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Stress granules (SGs) are cytoplasmic foci composed of stalled translation preinitiation complexes induced by environmental
stress stimuli, including viral infection. Since viral propagation completely depends on the host translational machinery, many
viruses have evolved to circumvent the induction of SGs or co-opt SG components. In this study, we found that expression of
Japanese encephalitis virus (JEV) core protein inhibits SG formation. Caprin-1 was identified as a binding partner of the core
protein by an affinity capture mass spectrometry analysis. Alanine scanning mutagenesis revealed that Lys97 and Arg98 in the
�-helix of the JEV core protein play a crucial role in the interaction with Caprin-1. In cells infected with a mutant JEV in which
Lys97 and Arg98 were replaced with alanines in the core protein, the inhibition of SG formation was abrogated, and viral propaga-
tion was impaired. Furthermore, the mutant JEV exhibited attenuated virulence in mice. These results suggest that the JEV core
protein circumvents translational shutoff by inhibiting SG formation through an interaction with Caprin-1 and facilitates viral
propagation in vitro and in vivo.

In eukaryotic cells, environmental stresses such as heat shock,
oxidative stress, UV irradiation, and viral infection trigger a sud-

den translational arrest, leading to stress granule (SG) formation
(1). SGs are cytoplasmic foci composed of stalled translation pre-
initiation complexes and are postulated to play a critical role in
regulating mRNA metabolism during stress via so-called “mRNA
triage” (2). The initiation of SG formation results from phosphor-
ylation of eukaryotic translation initiation factor 2� (eIF2�) at
Ser51 by various kinases, including protein kinase R (PKR), PKR-
like endoplasmic reticulum kinase (PERK), general control non-
repressed 2 (GCN2), and heme-regulated translation inhibitor
(HRI), which are commonly activated by double-stranded RNA
(dsRNA), endoplasmic reticulum (ER) stress, nutrient starvation,
and oxidative stress, respectively. Phosphorylation of eIF2� re-
duces the amount of eIF2-GTP-tRNA complex and inhibits trans-
lation initiation, leading to runoff of elongating ribosomes from
mRNA transcripts and the accumulation of stalled translation
preinitiation complexes. Thus, SGs are defined by the presence of
components of translation initiation machinery, including 40S
ribosome subunits, poly(A)-binding protein (PABP), eIF2, eIF3,
eIF4A, eIF4E, eIF4G, and eIF5. Then, primary aggregation occurs
through several RNA-binding proteins (RBPs), including T-cell
intracellular antigen-1 (TIA-1), TIA-1-related protein 1 (TIAR),
and Ras-Gap-SH3 domain-binding protein (G3BP). These RBPs
are independently self-oligomerized with the stalled initiation fac-
tors and with other RBPs, such as USP10, hnRNP Q, cytoplasmic
activation/proliferation-associated protein-1 (Caprin-1), and
Staufen and with nucleated mRNA-protein complex (mRNP) ag-
gregations (3, 4). SG assembly begins with the simultaneous for-
mation of numerous small mRNP granules which then progres-
sively fuse into larger and fewer structures, a process known as
secondary aggregation (5). The aggregation of TIA-1 or TIAR is
regulated by molecular chaperones, such as heat shock protein 70
(Hsp70) (3), whereas that of G3BP is controlled by its phosphor-

ylation at Ser149 (4). SG formation and disassembly in response to
cellular stresses are strictly regulated by multiple factors.

Viral infection can certainly be viewed as a stressor for cells,
and SGs have been reported in some virus-infected cells. Since the
propagation of viruses is completely reliant on the host transla-
tional machinery, stress-induced translational arrest plays an im-
portant role in host antiviral defense. To antagonize this host de-
fense, most viruses have evolved to circumvent SG formation
during infection. For example, poliovirus (PV) proteinase 3C
cleaves G3BP, leading to effective SG dispersion and virus propa-
gation (6). Influenza A virus nonstructural protein 1 (NS1) has
been shown to inactivate PKR and prevent SG formation (7). In
the case of human immunodeficiency virus 1 (HIV-1) infection,
Staufen1 is recruited in ribonucleoproteins for encapsidation
through interaction with the Gag protein to prevent SG formation
(8). In contrast, some viruses employ alternative mechanisms of
translation initiation and promote SG formation to limit cap-
dependent translation of host mRNA (9, 10). In addition, vaccinia
virus induces cytoplasmic “factories” in which viral translation,
replication, and assembly take place. These factories include G3BP
and Caprin-1 to promote transcription of viral mRNA (11).

Japanese encephalitis virus (JEV) belongs to the genus Flavivi-
rus within the family Flaviviridae, which includes other mosquito-
borne human pathogens, such as dengue virus (DENV), West Nile
virus (WNV), and yellow fever virus, that frequently cause signif-
icant morbidity and mortality in mammals and birds (12). JEV has
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FIG 1 Dynamics of SG-associated factors during JEV infection. (A) Huh7 cells infected with JEV at an MOI of 0.5 were treated with or without 1.0 mM sodium
arsenite for 30 min at 37°C, and the levels of expression of G3BP and JEV core protein/NS2B were determined at 24 h postinfection by immunofluorescence
analysis with mouse anti-G3BP MAb and rabbit anti-core protein or anti-NS2B PAb, followed by AF488-conjugated anti-mouse IgG (Invitrogen) and AF594-
conjugated anti-rabbit IgG, respectively. Cell nuclei were stained with DAPI (blue). (B) Cellular localizations of G3BP and JEV NS2B in 293T and HeLa cells
infected with JEV were determined at 24 h postinfection by immunofluorescence analysis with mouse anti-G3BP MAb and rabbit anti-NS2B PAb, followed by
AF488-conjugated anti-mouse IgG and AF594-conjugated anti-rabbit IgG, respectively. Cell nuclei were stained with DAPI (blue). (C) Phosphorylation of eIF2�
in cells prepared as described in panel A was determined by immunoblotting using the indicated antibodies. The band intensities were quantified by ImageJ
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a single-stranded positive-sense RNA genome of approximately
11 kb. The genomic RNA carries a single large open reading frame,
and a polyprotein translated from the genome is cleaved co- and
posttranslationally by host and viral proteases to yield three struc-
tural proteins, the core, precursor membrane (PrM), and envelop
(E) proteins, and seven nonstructural (NS) proteins, NS1, NS2A,
NS2B, NS3, NS4A, NS4B, and NS5 (13). PrM is further cleaved by
the multibasic protease, furin, and matured to membrane (M)
protein. The core, M, and E proteins are components of extracel-
lular mature virus particles. NS proteins are not incorporated into
particles and are thought to be involved in viral replication, which
occurs in close association with ER-derived membranes (14). Pre-
vious reports have shown that WNV and DENV inhibit SG for-
mation by sequestering TIA-1 and TIAR through specific interac-
tion with viral RNA (15, 16). In addition, the membrane structure
induced by WNV infection was suggested to prevent PKR activa-
tion and avoid induction of SG formation (17). In this study, we
show that JEV core protein plays an important role in inhibition of
SG formation. JEV core protein recruited several SG-associated
proteins, including G3BP and USP10, through an interaction with
Caprin-1 and suppressed SG formation. Furthermore, a mutant
JEV carrying a core protein incapable of binding to Caprin-1 ex-
hibited lower propagation in vitro and lower pathogenicity in mice
than the wild-type (WT) JEV, suggesting that inhibition of SG
formation by the core protein is crucial to antagonize host de-
fense. These results reveal a novel strategy of JEV to inhibit SG
formation through an interaction with Caprin-1 and facilitate vi-
ral propagation.

