
The Rockefeller University Press
J. Gen. Physiol. Vol. 141 No. 1  3–9
www.jgp.org/cgi/doi/10.1085/jgp.201210929 3

C o m m e n t a r y

If the whole is more than the sum of its parts, a com-
plete description of any system will require delineat-
ing the separate contributions of each individual part, 
as well as the contributions of interactions between 
these different components. The need to consider con-
text-dependent interactions when describing a system 
also holds true in the molecular world. For instance, the 
BK voltage– and ligand-activated K+ channel, compris-
ing a central pore (P), together with voltage-sensing 
(V) and substrate-binding (S) gating domains, represents 
a modular molecular system able to integrate inputs  
in the form of chemical and electrical potentials to pro-
duce a precise and tunable physiological response. The 
output of the system corresponds to the overall chemi-
cal free energy of channel gating ( ∆GC

net ), reflecting the 
transition from the resting closed state, where both sig-
nals are off, to the final open state, where both voltage 
and ligand concentration are at saturating levels. This 
output is a reflection of the entire domain interaction 
network in which domain transitions are coupled to 
pore opening. A full description of ∆GC

net  in this system, 
therefore, requires delineating the energetic contribu-
tions of the individual P, V, and S domains of all possible 
PV, PS, and VS pairwise domain interactions and of 
the third-order PVS interaction involving the three do-
mains. Defining these energetic contributions requires 
the formulation of a channel gating model that ade-
quately describes the function of the polymodal ion 
channel of interest. Because such models are proposed 
only after painstaking steady-state and transient kinetics 
analyses have been performed, the identification of a 
shortcut for obtaining these first- and higher-order con-
tributions to ∆GC

net  would be a welcome development. 
In this issue of The Journal of General Physiology, two 
papers, one by Chowdhury and Chanda and the other 
by Sigg, present rigorous thermodynamic formalisms for 
the analysis of polymodal voltage- and ligand-dependent 
ion channels that enable accurate determination of the 
net free energy of channel gating, along with all possi-
ble pairwise interaction energies between the P, V, and 
S domains in a model-free manner.
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A context-dependent interaction formalism  
for energy parsing
The problem of energy parsing in complex modular 
protein systems can, in principle, be addressed using a 
conceptual framework that considers the hierarchy of 
domain organization. Asking how one would design a 
voltage- and ligand-activated ion channel from scratch 
would help in formulating such formalism and would 
set the stage to understand the importance of Chowdhury 
and Chanda’s and Sigg’s findings. Consider first a sim-
ple channel comprising only a pore domain that under-
goes a conformational transition between two states, 
one closed (C) and one open (O), as dictated by the 
equilibrium constant L (Fig. 1 A). If the pore contains a 
gating charge, then the voltage-dependent Boltzmann 
equation would adequately describe channel gating, 
where pore opening and pore gating charge movement 
occur concomitantly. In this simple channel, Lo, the 
chemical component of L at 0 mV ( GP), deter-
mines ∆GC

net . If one next adds either a voltage-sensing 
or substrate-binding domain to the pore, giving rise to  
a voltage-gated and ligand-gated ion channel, respec-
tively, then ∆GC

net  would be parsed to the individual 
intrinsic contributions of the pore (P) domain and 
either the voltage-sensing (V) or substrate-binding (S) 
domains and of the PV or PS pairwise interaction free 
energy between them. The schemes depicted in Fig. 1 B 
suggest one possible model for how such coupling 
might be achieved. In these schemes, both the V and 
S domains undergo two-state transitions, with the V 
domain switching between the resting (R) and acti-
vated (A) states, and the S domain cycling between the 
unbound (U) and bound (B) states, as described by 
the respective J and K equilibrium constants.1 Voltage 
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1In these and later schemes, a pore-centric approach is adopted. Model 
channel states are annotated as either closed (C) or open (O), with sub-
script indices representing the states of the other two V and S domains—
whether R or A, or U or B—for the respective V and S domains. Such a 
pore-centric description directly relates to the final output of the channel 
evaluated in the G-V measurements.
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4 Energy parsing in polymodal ion channel systems

