Table 2.
Country of Origin |
Doctor |
|||||||||
---|---|---|---|---|---|---|---|---|---|---|
|
Model I |
Model II |
Model III |
Model IV |
Modul V |
|||||
OR (95% CI) | P | OR (95% CI) | P | OR (95% CI) | P | OR (95% CI) | P | OR (95% CI) | P | |
General practitioner | ||||||||||
Denmark |
1.00 |
|
1.00 |
|
1.00 |
|
1.00 |
|
1.00 |
|
Turkey |
3.91 (2.61-5.86) |
<.000 |
3.86 (2.54-5.87) |
<.000 |
4.56 (2.91-7.13) |
<.000 |
4.25 (2.38-7.60) |
<.000 |
4.49 (1.92-6.32) |
<.000 |
Turkey Descendants |
2.37 (1.57-3.58) |
<.000 |
1.72 (1.02-2.90) |
.041 |
1.91 (1.13-3.26) |
.017 |
1.30 (0.69-2.42) |
.416 |
1.19 (0.64-2.23) |
.579 |
Specialist doctor | ||||||||||
Denmark |
1.00 |
|
1.00 |
|
1.00 |
|
1.00 |
|
1.00 |
|
Turkey |
8.73 (4.99-15.26) |
<.000 |
10.17 (5.65-18.30) |
<.000 |
12.29 (6.53-23.14) |
<.000 |
9.31 (4.02-21.58) |
<.000 |
6.74 (2.84-16.01) |
<.000 |
Turkey Descendants |
2.73 (1.44-5.18) |
.002 |
6.10 (2.51-14.19) |
<.000 |
7.31 (2.91-18.36) |
<.000 |
5.92 (2.06-16.96) |
.001 |
4.97 (1.72-14.41) |
.003 |
Hospital | ||||||||||
Denmark |
1.00 |
|
1.00 |
|
1.00 |
|
1.00 |
|
1.00 |
|
Turkey |
7.24 (3.96-13.24) |
<.000 |
8.28 (4.39-15.62) |
<.000 |
9.22 (4.71-18.01) |
<.000 |
7.95 (3.33-18.99) |
<.000 |
5.70 (2.33-13.93) |
<.000 |
Turkey Descendants |
4.33 (2.33-8.04) |
<.000 |
4.07 (1.84-9.03) |
.001 |
4.41 (1.95-9.94) |
<.000 |
3.12 (1.19-8.18) |
.021 |
2.48 (0.95-6.48) |
.063 |
Dentist | ||||||||||
Denmark |
1.00 |
|
1.00 |
|
1.00 |
|
1.00 |
|
1.00 |
|
Turkey |
3,15 (1.94-5.13) |
<.000 |
3.13 (1.89-5.18) |
<.000 |
3.34 (1.96-5.68) |
<.000 |
5.72 (2.85-11.45) |
<.000 |
5.20 (2.57-10.54) |
<.000 |
Turkey Descendants | 1.95 (1.18-3.22) | .010 | 1.58 (0.82-3.02) | .170 | 1.72 (0.89-3.33) | .109 | 2.28 (1.04-4.97) | .039 | 2.17 (0.996-4.74) | .051 |
95% CI indicates 95% confidence interval.
Statistically significant variables (P <.05) are depicted in bold type.
Model I: Using binary logistic regression to adjust for country of origin.
Model II: Using binary logistic regression to adjust for country of origin, sex, age.
Model III: Using binary logistic regression to adjust for country of origin, sex, age, and marital status.
Model IV: Using binary logistic regression to adjust for country of origin, sex, age, marital status, education, employment status, and household income.
Model V: Using binary logistic regression to adjust for country of origin, sex, age, marital status, education, employment status, household income, physical health symptoms, and mental health symptoms.
All estimates are adjusted for all covariates, even though some of the covariates are statistically non-significant.