MATERIALS AND METHODS
Plasmids. Plasmids encoding FLAG-tagged JEV core protein (pCAGPM-
FLAG-Core) and hemagglutinin (HA)-tagged JEV proteins (pCAGPM-
HA-JEV proteins) were generated as previously described (18, 19). The
cDNA of the core protein of JEV AT31 (amino acid residues 2 to 105) was
amplified from the pCAGPM-FLAG-Core plasmid by PCR and cloned
into pET21b (Novagen-Merck, Darmstadt, Germany) for expression in
bacteria as a His-tagged protein and in pCAG-MCS2-FOS for expression
in mammalian cells as a FLAG-One-STrEP (FOS)-tagged protein. The
resulting plasmids were designated pET21b-Core-His and pCAG-Core-
FOS, respectively. The cDNA of the core protein of DENV2 (amino acid
residues 2 to 100) was amplified from the pCAG/FLAG-DEN2C-HA plas-
mid (19) by PCR and cloned into pCAGPM-N-FLAG. The cDNA of hu-
man Caprin-1 was amplified from 293T cells by reverse transcription-
PCR (RT-PCR) and cloned into pCAGPM-N-HA (20) and pGEX 6P-1
(GE Healthcare, Buckinghamshire, United Kingdom) for expression in
bacteria as a glutathione S-transferase (GST) fusion protein and desig-
nated pCAGPM-HA-Caprin-1 and pGEX-GST-Caprin-1, respectively.
The cDNAs of human G3BP1 and USP10 were also amplified from 293T
cells by RT-PCR and cloned into pCAGPM-N-HA. The nucleotide resi-
dues of the adenine at 384, adenine at 385, cytosine at 387, and guanine at

388 of the JEV genome in pMWATG1 were replaced with guanine, cyto-
sine, guanine, and cytosine, respectively, by PCR-based mutagenesis to
change Lys97 and Arg98 of the core protein to Ala, yielding pMWAT/
KR9798A. The cDNA of the mutant core protein was also cloned into
pCAGPM-N-FLAG and pET21b. To generate stable cell lines expressing
Aequorea coerulescens green fluorescent protein (AcGFP)-fused Caprin-1,
the cDNA of human Caprin-1 was amplified by RT-PCR and cloned into
pAcGFP N1 (Clontech, Mountain View, CA), and the Caprin-1-AcGFP
gene was subcloned into the lentiviral vector pCSII-EF-RfA (21) and des-
ignated pCSII-EF-Caprin-1-AcGFP. All plasmids were confirmed by se-
quencing with an ABI Prism 3130 genetic analyzer (Applied Biosystems,
Tokyo, Japan).

Cells and stress treatment. Mammalian cell lines, Vero (African green
monkey kidney), 293T (human kidney), Huh7 (human hepatocellular
carcinoma), and HeLa (human cervical carcinoma), were maintained in
Dulbecco’s modified Eagle’s minimal essential medium (DMEM) (Sigma,
St. Louis, MO) supplemented with 100 U/ml penicillin, 100 mg/ml strep-
tomycin, nonessential amino acids (Sigma), and 10% fetal bovine serum
(FBS). The mosquito cell line C6/36 (Aedes albopictus) was grown in Lei-
bovitz’s L-15 medium with 10% FBS. Huh7 cells were transduced with a
lentiviral vector expressing Caprin-1-AcGFP and AcGFP and designated
Huh7/Caprin-1-AcGFP and Huh7/AcGFP, respectively. For induction of
SGs, cells were treated with sodium arsenite at a final concentration of 1.0
mM in the culture medium for 30 min prior to fixation or lysis of the cells.
SG formation was defined morphologically by immunostaining using
anti-SG-related factor antibodies described below. Cell viability was de-
termined by using CellTiter-Glo (Promega, Madison, WI) according to
the manufacturer’s instruction.

Viruses. The wild-type and 9798A mutant of the JEV AT31 strain were
generated by the transfection of pMWATG1 and pMWAT/KR9798A, re-
spectively, as described previously (22). Viral infectivity was determined
by an immunostaining focus assay as described previously (20), and the
results are expressed in focus-forming units (FFU). JEV and DENV sero-
type 2 New Guinea C strain were amplified in C6/36 cells.

Antibodies. Anti-JEV core rabbit polyclonal antibody (PAb) and anti-
JEV NS3 mouse monoclonal antibody (MAb) were prepared as described
previously (20, 23). Anti-JEV NS2B rabbit PAb was generated with syn-
thetic peptides of JEV NS2B at Scrum, Inc. (Tokyo, Japan). Anti-DENV
core protein rabbit PAb was prepared by using a GST-fused recombinant
protein containing amino acid residues 2 to 100 of the DENV core pro-
tein. Anti-FLAG mouse MAb (M2) and rabbit PAb and anti-�-actin
mouse MAb were purchased from Sigma. Anti-hnRNP Q mouse MAb
(ab10687), anti-USP10 rabbit PAb (ab70895), and anti-eIF4B rabbit PAb
(ab78916) were purchased from Abcam (Cambridge, United Kingdom).
Anti-eIF2�, anti-phospho-eIF2�, and anti-eIF3A rabbit PAbs were pur-
chased from Cell Signaling Technology (Danvers, MA). Anti-HA mouse
MAb (HA11), anti-HA rat MAb (3F10), anti-His mouse MAb, anti-GFP
mouse MAb (JL-8), anti-JEV envelope protein mouse MAb (6B4A-10),
anti-G3BP mouse MAb, anti-TIA-1 goat PAb, anti-Caprin-1 rabbit PAb,
and anti-dsRNA mouse MAb were purchased from Covance (Richmond,
CA), Roche (Mannheim, Germany), R&D Systems (Minneapolis, MN),
Clontech, Chemicon (Temecula, CA), BD Biosciences (Franklin Lakes,
NJ), Santa Cruz (Santa Cruz, CA), Proteintech (Chicago, IL), and Bio-