a, c, d, and e interdomain interaction constants, thus 
yielding a full description of the polymodal BK channel. 
The net chemical equilibrium constant for channel  
gating in this case, KC

net , represents the concentration 
ratio of the resting CRU state, where both V and S do-
mains are not activated, and the fully open OAB end 
state, where both V and S signals are saturated (red 
dashed arrow in Fig. 1 C). The following expression is 
obtained for K KC

net
C
net:  = LoJo

4Ka
4c4d4e4(a/c)4, which can 

also be written as:

		

∆G ln K ln L J K ln c d e ln a cC
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It can be seen that ∆GC
net  is indeed parsed to the sum 

of the individual first-order contributions of the P, V, 
and S domains and to all possible second- and third-
order interactions thereof. By using the energy parsing 
conceptual framework delineated above, a polymodal 
channel with up to n gating domains can be constructed. 
∆GC

net  for such a channel is parsed to the sum of all n 
individual domain contributions and to all their possible 
higher-order contributions up to the nth-order contribu-
tion, reflecting the mutual interaction of the pore and the 
other n1 gating domains. The context-dependent inter-
action formalism for energy parsing in a polymodal ion 
channel presented here is reminiscent of that pre
viously used to evaluate the contribution of residue in-
teraction networks to protein stability (Horovitz and 
Fersht, 1992) or channel gating (Sadovsky and Yifrach, 
2007). Such formalism, applied here to domain-level 
organization, is based on thermodynamic consider-
ations and requires knowing only the list of parts com-
prising the channel and is thus model independent. In 
principle, although the context-dependent energetic 
contributions to ∆GC

net  can be evaluated experimentally 
using high-order thermodynamic double mutant cycle 
analysis (Horovitz and Fersht, 1990), such an analysis is 
not straightforward to perform at the domain level. 
How to evaluate these contributions is what concerns 
Chowdhury, Chanda, and Sigg.

The Chowdhury and Chanda analysis  
for dually activated channels
The authors’ papers offer powerful thermodynamic tools, 
based on Wyman’s seminal linkage analysis, to address 
energy parsing in polymodal ion channels, allowing for 
the model-free evaluation of the output of the whole 
system and of the contributions of the individual system 
components and their interactions. Linkage analysis 
is a thermodynamic formalism originally developed and 
applied to describe the effects of two different ligands 
of a macromolecule on each other’s binding, as in the 

application or ligand binding would affect both the open 
and closed conformations of the channel, as in the 
Monod–Wyman–Changeux allosteric model (Monod  
et al., 1965). In both of these channel systems, ∆GC

net  is 
described by one additional intrinsic parameter, either 
the Ka or Jo equilibrium constant (GS or GV, respec-
tively), aside from the contribution of the pore (Lo), and 
an additional coupling constant describing the interac-
tion of the pore domain with either the ligand-binding 
domain (c) or the voltage-sensing domain (d), as appro-
priate. In energetic terms, these constants are written as 
2GPS = 4RTlnc and 2GPV = 4RTlnd, where the di-
mension 2 in the G notation is added to indicate the 
contribution of the second-order interaction between 
two domains, as opposed to the first-order GP, GV, 
and GS contributions of the individual P, V, and S do-
mains. The final stage in constructing a dually voltage- 
and ligand-activated channel involves the addition of  
a third voltage-sensing or ligand-binding domain, as re-
quired. Energy parsing for this three-component (P, V, 
and S) channel system must consider all possible inter-
actions along the allosteric network.

