl2-containing (late)
Golgi compartments (81). It was hypothesized that Tvp38, and
other unknown proteins isolated in this proteomic approach, may
be involved in maintenance of late Golgi/endosomal compart-
ments. The functional significance of this interaction remains to
be elucidated, but it clearly suggests that DedA family members
play some role in the eukaryotic secretory pathway.

An interesting screen for Caenorhabditis elegans mutants (gen-
erated by MosI mutagenesis) resistant to the bacterial pathogen
Microbacterium nematophilum revealed the involvement of a
DedA family member named Bus-19 (bacterially unswollen-19;
with similarity to E. coli YdjX) (82). M. nematophilum is able to
colonize the rectum of susceptible worms and induce an inflam-
matory response that requires the extracellular signal-regulated
kinase/mitogen-activated protein (ERK/MAP) kinase pathway
(83). The �bus-19 worms were resistant to infection because the
bacteria were unable to adhere to the surface of the rectum, per-
haps due to loss of a nematode cell surface receptor. Bus-19 also
contains a putative endoplasmic reticulum (ER) localization sig-
nal. Again, this study supports the notion that DedA family pro-
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teins may play a role in proper functioning of the eukaryotic se-
cretory pathway. Vertebrates, including mice and humans, also
harbor DedA family homologs. The Mus musculus and Homo sa-
piens gene products are annotated Tmem41A, and they share
about 25% amino acid identity with E. coli YdjX. Whether the
functions of eukaryotic DedA family members are similar to their
functions in prokaryotes is one of the more interesting questions
in regard to this ancient family and, sadly, cannot be answered at
this time.

CONCLUSIONS

Genetics and biochemistry, coupled with insight provided from
proteomics and genome sequencing projects, have provided a
glimpse into the wide distribution of and important functions
carried out by members of the highly conserved DedA membrane
protein family. In E. coli, some DedA family members appear to be
required to maintain the membrane proton motive force. Others
may play different roles in bacterial physiology. These functions
have important implications, not just for elucidation of a potential
drug target but for the insight that may be provided into the pro-
cess of protein evolution.
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