software (NIH, Bethesda, MD), and the relative levels for the indicated proteins are shown based on the level of the mock-infected cells. (D) Cellular localizations
of G3BP, NS2B, and TIA-1 in Huh7 cells infected with JEV were determined at 24 h postinfection by immunofluorescence analysis with mouse anti-G3BP MAb,
rabbit anti-NS2B PAb, and goat anti-TIA-1 PAb, followed by AF488-conjugated anti-mouse IgG, AF594-conjugated anti-rabbit IgG, and AF633-conjugated
anti-goat IgG, respectively. Cell nuclei were stained with DAPI (gray). (E) Dynamics of G3BP and TIA-1 during JEV infection. Huh7 cells infected with JEV were
immunostained at 0, 12, and 24 h postinfection (hpi) with mouse anti-G3BP MAb or goat anti-TIA-1 PAb and rabbit anti-NS2B PAb, followed by AF488-
conjugated anti-mouse IgG or AF488-conjugated anti-goat IgG and AF594-conjugated anti-rabbit IgG, respectively. Cell nuclei were stained with DAPI (blue).
(F) Cellular localization of SG-associated proteins (USP10, Caprin-1, TIA-1, hnRNP Q, eIF3A, and eIF4B) (green, AF488-conjugated secondary antibody) and
JEV NS2B/NS3 (red, AF-594-conjugate secondary antibody) in Huh7 cells infected with JEV was determined by immunoblotting at 24 h postinfection. Cell
nuclei were stained with DAPI (blue). (G) Numbers of G3BP-positive foci in 30 cells prepared as described in panel A were counted for each experimental
condition. Lines, boxes, and error bars indicate the means, 25th to 75th percentiles, and 95th percentiles, respectively. The significance of differences between the
means was determined by a Student’s t test.*, P � 0.01; ND, no significant difference.
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center (Szirak, Hungary), respectively. Alexa Fluor (AF)-conjugated sec-
ondary antibodies were purchased from Invitrogen (Carlsbad, CA).

Immunofluorescence microscopy. Huh7 cells were fixed in 4% para-
formaldehyde in phosphate-buffered saline (PBS) for 15 min at room
temperature. After cells were quenched for 10 min with PBS containing 50
mM ammonium chloride (NH4Cl), they were permeabilized with 0.2%
Triton X-100 in PBS for 10 min and blocked with PBS containing 2%
bovine serum albumin (BSA) for 30 min at room temperature. The cells
were then incubated with the antibodies indicated in the figure legends.
Nuclei were stained with 4=,6=-diamidino-2-phenylindole (DAPI). The
samples were examined by a Fluoview FV1000 laser scanning confocal
microscope (Olympus, Tokyo, Japan).

Transfection, immunoprecipitation, and immunoblotting. Plas-
mids were transfected into 293T or Huh7 cells by use of TransIT LT1
(Mirus, Madison, WI), and cells collected at 24 h posttransfection were
subjected to immunostaining, immunoprecipitation, and/or immuno-
blotting as described previously (24). The immunoprecipitates were
boiled in sodium dodecyl sulfate (SDS) sample buffer and subjected to
SDS-polyacrylamide gel electrophoresis (SDS-PAGE). The proteins were
transferred to polyvinylidene difluoride membranes (Millipore, Bedford,
MA) and incubated with the appropriate antibodies. The immune com-
plexes were visualized with SuperSignal West Femto substrate (Thermo
Scientific, Rockford, IL) and detected by use of an LAS-3000 image ana-
lyzer system (Fujifilm, Tokyo, Japan).

FOS-tagged purification and mass spectrometry. pCAG-Core-FOS
or empty vector was transfected into 293T cells, harvested at 24 h post-
transfection, washed with cold PBS, suspended in cell lysis buffer (20 mM
Tris-HCl, pH 7.4, 135 mM NaCl, 1% Triton X-100, and protease inhibitor
cocktail [Complete; Roche]), and centrifuged at 14,000 � g for 20 min at
4°C. The supernatant was pulled down using 50 �l of STrEP-Tactin Sep-
harose (IBA, Gottingen, Germany) equilibrated with cell lysis buffer for 2
h at 4°C. The affinity beads were washed three times with cell lysis buffer
and suspended in 2� SDS-PAGE sample buffer. The proteins were sub-
jected to SDS-PAGE, followed by Coomassie brilliant blue (CBB) staining
using CBB Stain One (Nakalai Tesque, Kyoto, Japan). The gels were di-
vided into 10 pieces, and each fraction was trypsinized and subjected to
liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis
to identify coimmunoprecipitated proteins. All of the proteins in gels were
identified comprehensively, and the proteins detected in cells transfected
with pCAG-Core-FOS but not in those with empty vector were regarded
as candidates for binding partners of JEV core.

Gene silencing. A commercially available small interfering RNA
(siRNA) pool targeting Caprin-1 (siGENOME SMARTpool, human
Caprin1) and control nontargeting siRNA were purchased from Dharma-
con (Buckinghamshire, United Kingdom) and transfected into 293T cells
using Lipofectamine RNAiMAX (Invitrogen) according to the manufac-
turer’s protocol.