The gating model of the BK voltage– and ligand- 
activated K+ channel (Rothberg and Magleby, 1999; 
Horrigan and Aldrich, 2002) provides an example of one 
possible description of three-domain gating (Fig. 1 C). 
In this thermodynamic cubic construct, the x, y, and z 
directions represent channel opening, Ca2+ binding, 
and voltage-sensor transitions, respectively. To fully de-
scribe this system, two additional interaction constants 
are needed, namely the e constant, reflecting the inter-
action between the V and S domains (left face of the 
cube; Fig. 1 C), and the a constant, reflecting the inter-
action between the P and S domains, much as constant 
c does, yet accounting for the voltage-sensor domain in 
the activated conformation (back face of the cube). 
Such context-dependent interaction allows the evalua-
tion of the mutual coupling between the three P, V, and 
S domains of the polymodal channel (3GPVS). This 
third-order interaction can be viewed as the effect of 
the third domain on the magnitude of coupling between 
the other two domains, as given by the a/c ratio ob-
tained by comparing the interaction energies deter-
mined for any two opposing faces of the cube.2 The 
equilibrium constants of any transition along the 3-D 
construct of Fig. 1 C can be expressed using the appro-
priate L, J, and K domain equilibrium constants and the 

2For the BK channel, it is usually assumed that no context-dependent 
interaction exists, meaning that there is no third-order contribution to 
∆GC

net  (a/c = 1). This is frequently explained by a lack of intersubunit 
interactions between the voltage-sensing and ligand-binding domains. 
Coupling between the V and S domains, as reflected by the e interaction 
constant, is thought to be mediated by the pore domain of the same sub-
unit. However, coupling between these domains can principally be medi-
ated through the pore in both the closed and open conformations (left 
and right faces of the cube in Fig. 1 C), giving rise to a state-dependent 
interaction of any two domains.
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respective Q-V and Y -S (with Y  being the fractional 
ligand saturation) curves using the median metrics; i.e., 
the median voltage (VM) and median ligand concentra-
tion (Sm) directly read off the appropriate curve, pro-
vided that the total number of channel gating charges 
(Qmax) and ligand-binding sites (Nmax) is known. No 
model is required for evaluating ∆GC

V  (= QmaxFVM) or 
∆GC

S  (= NmaxRTlnSm) in this manner (Chowdhury and 
Chanda, 2012). In applying their strategy to the BK 
channel, the authors demonstrate that median metrics 
analysis works; essentially identical ∆GC

net  values were 
obtained when they were calculated according to the 
Horrigan and Aldrich (2002) model parameters or 
based on the sum of the appropriate ∆GC

V  and ∆GC
S  gating 

energies of the voltage and ligand pathways.
Chowdhury and Chanda next evaluate the overall 

free energy of interaction between the voltage and ligand 
pathways, ∆GV S−

int , again in a model-independent man-
ner. As the authors show, ∆GV S−

int  is a manifestation of 
heterotropic linkage between the two signals. Its value 
can be obtained by comparing any two parallel transi-
tions along the thermodynamic cycle presented in Fig. 2 
with a given pair of parallel transitions addressing the 

Bohr effect in hemoglobin (Wyman, 1964; 1967). 
Chowdhury and Chanda (2013) extend this formalism 
to the case of electrochemical equilibria, as in the BK 
model allosteric channel. Initially considering whole 
system output ( ∆GC

net ), the authors present a rigorous 
thermodynamic description of the free energy (G ) for 
a voltage- and ligand-activated channel system. They 
show that G  is a thermodynamic state function with re-
spect to voltage (V ) and ligand concentration (S or X in 
the authors’ notation), and that the overall free energy 
for this system ( ∆GC

net ) can be parsed into two separate 
contributions corresponding to the voltage-dependent 
( ∆GC

V ) and ligand-dependent ( ∆GC
S ) pathways. Assum-

ing that the signals are turned on one after the other, 
there are two ways to switch from the resting closed state 
to the fully open end state, as described in the thermo-
dynamic cycle in Fig. 2 (adopted from Fig. 2 of both the 
Chowdhury and Chanda, 2013, and Sigg, 2013, papers). 
Along Path I, all gating charges are first moved, and 
then ligands can bind. Along Path II, the channel is first 
saturated with ligands, and then gating charge move-
ment occurs. Regardless of the path taken, these contri-
butions can be accurately evaluated directly from the 