FIG 2 Each SG-associated factor forms SGs under oxidative stress. After treatment with 1.0 mM sodium arsenite for 30 min at 37°C, Huh7 cells were subjected
to immunofluorescence analysis with the indicated primary antibodies, followed by AF488-conjugated anti-goat IgG and AF594-conjugated anti-mouse or
rabbit IgG. Cell nuclei were stained with DAPI (blue).
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Preparation of recombinant proteins and GST pulldown assay. His-
tagged JEV core protein (core-His) was purified as described in a previous
report (25). Briefly, core-His was expressed in Escherichia coli (E. coli)
Rosetta-gami 2(DE3) strain cells (Novagen-Merck) transformed with
pET21b-Core-His (WT or 9798A). Bacteria grown to an optical density at
600 nm of 0.6 were induced with 0.5 mM isopropyl-�-D-thiogalactopyra-
noside (IPTG), incubated for 5 h at 37°C with shaking, collected by cen-
trifugation at 6,000 � g for 10 min, lysed in 10 ml of bacteria lysis buffer
(50 mM Tris-HCl, pH 7.4, 150 mM NaCl, 1 mM EDTA, 1% Triton X-100,
and protease inhibitor cocktail [Complete; Roche]) by sonication on ice,
and centrifuged at 10,000 � g for 15 min. The supernatant containing
core-His was subjected to ammonium sulfate fractionation, followed by
cation exchange chromatography with a HiTrap SP column (GE Health-
care). The eluted core-His recombinant protein was dialyzed with 50 mM
Tris-HCl buffer containing 150 mM NaCl at 4°C overnight. GST-fused
Caprin-1 (GST-Caprin-1) was expressed in E. coli BL21(DE3) cells trans-
formed with pGEX-GST-Caprin-1. Bacteria grown to an optical density at
600 nm of 1.0 were induced with 0.1 mM IPTG, incubated for 5 h at 25°C
with shaking, collected by centrifugation at 6,000 � g for 10 min, lysed in
10 ml of bacteria lysis buffer by sonication on ice, and centrifuged at
10,000 � g for 15 min. The supernatant was mixed with 200 �l of gluta-
thione-Sepharose 4B beads (GE Healthcare) equilibrated with bacteria
lysis buffer for 1 h at room temperature, and then the beads were washed
five times with lysis buffer. Twenty micrograms of GST-Caprin-1 or GST
was mixed with equal volumes of the purified core-His for 2 h at 4°C with
gentle agitation. The beads were washed five times with bacteria lysis
buffer and then suspended in SDS-PAGE sample buffer.

Mouse experiments. Experimental infections were approved by the
Committee for Animal Experiment of RIMD, Osaka University (H19-2-
0). Female ICR mice (3 weeks old) were purchased from CLEA Japan
(Tokyo, Japan) and kept in specific pathogen-free environments. Groups
of mice (n � 10) were intraperitoneally inoculated with 5 � 104 FFU (100
�l) of the viruses. The mice were observed for 3 weeks after inoculation to
determine survival rates. To examine viral growth in the brain, 5 � 104

FFU of the viruses were intraperitoneally administered to the groups of
mice (n � 3). At 7 days postinfection, mice were euthanized, and the
cerebrums were collected. The infectious titers in the homogenates of the
cerebrums were determined in Vero cells as described above.

RESULTS
JEV infection confers resistance to SG induction. To examine the
formation of SGs in cells infected with JEV, Huh7 cells were in-

fected with JEV at a multiplicity of infection (MOI) of 0.5, and the
expression of JEV proteins and an accepted marker for SGs, G3BP,
was determined by immunofluorescence analysis at 24 h postin-
fection. G3BP was mainly accumulated in the perinuclear region
and partially colocalized with the JEV core protein, while only
partial colocalization with the NS2B protein was also observed
(Fig. 1A, left). In addition, a few small G3BP-positive foci were
scattered in the cytoplasm. This accumulation of G3BP was ob-
served in not only Huh7 cells but also other cell lines, i.e., 293T
and HeLa cells, infected with JEV (Fig. 1B). However, the expres-
sion level of G3BP in cells infected with JEV was comparable to
that in mock-infected cells (Fig. 1C). To further investigate SG
induction by JEV infection, expression of TIA-1, another SG
marker, was examined. Although accumulation of TIA-1 in the
perinuclear region was not observed, a few TIA-1-positive foci
were observed in the JEV-infected cells and were colocalized with
G3BP and JEV NS2B, indicating that SG foci were induced in cells
infected with JEV (Fig. 1D). The accumulation of G3BP and the
aggregation of TIA-1, indicating SG formation, appeared at 24 h
postinfection in accord with the expression of viral proteins (Fig.
1E). We further examined the dynamics of other SG-associated
factors in cells infected with JEV. Each factor formed clear SGs in
cells treated with sodium arsenite, a potent SG inducer eliciting
oxidative stress (Fig. 2). As shown in Fig. 1F, three distinct patterns
of the subcellular localization of SG components were observed.
USP10 and Caprin-1 were accumulated in the perinuclear region
and also formed a few small foci scattered throughout the cyto-
plasm, as seen for G3BP; TIA-1 and hnRNP Q formed cytoplasmic
foci but were not accumulated in the perinuclear region; and sub-
cellular localization of eIF3A and eIF4B was not changed. The
cytoplasmic foci were confirmed as SGs by immunofluores-
cence analyses using specific antibodies to SG-associated fac-
tors (data not shown). Taken together, these results indicate
that JEV infection induces accumulation of several RBPs and
formation of a few SGs.

It has been shown previously that infection with WNV or
DENV confers resistance to SG formation induced by sodium
arsenite (15). To determine the effect of JEV infection on the SG

FIG 3 Subcellular localizations of the SG-associated proteins during DENV infection. Cellular localizations of G3BP, Caprin-1, and TIA-1 (green, AF488-
conjugated secondary antibody) and viral components (core protein and dsRNA) (red, AF-594-conjugate secondary antibody) in Huh7 cells infected with DENV
were determined by immunofluorescence analysis using the appropriate antibodies at 48 h postinfection. Cell nuclei were stained with DAPI (blue).
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formation induced by sodium arsenite, JEV-infected cells were
treated with 0.5 mM sodium arsenite for 30 min at 24 h postinfec-
tion. Although many G3BP-positive foci were observed in mock-
infected cells by the treatment with sodium arsenite, accumula-
tion of G3BP in the perinuclear region was observed in the
JEV-infected cells (Fig. 1A, right), and the numbers of G3BP-
positive foci in the JEV-infected cells were less than those in the
mock-infected cells (Fig. 1G). Although it has been reported that a
significant reduction of the phosphorylation at Ser51 of eIF2� in
cells treated with arsenite was induced by infection with WNV
(15), the phosphorylation of eIF2� was slightly suppressed in the
JEV-infected cells (Fig. 1C). Furthermore, while previous studies
reported that Caprin-1 and TIA-1 were colocalized with dsRNA in
cells infected with DENV (15, 26), no colocalization of G3BP or
TIA-1 with the DENV core protein was observed in the present
study (Fig. 3), suggesting that the mechanisms of the viral circum-
vention of SG formation in cells infected with JEV are different
from those in cells infected with WNV and DENV.

JEV core protein suppresses SG formation induced by so-
dium arsenite. To elucidate the molecular mechanisms of sup-
pression of SG formation induced by sodium arsenite during JEV
infection, we tried to identify which viral protein(s) is responsible
for the SG inhibition. Since G3BP was colocalized with JEV core
protein, we first examined the involvement of the core protein in
the perinuclear accumulation of G3BP and in the suppression of
SG formation. The expression of JEV core protein alone induced
the accumulation of G3BP in the perinuclear region (Fig. 4A, left
panel) and suppressed sodium arsenite-induced SG formation
(Fig. 4A, upper right cell in the right panel), similarly to JEV in-
fection. In contrast, inhibition of SG formation induced by so-
dium arsenite was not observed in cells expressing other JEV pro-
teins (Fig. 4B). These results suggest that JEV core protein is
responsible for the circumvention of the SG formation observed
in cells infected with JEV.

JEV core protein directly interacts with Caprin-1, an SG-as-
sociated cellular factor. Since JEV core protein was suggested to

FIG 4 Inhibition of the arsenite-induced SG formation by the expression of JEV proteins. (A) Huh7 cells transfected with a plasmid, pCAGPM-HA-Core, were
treated with or without 1.0 mM sodium arsenite for 30 min at 37°C, and the cellular localizations of G3BP and HA-Core were determined at 24 h posttransfection
by immunofluorescence analysis with mouse anti-G3BP MAb and rat anti-HA MAb, followed by AF488-conjugated anti-mouse IgG and AF594-conjugated
anti-rat IgG, respectively. Cell nuclei were stained with DAPI (blue). (B) Huh7 cells, which were separately transfected with a plasmid expressing an individual
viral protein (pCAGPM-HA-JEV protein) as indicated in the figure, were treated with 1.0 mM sodium arsenite for 30 min at 37°C and subjected to an
immunofluorescence assay using mouse anti-G3BP MAb and rat anti-HA MAb, followed by AF488-conjugated anti-mouse IgG and AF594-conjugated anti-rat
IgG, respectively. Cell nuclei were stained with DAPI (blue).
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participate in the inhibition of SG formation, we tried to identify
cellular factors associated with the core protein by LC-MS/MS
analysis, as shown in Fig. 5A. Among the 30 factors with the best
scores, two SG-associated proteins, PKR (Mascot search score,

206) and Caprin-1 (Mascot search score, 153), were identified as
binding partners of JEV core protein (Fig. 5B). Although PABP1,
hnRNP Q, Staufen, G3BP, and eIF4G were also identified, their
scores were lower than those of PKR and Caprin-1. Because the

FIG 5 JEV core protein directly interacts with Caprin-1, an SG-associated cellular factor. (A) Identification of host cellular proteins associated with JEV core protein by
FOS-tagged purification and LC-MS/MS analysis. Overview of the FOS-tagged purification of cellular proteins associated with JEV core protein. (B) The 30 candidate
proteins as binding partners of JEV core protein exhibiting high scores are listed. PKR and Caprin-1 are indicated in red. (C and D) FLAG-JEV core protein and
HA-Caprin-1 were coexpressed in 293T cells, and the cell lysates harvested at 24 h posttransfection were treated with or without micrococcal nuclease for 30 min at 37°C
and immunoprecipitated (IP) with anti-HA (�HA) or anti-FLAG (�FLAG) antibody, as indicated. The precipitates were subjected to immunoblotting (IB) to detect
coprecipitated counterparts. (E) FLAG-DENV core protein was coexpressed with HA-Caprin-1 in 293T cells, immunoprecipitated with anti-HA antibody, and
immunoblotted with anti-HA or anti-FLAG antibody. (F) His-tagged JEV core protein was incubated with either GST-fused Caprin-1 or GST for 2 h at 4°C, and the
precipitates obtained by GST pulldown assay were subjected to CBB staining and immunoblotting with anti-His antibody.

JEV Core Protein Inhibits Stress Granule Formation

January 2013 Volume 87 Number 1 jvi.asm.org 495

http://jvi.asm.org


results shown in Fig. 1B suggest that the inhibition of SG forma-
tion takes place downstream of eIF2� phosphorylation, we fo-
cused on Caprin-1 as a key factor involved in the inhibition of SG
formation in cells infected with JEV. To confirm the specific in-
teraction of JEV core protein with Caprin-1, FLAG-JEV core pro-
tein and HA-Caprin-1 were coexpressed and immunoprecipitated
with anti-HA or anti-FLAG antibody in the presence or absence of

nuclease. FLAG-JEV core protein was coprecipitated with HA-
Caprin-1 irrespective of nuclease treatment (Fig. 5C and D), sug-
gesting that the interaction between JEV core protein and
Caprin-1 is a protein-protein interaction. On the other hand,
FLAG-DENV core protein was not coprecipitated with HA-
Caprin-1 (Fig. 5E), indicating that the interaction with Caprin-1
was specific for JEV core protein. Next, the direct interaction be-

FIG 6 Caprin-1 is colocalized with the JEV core protein in the perinuclear region. (A) Expression of Caprin-1 fused with AcGFP (Caprin-1-AcGFP), Caprin-1,
actin, or AcGFP in lentivirally transduced Huh7 cells was determined by immunoblotting using the appropriate antibodies. (B) Subcellular localization of
Caprin-1-AcGFP or AcGFP (green) and endogenous Caprin-1 (red) in cells treated with/without 1.0 mM sodium arsenite for 30 min at 37°C was determined by
immunofluorescence assay with rabbit anti-Caprin-1 PAb and AF594-conjugated anti-rabbit IgG. Cell nuclei were stained with DAPI (blue). (C) Huh7/Caprin-
1-AcGFP cells were infected with either JEV or DENV at an MOI of 0.5, and the cellular localizations of JEV and DENV core (red) with Caprin-1-AcGFP and
G3BP (blue) were determined at 24 h and 48 h postinfection, respectively. Cells were stained with mouse anti-G3BP MAb and rabbit anti-JEV or DENV core
protein PAb, followed by AF633-conjugated anti-mouse IgG and AF594-conjugated anti-rabbit IgG, respectively, and examined by immunofluorescence
analysis.
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tween JEV core protein and Caprin-1 was examined by a GST-
pulldown assay using purified proteins expressed in bacteria. The
His-tagged core protein was coprecipitated with GST-tagged
Caprin-1, suggesting that JEV core protein directly interacts with
Caprin-1 (Fig. 5F).