Figure 1.  Constructing a voltage- and ligand-activated 
BK-like ion channel. (A) A two-state channel with only 
a pore (P) domain undergoing a conformational transi-
tion between closed (C) and open (O) states, as governed 
by the L equilibrium constant (L = Loexp(zV/RT)). 
(B) The same channel, to which a voltage-sensing (V) or 
ligand-binding (S) gating domain has been added. Tran-
sitions of voltage sensors between rest (R) and activated 
(A) states are manifested by the domain equilibrium con-
stant J (= Joexp(zV/RT)), whereas K ( = Ka[S], where Ka 
is the association constant) reflects the transition of the S 
domain between the unbound (U) and bound (B) states. 
The fourth power in the equilibrium or interaction con-
stants reflects the tetrameric organization of the voltage- 
or ligand-gated channels undergoing independent and 
sequential gating charge and ligand-binding transitions, 
respectively (Monod et al., 1965). The d and c interdo-
main interaction constants reflect the ratio of the equi-
librium constants for V activation in the open and closed 
states (d), or the ratio of ligand affinity to the open and 
closed conformations (c). Resting and final open states 
are colored red. (C) The same channel as in B to which 
a voltage-sensing or ligand-binding gating domains has 
been added (as required) to yield a dually voltage- and 
ligand-activated BK-like channel. The interaction con-
stant e represents the coupling between the voltage and 
ligand-binding domains (left face of the cube), whereas 
the a coupling constant represents the coupling between 
the pore and the ligand-binding domain, where the V do-
main has already been activated (back face of the cube). 
The dashed red arrow indicates the overall channel equi-
librium constant (KC

net), indicative of the resting to final 
open-state transition (CRU→OAB transition). The equi-
librium constants of any transition along the thermody-
namic cube are indicated next to the arrows. Arrows in 
these schemes are drawn to indicate possible paths that 
can be taken, although all represent equilibrium between 
the states connected.
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horizontal transitions (CRU→OAU and CRB→OAB) can be 
experimentally measured and compared to obtain 
∆GV S−

int  (= QmaxFVM, the context dependence of gating 
charge translocation), whereas the two vertical legs are 
“model-rooted” and can as well be used to evaluate 
∆GV S−

int . In the framework of this model, and assuming 
no context-dependent interactions (a/c = 1), this path-
way-dependent coupling is determined by 4RT ln(ce), 
as obtained by the ratio of equilibrium constants of  
the two vertical transitions of the gray cycle. Thus, the 
overall pathway-dependent coupling is determined  
by the sum of second-order interactions of the ligand-
binding domain with the pore (c) and voltage-sensing 
(e) domains.3 Using the ratio of ZOA/ZCR partition func-
tions that sum all OA and CR states lying along the verti-
cal transitions of the gray cycle in Fig. 1 C (all states  
with a different number of ligands bound), the au-
thors rigorously show that the median metrics for eval-
uating ∆GV S−

int  is indeed a function of the ce product 
of interaction constants, thus linking experiment to 
model observables.

Using the median metrics analysis of Q-V curves in 
the presence or absence of saturating [Ca2+], generated 
using the Horrigan and Aldrich (2002) model parame-
ters, Chowdhury and Chanda demonstrate that practi-
cally identical negative values are obtained for ∆GV S−

int , 
as compared with the reported c and e interaction 
parameters of the BK channel (Horrigan and Aldrich, 
2002). The minus sign of ∆GV S−

int  indicates a positive 
heterotropic linkage between the two signals, meaning 
that gating charge movement is facilitated by ligand 
binding, and the other way around. Thus, both voltage 
and ligand pathways act synergistically to open the BK 
channel pore.