To further determine the cellular localization of Caprin-1 in
JEV-infected cells, Caprin-1 fused with AcGFP (Caprin-1-
AcGFP) was lentivirally expressed in Huh7 cells. The levels of
expression and recruitment of Caprin-1-AcGFP into SGs were
determined by immunoblotting and immunofluorescence analy-
sis, respectively (Fig. 6A and B). In cells infected with JEV, Caprin-
1-AcGFP was concentrated in the perinuclear region and colocal-
ized with core protein and G3BP, while no colocalization of the
proteins was observed in cells infected with DENV (Fig. 6C), sug-
gesting that Caprin-1 directly interacts with JEV core protein in
the perinuclear region of the infected cells.

Knockdown of Caprin-1 cancels SG inhibition during JEV
infection and suppresses viral propagation. To assess the biolog-
ical significance of the interaction of JEV core protein with
Caprin-1 in JEV propagation, the expression of Caprin-1 was sup-
pressed by using Caprin-1-specific siRNAs (siCaprin-1). Trans-
fection of siCaprin-1 efficiently and specifically knocked down the
expression of Caprin-1 with a slight increase of cell viability and
decreased the production of infectious particles in the culture su-
pernatants of cells infected with JEV, in comparison with those
treated with a control siRNA (siNC) (Fig. 7A). Furthermore, im-
munofluorescence analyses revealed that knockdown of Caprin-1
increased the number of G3BP-positive granules colocalized with
SG-associated factors, including TIA-1 and eIF4B, and inhibited
the G3BP concentration in the perinuclear region (Fig. 7B and C).
These results suggest that knockdown of Caprin-1 suppresses JEV
propagation through the induction of SG formation.

Lys97 and Arg98 in the JEV core protein are crucial residues
for the interaction with Caprin-1. To determine amino acid res-
idues of the core protein that are required for the interaction with
Caprin-1, we constructed a putative model based on the structural
information of the DENV core protein previously resolved by nu-
clear magnetic resonance (NMR) (27), as shown in Fig. 8A. Based
on this model, we selected hydrophobic amino acids, which were
located on the solvent-exposed side in the �1 and �4 helices, as
amino acid residues responsible for the binding to host proteins.
Amino acid substitutions in each of the �-helices shown in Fig. 8B
were designed in the context of FLAG-Core (M�1 and M�4), and
the interaction of FLAG-Core mutants with Caprin-1 was exam-
ined by immunoprecipitation analysis. WT and M�1, but not
M�4, core proteins were immunoprecipitated with Caprin-1
(Fig. 8B). To determine the amino acids responsible for interac-
tion with Caprin-1, further alanine substitutions were introduced
in the �4 helix, and the interaction was examined by immunopre-

FIG 7 Knockdown of Caprin-1 cancels SG inhibition during JEV infection
and suppresses viral propagation. (A) (Upper) The levels of expression of
Caprin-1 in cells transfected with either siCaprin-1 or siNC was determined by
immunoblotting using anti-Caprin-1 and anti-�-actin antibodies at 72 h post-
transfection (top panel). At 48 h posttransfection with either siCaprin-1 or
siNC, Huh7/Caprin-1-AcGFP cells were inoculated with JEV at an MOI of 0.5.
At 24 h postinfection (72 h posttransfection), the infectious titers in the super-
natants were determined by focus-forming assay in Vero cells (bottom panel,
bar graph). Cell viability was determined at 72 h posttransfection and calcu-
lated as a percentage of the viability of cells treated with siNC (bottom panel,
line graph). The results shown are from three independent assays, with the
error bars representing the standard deviations. (B) At 48 h posttransfection

with either siCaprin-1 or siNC, Huh7/Caprin-1-AcGFP cells were inoculated
with JEV at an MOI of 0.5. The cellular localizations of SG-associated factors
and JEV NS2B were determined at 24 h postinfection (72 h posttransfection)
by immunofluorescence analysis with mouse anti-G3BP MAb and rabbit anti-
NS2B PAb, rabbit anti-eIF4B PAb, or goat anti-TIA-1 PAb, followed by
AF633-conjugated anti-mouse IgG and AF594-conjugated anti-rabbit IgG or
AF594-conjugated anti-goat IgG, respectively. (C) Numbers of G3BP-positive
foci in 30 cells prepared as described in panel B were counted. Lines, boxes, and
error bars indicate the means, 25th to 75th percentiles, and 95th percentiles,
respectively. The significance of differences between the means was deter-
mined by a Student’s t test. *, P � 0.01.

JEV Core Protein Inhibits Stress Granule Formation

January 2013 Volume 87 Number 1 jvi.asm.org 497

http://jvi.asm.org


Katoh et al.

498 jvi.asm.org Journal of Virology

http://jvi.asm.org


cipitation assay. As shown in Fig. 8C, double replacing both Lys97

and Arg98 with Ala (9798A) completely abrogated the interaction
with Caprin-1. The importance of these two amino acids in the
interaction with Caprin-1 was also confirmed by GST pulldown
assay (Fig. 8D). These results indicate that Lys97 and Arg98 in the
JEV core protein are crucial for the interaction with Caprin-1.
Since G3BP has been reported to be one of the key molecules for
SG formation and interacts with several SG component molecules
including Caprin-1 and USP10 (28, 29), interactions of the core
protein with SG components were examined by immunoprecipi-
tation assay. The wild-type but not mutant 9798A core protein
was associated with G3BP1 and USP10 (Fig. 8E). In addition, the
knockdown of Caprin-1 weakened the interactions of core protein
with G3BP1 or USP10 (Fig. 8F). These findings indicate that JEV
core protein associates with several SG component molecules,
such as G3BP1 and USP10, through the interaction with Caprin-1.
Next, the role of the interaction between JEV core protein and
Caprin-1 in the suppression of SG formation was examined by
immunofluorescence analysis. Although the expression of the
wild-type JEV core protein suppressed the SG formation induced
by sodium arsenite treatment, as shown above, expression of the
9798A mutant did not (Fig. 8G), suggesting that the interaction of
JEV core protein with Caprin-1 through Lys97 and Arg98 plays a
crucial role in the inhibition of SG formation.

Interaction of the JEV core protein with Caprin-1 plays cru-
cial roles not only in viral propagation in vitro but also in the
pathogenesis in mice through the suppression of SG formation.
To further examine the biological significance of the interaction
between the JEV core protein and Caprin-1 in viral replication, we
generated a mutant infectious cDNA clone (pMWJEAT/9798AA)
of JEV encoding a mutant core protein deficient in the binding to
Caprin-1 based on pMWJEAT. First, the cellular localization of
the core protein in the 9798A mutant JEV-infected cells was ex-
amined by immunofluorescence analysis. The 9798A mutant core
protein, as well as the wild-type core protein, was localized in the
nucleus and the perinuclear region (Fig. 9A). However, the 9798A
mutant core protein was not colocalized with Caprin-1, in con-
trast to the wild-type core protein. The sizes of infectious foci in
Vero cells infected with the 9798A mutant were significantly
smaller than those infected with the wild-type JEV (Fig. 9B). Fur-
thermore, the infectious titers in C6/36 and Vero cells infected
with the 9798A mutant were 6.1- and 12.6-fold lower than those
infected with wild-type JEV at 48 h postinfection, respectively
(Fig. 9C), suggesting that interaction of the JEV core protein with
Caprin-1 plays crucial roles in the propagation of JEV in both
insect and mammalian cells. Cells infected with the 9798A mutant

induced SGs containing both G3BP and Caprin-1, in contrast to
the accumulation of G3BP in the perinuclear region observed in
those infected with the wild-type JEV (Fig. 9D). The numbers of
foci in cells infected with the 9798A mutant were higher than those
in cells infected with the wild-type JEV (Fig. 9E), indicating that
the interaction of the JEV core protein with Caprin-1 is crucial for
the suppression of SG formation. Finally, we examined the bio-
logical relevance of the interaction of JEV core protein with
Caprin-1 in viral replication in vivo. Infectious particles were re-
covered from the cerebrums of ICR mice inoculated with wild-
type JEV but not from those inoculated with the 9798A mutant
(Fig. 9F). In addition, all 10 mice had died by 12 days postinocu-
lation with the wild-type JEV, while only 1 mouse had died at day
10 postinoculation with the 9798A mutant (Fig. 9G). Collectively,
these results suggest that the interaction of JEV core protein with
Caprin-1 plays crucial roles not only in viral replication in vitro
but also in pathogenesis in mice through the suppression of SG
formation.

DISCUSSION

Viruses are obligatory intracellular parasites, and their life cycles
rely on host cellular functions. Many viruses have evolved to in-
hibit SG formation and thereby evade the host translation shutoff
mechanism and facilitate viral replication (6, 30), while some vi-
ruses co-opt molecules regulating SG formation for viral replica-
tion (11, 31). The vaccinia virus subverts SG components to gen-
erate aggregates containing G3BP, Caprin-1, eIF4G, eIF4E, and
mRNA of the virus, but not of the host, in order to stimulate viral
translation (11). Replication, translation, and assembly of trans-
missible gastroenteritis coronavirus, a member of the Coronaviri-
dae family, are regulated by the interaction of polypyrimidine
tract-binding protein and TIA-1 with viral RNA (31). HIV-1 uti-
lizes Staufen1, which is a principal component of SG, in the viral
RNA selection to form ribonucleoproteins (RNPs) through inter-
action with Gag protein, instead of SG translation silencing (8). In
the case of flaviviruses, TIA-1 and TIAR bind to the 3= untrans-
lated region (UTR) of the negative-stranded RNA of WNV to
facilitate viral replication (16), and G3BP1, Caprin-1, and USP10
interact with DENV RNA, although the biological significance of
these interactions remains unknown (26). In this study, we have
shown that JEV infection suppresses SG formation by the recruit-
ment of several effector molecules promoting SG assembly, in-
cluding G3BP and USP10, to the perinuclear region through the
interaction of JEV core protein with Caprin-1. Furthermore, a
mutant JEV carrying a core protein incapable of binding to

FIG 8 Lys97 and Arg98 in the JEV core protein are crucial residues for the interaction with Caprin-1. (A) Putative structural model of the core protein homodimer
of JEV deduced from that of DENV obtained from the Protein Data Bank (accession number 1R6R) by using PyMOL software. The two � helices (�1 and �4)
are indicated. (B) FLAG-Core mutants in which the hydrophobic amino acid residues in the �1 helix (M�1) or �4 helix (M�4) were replaced with alanine were
coexpressed with HA-Caprin-1 in 293T cells, immunoprecipitated (IP) with anti-HA antibody, and examined by immunoblotting (IB) with anti-HA or
anti-FLAG antibody. (C) FLAG-Core mutants in which the Met78, Lys79, Lys85, Arg86, Ile92, and Asp93 (7893A) or Lys97 and Arg98 (9798A) in the �4 helix domain
were replaced with alanine were coexpressed with HA-Caprin-1 in 293T cells and examined as described in panel B. (D) The His-tagged JEV core protein (WT
or 9798A) was incubated with GST-fused Caprin-1 for 2 h at 4°C, and the precipitates obtained by GST pulldown assay were subjected to immunoblotting with
anti-His antibody. (E) FLAG-Core (WT or 9798A) was coexpressed with HA-G3BP1 or HA-USP10 in 293T cells, immunoprecipitated with anti-HA antibody,
and immunoblotted with anti-HA and anti-FLAG antibodies. (F) FLAG-JEV Core was coexpressed with HA-G3BP1 or HA-USP10 in 293T cells transfected with
either siCaprin-1 or siNC at 72 h posttransfection, immunoprecipitated with anti-FLAG antibody, and immunoblotted with anti-HA and anti-FLAG antibodies.
The cell lysates were also subjected to immunoblotting with anti-Caprin-1 and anti-�-actin antibodies to evaluate the knockdown efficiency of Caprin-1. (G) The
cellular localizations of G3BP and FLAG-Core (WT or 9798A) were determined at 24 h posttransfection after treatment with 1.0 mM sodium arsenite for 30 min
at 37°C by immunofluorescence analysis with mouse anti-G3BP MAb and rabbit anti-FLAG PAb, followed by AF488-conjugated anti-mouse IgG and AF594-
conjugated anti-rabbit IgG, respectively. Cell nuclei were stained with DAPI (blue).
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Caprin-1 exhibited reduced replication in vitro and attenuated
pathogenicity in mice.