Chowdhury and Chanda’s findings described thus far 
addressed the overall free energy of the system and the 
overall interaction energy between the component volt-
age and ligand pathways. From a thermodynamic point 
of view, these two overall quantities are obtained by con-
sidering the two resting and open-edge states of the sys-
tem, which are experimentally accessible under extreme 
conditions. However, as indicated by Chowdhury and 
Chanda, a full description of the free energy landscape 
(G) of a dually activated BK-like channel requires mea-
suring charge translocation Q-V curves at different ligand 
concentrations and ligand binding Y -S curves at differ-
ent voltages. Although Q-V curves can be easily mea-
sured at different ligand concentrations, measuring  
Y -S curves at different voltages is not straightforward. 
To overcome this challenge, the authors use linkage 

context dependence of signal activation. For example, 
the upper and lower transitions reflect the switching  
on of the voltage signal once the ligand pathway is off 
(upper transition) and a second time when the ligand 
signal is on (lower transition). The free energy differ-
ence between these two energies is thus a measure of the 
degree of synergy or coupling between the two pathways. 
If the two pathways are uncoupled, then no context- 
dependent interaction exists and ∆GV S−

int  = 0. In practical 
terms, the magnitude of ∆GV S−

int  can be determined from 
the shift in the Q-V curve between zero and saturating 
ligand concentration, as evaluated by VM (∆GV S−

int  = 
QmaxFVM).

The manner by which Chowdhury and Chanda calcu-
late ∆GV S−

int  is model independent. However, understand-
ing the true meaning of this parameter and defining 
what contributes to the coupling inherent therein re-
quire that a model be considered. In the context of the 
BK channel gating model (Fig. 1 C), the Chowdhury, 
Chanda, and Sigg model–independent cycle presented in 
Fig. 2 corresponds to the diagonal gray-shaded cycle 
drawn at the center of the thermodynamic cube in Fig. 1 C, 
offering a way to understand the connection between  
experiment and model. In this gray-shaded cycle, the two 

3It is interesting to note that when context-dependent interactions are not 
neglected, ∆GV S−

int  = 4RTln(ce)(a/c); i.e., the overall pathway coupling is 
greater (or smaller depending on the value of the (a/c) ratio) than the 
sum of the coupling free energies because of the interaction of the S 
domain with the V (e) and P domains (c). This is a manifestation of non-
additivity, a characteristic property of modular hierarchical systems.

Figure 2.  A thermodynamic linkage cycle for assessing coupling 
between the voltage- and ligand-dependent pathways (adopted 
from Fig. 2 of both the Sigg, 2013, and the Chowdhury and 
Chanda, 2013, papers). The cycle presents the four extreme 
channel states populated in the absence of any signal (top left, 
the resting state), where either of the voltage or the ligand signals 
are saturating (top right and bottom left corners, respectively), 
or where both signals are turned on, giving rise to the fully open 
end state (bottom right). The states are either described sche-
matically, as in the Sigg paper (with the P, S, and V domains desig-
nated by their respective L, K, and J equilibrium constants), or by 
text, as in the Chowdhury and Chanda paper. For each transition,  
the corresponding energies and work functions are indicated above 
the arrows.
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energy parsing for such a system requires, in addition  
to defining core domain energies, that the PS, PV, and 
VS interaction energies (the respective c, d, and e con-
stants) be determined (Fig. 1 C).

At the heart of Sigg’s analysis is a thermodynamic 
linkage cycle, similar to that depicted in Fig. 1 B, that 
addresses the context-dependent activation of a principal 
domain (termed a “work function”) in response to the 
full activation of a linked component (a process re-
ferred to as a “lever operation”). Such cycles reflect the 
heterotropic linkage or interaction between the two  
domains. As before, the basic idea in using such linkage 
cycles is to choose the right cycle, where the context-
dependent activation of the principal domain is directly 
related to experimental measure, and the other pair of 
parallel transitions—the lever operation of activating 
the secondary domain—lies along the model frame-
work.4 One such cycle is described in Fig. 2, as discussed 
previously, and also addressed by Sigg. Sigg considers 
gating charge movement, as described by the horizontal 
transitions in this cycle, as a global marker of the system 
activation, with the relevant experimentally oriented 
work function describing this transition defined as WC[q], 
the electrical capacitance energy. WC[q] is the intrinsic 
energy caused by the voltage-dependent pathway (by 
definition, WC[q] = QmaxFVM   ∆GC

V ), as determined 
by Chowdhury and Chanda in their Q-V–based median 
metrics analysis. The parallel vertical transitions reflect-
ing ligand binding at saturating concentrations corre-
spond to the chemical potential lever, . Like Chowdhury 
and Chanda, Sigg shows that the context dependence 
of WC[q], in the presence or absence of saturating ligand 
concentrations (=  ∆GV S−

int ), determines the ce product 
of interaction constants.

The second work function introduced by Sigg is the 
Hill transform of the G-V steady-state measurement, 
WH(g) (WH(g) = kTln(G/(Gmax  G))).5 Sigg shows that 
WH(g) is a local marker of pore activation that deter-
mines WL, the negative value of the free energy of pore 
opening. Because WH(g) is a marker of pore activation, it 
must reflect the ratio of all the open and closed states of 
the channel (regardless of whether or not the V and S 
domains are activated), as described by all states lying at 
the respective right and left faces of the cube in Fig. 1 C. 
This is reflected by the ratio of the model open and 
closed sub-partition functions (ZO/ZC) that sums all of 
these states. Sigg shows that the ZO/ZC ratio determines 

principles and demonstrate that ligand-binding curves 
at any voltage can be calculated by measuring the Q-V 
curve at different ligand concentrations, provided that 
a ligand-binding curve at a reference voltage (usually 
at 0 mV) is available. This is another important tool that 
Chowdhury and Chanda provide, derived from their 
rigorous thermodynamic analysis. The power of the  
authors’ thermodynamic approach is further shown in 
their analysis of other channel systems, such as the HCN 
and CNG channels.

The Sigg analysis for polymodal channels
Chowdhury and Chanda restricted their analysis to  
dually activated channels, such as the BK channel. The 
paper by Sigg (2013) extends the linkage analysis used 
by Chowdhury and Chanda (2010, 2013) to the realm of 
polymodal ion channels in general and offers a com-
plete thermodynamic formalism for studying allosteri-
cally regulated polymodal ion channels, with the dually 
voltage-and ligand-activated BK channel model allo
steric protein being one example. In Sigg’s general for-
malism, pore or gating domains influence each other  
in a manner described by the basic linkage cycles pre-
sented in Fig. 1 B. Using such elementary building 
blocks, various different polymodal ion channels can be 
constructed, each with a unique interaction network. 
Sigg thus provides a thermodynamic answer to the ques-
tion posed above regarding how one would construct a 
polymodal ion channel, focusing on a particular type of 
channel in which domain linkages assume the signature 
of the Wyman linkage cycle (Fig. 1 B). As such, Sigg  
offers a thermodynamic model–dependent language 
for constructing polymodal channels that parallels the 
context-dependent and model-independent interaction 
formalism for energy parsing discussed above.

To define the language of his model, Sigg has devised 
a linkage diagram tool that concisely illustrates the con-
nectivity between the different domains, along with the 
entire pairwise interaction network of a polymodal 
channel. This linkage diagram tool, together with the 
accompanying set of rules, facilitates the identification 
of channel states that contribute to the interaction be-
tween any two domains, as delineated by the appropri-
ate model sub-partition functions. The overall partition 
function (Z) of the channel gating model is a weighted 
sum of all channel states and is a polynomial function  
of the equilibrium constants of the various channel  
domains and the interdomain interaction constants. 
The Z partition function is directly related to the free 
energy of the system, G  (= RTlnZ). Although the Sigg 
study offers analysis of complex gating models involving 
up to 20 domains, for the sake of simplicity, the discus-
sion here is restricted to the BK channel, a nine-domain 
system composed of a pore and four voltage-sensing 
and four calcium-binding domains (Scheme 2 in Sigg, 
2013). In the context of this model, a full description of 