G3BP is one of the key molecules involved in the SG aggrega-
tion process and self-oligomerizes in a phosphorylation-depen-
dent manner to sequester mRNA in SGs (4). Therefore, G3BP
knocked down cells (6) and G3BP knockout mouse embryonic

fibroblast cells are deficient in the SG formation. In addition,
G3BP sequestration inhibits SG formation in response to arsenite
treatment (32). Caprin-1, known as RNA granule protein 105 or
p137 (33), also participates in SG formation through phosphory-
lation of eIF2� (28) and is ubiquitously expressed in the cyto-
plasm. Caprin-1 regulates the transport and translation of mRNAs

FIG 9 Interaction of JEV core protein with Caprin-1 plays crucial roles not only in viral replication in vitro but also in pathogenesis in mice through the
suppression of SG formation. (A) Huh7/Caprin-1-AcGFP cells were infected with JEV (WT or 9798A mutant) at an MOI of 1.0, and the cellular localizations of
Caprin-1-AcGFP and JEV core protein were determined at 24 h postinfection by immunofluorescence analysis with rabbit anti-core PAb and AF594-conjugated
anti-rabbit IgG. Cell nuclei were stained with DAPI (blue). (B) Focus formation of JEV (WT or 9798A mutant) in Vero cells incubated in methylcellulose overlay
medium at 48 h postinfection. The infectious foci were immunostained as described previously (20). (C) Growth kinetics of JEV (WT or 9798A mutant) in C6/36
and Vero cells infected at an MOI of 0.1. Infectious titers in the culture supernatants harvested at the indicated times were determined by focus-forming assays
in Vero cells. Means of three experiments are indicated. (D) Huh7/Caprin-1-AcGFP cells were infected with either WT or 9798A at an MOI of 0.5, and cellular
localizations of Caprin-1-AcGFP, G3BP (blue), and JEV NS2B (red) were determined at 24 h postinfection by immunofluorescence analysis with mouse
anti-G3BP MAb and rabbit anti-NS2B PAb, followed by AF633-conjugated anti-mouse IgG and AF594-conjugated anti-rabbit IgG, respectively. (E) Numbers
�of G3BP-positive foci in 30 cells prepared as described in panel D were counted. Lines, boxes, and error bars indicate the means, 25th to 75th percentiles, and
95th percentiles, respectively. The significance of differences between the means was determined by Student’s t test. *, P � 0.01. (F) Infectious titers in the
cerebrums of mice at 7 days postintraperitoneal inoculation with 5 � 104 FFU/100 �l of either WT or 9798A virus were determined in Vero cells. The means of
titers in the homogenates of the cerebrums from three mice are indicated. The detection limit is 102 FFU/g of cerebrum. (G) Percentages of surviving mice (n �
10) after intraperitoneal inoculation with 5 � 104 FFU of either WT or 9798A virus. Mock, inoculation with DMEM.
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of proteins involved in the synaptic plasticity in neurons (34) and
cellular proliferation and migration in multiple cell types (28)
through an interaction with G3BP. USP10, another SG-associated
molecule, also interacts with G3BP and forms the G3BP/USP10
complex (29), suggesting that several SG-associated RBPs partic-
ipate in the formation of a protein-protein network. In this study,
the JEV core protein was shown to directly interact with Caprin-1,
to sequester several key molecule complexes involved in SG for-
mation to the perinuclear region in cells infected with JEV, and to
facilitate viral propagation through the suppression of SG forma-
tion.

Flaviviruses replicate at a relatively low rate in comparison with
most of the other positive-stranded RNA viruses, and thus rapid
shutdown of host cellular protein synthesis would be deleterious
for the viral life cycle. In cells infected with JEV, several SG com-
ponents were colocalized with the core protein in the perinuclear
region, while in those infected with WNV or DENV, SG compo-
nents were accumulated in a replication complex composed of
viral RNA and nonstructural proteins. In addition, the phosphor-
ylation of eIF2� induced by arsenite was completely canceled by
the infection with WNV or DENV, whereas the suppression of the
phosphorylation was limited in JEV infection (15). Incorporation
of the nascent viral RNA into the membranous structure induced
by viral nonstructural proteins prevents PKR activation and in-
hibits SG formation in cells infected with WNV (17). In cells in-
fected with hepatitis C virus (HCV), which belongs to the genus
Hepacivirus in the family Flaviviridae, induction of SG formation
was observed in the early stage of infection, in contrast to the
inhibition of the arsenite-induced SG formation in the late stage
(35). Several SG components, such as G3BP1, PABP1, and
ataxin-2, were colocalized with HCV core protein around lipid
droplets (35), and G3BP1 was also associated with the NS5B pro-
tein and the 5= terminus of the minus-strand viral RNA (36) to
mediate efficient viral replication. Collectively, these data suggest
that flaviviruses have evolved to regulate cellular processes in-
volved in SG formation through various strategies.

PKR is one of the interferon-stimulated genes and plays a cru-
cial role in antiviral defense through phosphorylation of eIF2�,
which leads to host translational shutoff (37, 38). In the early stage
of flavivirus infection, both positive- and negative-stranded RNAs
transcribe at low levels, while genomic RNA predominantly syn-
thesizes in the late stage of infection (39). It was shown that acti-
vation of PKR was suppressed (40) or only induced in the late
stage of WNV infection (41) and impaired by the expression of
HCV NS5A (42–44). Very recently, JEV NS2A was shown to sup-
press PKR activation through inhibition of dimerization of PKR in
the early stage but not in the late stage of infection (45). In this
study, we have shown that JEV core protein interacts with
Caprin-1 and inhibits SG formation downstream of the phos-
phorylation of eIF2� in the late stage of infection, suggesting that
JEV has evolved to escape from host antiviral responses in the
multiple stages of viral replication by using structural and non-
structural proteins.

The flavivirus core protein is a multifunctional protein in-
volved in many aspects of the viral life cycle. In addition to the
formation of viral nucleocapsid through the interaction with viral
RNA (as a structural protein) (46), flavivirus core proteins inter-
act with various host factors, such as B23 (47), Jab1 (48), hnRNP K
(49), and hnRNP A2 (23), and regulate viral replication and/or
modify the host cell environment (as a nonstructural protein).

Although further investigations are needed to clarify the precise
mechanisms underlying the circumvention of SG formation
through the interaction of JEV core protein with Caprin-1, leading
to efficient propagation in vitro and pathogenicity in mice, these
findings could help not only to provide new insight into strategies
by which viruses escape host stress responses but also to develop
novel antiviral agents for flavivirus infection.
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