4In practical terms, levers constrain the possible configuration space of 
the channel so that only those states that comprise a sub-scheme of the 
general model are visited, a step that proved instrumental in understand-
ing models of the BK channel (Rothberg and Magleby, 1999; Horrigan 
and Aldrich, 2002).
5WH(g) is analogous to the ln function defined by Chowdhury and Chanda 
(2010) in their -value analysis of mutational effects on cooperativity. Prin-
cipally, WH(g)-like Hill transform functions can be defined for any domain, 
provided that a specific marker for activation is available.
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WH(g) curve in the absence of ligand equals 4WD, 
whereas the height difference between the ceiling  
asymptotes of WH(g) in the presence and absence of sat
urating ligand concentrations corresponds to 4WC. 
Once determined in this manner, WC can be used to 
extract the WE interaction energy from the Q-V–based 
WC[q] linkage cycle (Fig. 2), which, as discussed earlier, 
determines the ce product of interaction constants. 
Now, all three possible interdomain interaction energies 
have been determined.

Sigg next tested the applicability of his linkage analy-
sis on an expanded 17-domain BK-like channel model 
using simulated voltage-ramp–induced ionic and gating 
current data (based on decay time constants reported 
by Horrigan and Aldrich, 2002) to generate the corre-
sponding G-V (or rather its Hill transform) and Q-V 
curves in the presence or absence of saturating calcium 
ions.7 Read directly from these graphs, such analysis 
yielded estimates for the c, d, and e coupling constants 
very close to the actual values determined by Horrigan 
and Aldrich (2002) in their detailed analysis. In addi-
tion, the Sigg paper addresses other aspects of link
age analysis, including different BK-like models having 
more than one type of voltage-sensor or Ca2+-binding 
domain, or where the pore is not assumed to be binary. 
Moreover, several issues related to the underlying  
assumptions of the model, like the assumption that  
the particles are uni-modal or that the allosteric con-
stants are modality insensitive, are also considered, as 
are the advantages and limitations of the linkage analy-
sis and its applicability to other channel types, such as 
TRP channels.

The two papers discussed here, together with two 
other papers from the Chanda group (Chowdhury and 
Chanda, 2010, 2012), enrich the channel biophysicist’s 
toolbox with powerful thermodynamic tools that can 
provide valuable information on almost everything we 
need to know to fully describe energy parsing in poly-
modal channels. Remarkably, this information is de-
rived from conventional G-V and Q-V measurements in 
an essentially model-free manner and can be rational-
ized with only elementary knowledge of the allostery of 
the system, with no knowledge of the states of a system, 
their weights, or the rate constants dictating their life 
span. Together, these two studies open the way for a 
model-independent approach to studying voltage- (and 
ligand-) dependent ion channel gating. The domain  
interaction energies obtained from using such a model-
independent approach may constrain the set of possible 
channel gating models, offering a shortcut to identify-
ing the most complete model. Furthermore, as pointed 
out by Chowdhury and Chanda, the easily accessible 

the cd product of interaction constants, thus linking 
between the experimentally measured WH(g) and the 
specific model parameters.

The two experimentally oriented work functions  
described above assume that the model interaction en-
ergies can be determined from experiments, in particular 
as the context dependence of WC[q] determines the ce 
product and WH(g) itself determines the value of the cd 
product of interaction constants. To distinguish between 
the c and d interaction constants, the context depen-
dence of WH(g) can be evaluated using the respective 
chemical () and electrical (V) potential levers. The 
relevant linkage cycles for achieving this correspond to 
the respective front and upper faces of the thermody-
namic cube shown in Fig. 1 C.6 In the front face linkage 
cycle, the context dependency of WH(g) is evaluated by 
measuring its value in the presence or absence of satu-
rating ligand concentration (), as given by the upper 
and lower pore-opening transitions. Using the parallel 
pair of model-rooted vertical transitions, this context 
dependence determines the c interaction constant, a 
value that can also be expressed as the ZOR/ZCR ratio of 
the partition functions that sum all OR and all CR states 
contributing to this coupling (all states along the right 
and left transitions of this cycle with their different 
number of bound ligands). According to Sigg’s nota-
tion, WH(g) = 4WC (WC = RTlnc). Similarly, using 
the upper face linkage cycle, the context dependence 
of WH(g) can be evaluated in the presence or absence of 
the voltage signal (V). Aided by a parallel pair of verti-
cal transitions, this dependence yields the d interaction 
constant, where VWH(g) = 4WD (WD = RTlnd). It can 
be shown that d is determined by the ZOU/ZCU ratio of 
partition functions that sum all OU and CU states con-
tributing to this coupling and having different numbers 
of activated voltage sensors.

Now that the WH(g) linkage cycles can be shown to 
correlate between experiments and model observables, 
as demonstrated by Sigg, it becomes a straightforward 
process to obtain the interaction parameters from WH(g) 
linkage plots. Such linkage plots describe the voltage 
dependence of WH(g) in the presence and absence of 
saturating Ca2+ concentrations. WH(g) plots, by defini-
tion the Hill transform of the G-V curve, resemble the 
traditional Hill plots (log(Y /1-Y ) vs. log[S] plots) and 
exhibit two parallel “floor” and “ceiling” asymptotes, 
and a steeper rising phase in between. All the informa-
tion we are after is hidden in these plots. As can be seen 
in the WH(g) linkage plot presented in Fig. 6 of Sigg 
(2013), WC and WD along with the pore gating charge 
(qL) can be directly read off these plots. The height dif-
ference between the floor and ceiling asymptotes of the 

6The y and z directions in Fig. 1 C, respectively, describe saturating ligand 
concentrations and strong depolarization; they correspond, by definition, 
to the  and V levers.

7In generating his simulated data, Sigg uses a slow voltage-ramp protocol 
instead of the conventional step protocol. The major advantage of using 
such a protocol is that the entire (quasi-) equilibrium G-V and Q-V curves 
can be obtained with a single sweep.
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interaction energies obtained from such an approach 
may be useful in scanning mutagenesis analysis aimed 
at identifying the network of residues involved in medi-
ating interdomain communication.

With the wealth of information derived from Hill 
transformation of G-V curves, including the intrinsic 
pore-opening free energy and the overall system energy 
accurately evaluated from the Q-V curve, one might 
ponder the fate of the traditional Hill-like Boltzmann 
equation. Given the thermodynamics studies of Sigg 
and of Chowdhury and Chanda, it seems that we no 
longer need the poor energy estimates usually derived 
from the V1/2 metrics of the two-state channel model, 
making use of the Boltzmann equation unnecessary 
(Chowdhury and Chanda, 2012). However, despite its 
weaknesses, we can still find some use for the Boltzmann 
equation. First, this equation can be used for the fast 
screening of mutations in the search for those that  
affect cooperativity between channel subunits, as re-
flected by the z slope of the equation. Second, the 
Boltzmann equation still provides a framework defini-
tion to connect with a specific gating model, revealing 
the true meaning of the Hill coefficient for channel 
gating transitions (Yifrach, 2004). Lastly, the Hill equa-
tion is still with us, almost 50 years since Wyman offered 
his ideas on thermodynamic linkage that form the basis 
for all of the concepts considered here.

On a final note, the Sigg (2013) and Chowdhury and 
Chanda (2013) papers present complete thermody-
namic analyses that when used to study complex mo-
lecular systems, like polymodal ion channels, yield valuable 
information from simple measurements and with no 
model in mind. Such thermodynamics spectacles allow 
one to examine the system at its extreme ends but ignore 
the details and properties associated with the numerous 
intermediate states, usually studied under the realm of 
kinetics analyses; but still, the advances considered can 
reveal much about the system as a whole, about its parts 
and about what is more than “the sum of its parts”—all of 
their synergistic interactions.

Work in my lab is supported by the Israel Science Foundation 
(grant u88/12).
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