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Major depressive disorder (MDD) is a widespread and
debilitating mental disorder. However, there are no bio-
markers available to aid in the diagnosis of this dis-
order. In this study, a nuclear magnetic resonance
spectroscopy–based metabonomic approach was em-
ployed to profile urine samples from 82 first-episode
drug-naïve depressed subjects and 82 healthy controls
(the training set) in order to identify urinary metabolite
biomarkers for MDD. Then, 44 unselected depressed sub-
jects and 52 healthy controls (the test set) were used to
independently validate the diagnostic generalizability of
these biomarkers. A panel of five urinary metabolite bio-
markers—malonate, formate, N-methylnicotinamide, m-
hydroxyphenylacetate, and alanine—was identified. This
panel was capable of distinguishing depressed subjects
from healthy controls with an area under the receiver
operating characteristic curve (AUC) of 0.81 in the training
set. Moreover, this panel could classify blinded samples
from the test set with an AUC of 0.89. These findings
demonstrate that this urinary metabolite biomarker panel
can aid in the future development of a urine-based diag-
nostic test for MDD. Molecular & Cellular Proteomics
12: 10.1074/mcp.M112.021816, 207–214, 2013.

Major depressive disorder (MDD)1 is a debilitating mental
disorder affecting up to 15% of the general population and
accounting for 12.3% of the global burden of disease (1, 2).
Currently, the diagnosis of MDD still relies on the subjective
identification of symptom clusters rather than empirical lab-
oratory tests. The current diagnostic modality results in a

considerable error rate (3), as the clinical presentation of
MDD is highly heterogeneous and the current symptom-
based method is not capable of adequately characterizing
this heterogeneity (4). An approach that can be used to
circumvent these limitations is to identify disease biomark-
ers to support objective diagnostic laboratory tests for
MDD.

Metabonomics, which can measure the small molecules in
given biosamples such as plasma and urine without bias (5),
has been extensively used to characterize the metabolic
changes of diseases and thus facilitate the identification of
novel disease-specific signatures as putative biomarkers (6–
10). Nuclear magnetic resonance (NMR) spectroscopy–based
metabonomic approaches characterized by sensitive, high-
throughput molecular screening have been employed previ-
ously in identifying novel biomarkers for a variety of neuro-
psychiatric disorders, including stroke, bipolar disorder, and
schizophrenia (11–13).

Specifically with regard to MDD, several animal studies have
already characterized the metabolic changes in the blood and
urine (14–19). These studies provide valuable clues as to the
pathophysiological mechanism of MDD. However, no study has
been designed with the aim of diagnosing this disease. Re-
cently, using an NMR-based metabonomic approach, this re-
search group identified a unique plasma metabolic signature
that enables the discrimination of MDD from healthy controls
with both high sensitivity and specificity (20). These findings
motivated further study on urinary diagnostic metabolite bio-
markers for MDD, which would be more valuable from a clinical
applicability standpoint, as urine can be more non-invasively
collected. Moreover, previous studies have also demonstrated
the feasibility of identifying diagnostic metabolite biomarkers of
psychiatric disorders in the urine. For example, using an NMR-
based metabonomics approach, Yap et al. (21) identified a
unique urinary metabolite signature that clearly discriminated
autism patients from healthy controls. As systemic metabolic
disturbances have been observed in the urine of a depressed
animal model, it is likely that diagnostic metabolite markers for
MDD can be detected in human urine.

Therefore, in this study, NMR spectroscopy combined with
multivariate pattern recognition techniques were used to pro-
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file 82 first-episode drug-naïve MDD subjects and 82 healthy
controls (the training set) in order to identify potential metab-
olite biomarkers for MDD. Furthermore, 44 unselected MDD
subjects and 52 healthy controls (the test set) were employed
to independently validate the diagnostic performance of these
urinary metabolite biomarkers.

EXPERIMENTAL PROCEDURES

Participants—Prior to the collection of urine samples, written in-
formed consents were obtained from all subjects. The protocol of this
study was reviewed and approved by the Ethical Committee of
Chongqing Medical University. A total of 126 depressed subjects
were recruited from the psychiatric center of the First Affiliated Hos-
pital at Chongqing Medical University. All diagnoses were carried out
according to the Structured Psychiatric Interview using DSM-IV-TR
criteria (22). The 17-item version of the observer-rated Hamilton De-
pression Rating Scale (HDRS) was used to assess depression sever-
ity (23). The depressed subjects with HDRS scores of greater than 17
were recruited. The majority of these MDD subjects (n � 95) were first
episode and drug naïve, and the remaining MDD subjects (n � 31)
were being treated with various anti-depressants. The detailed indi-
vidual demographic and clinical data of the recruited subjects are
presented in supplemental Table S1. Exclusion criteria for the MDD
subjects included any pre-existing physical or other mental disorders
and/or illicit drug use. During the same time period, 134 healthy
control subjects were recruited from the medical examination center
of First Affiliated Hospital at Chongqing Medical University. Healthy
controls were required to have no previous lifetime history of neuro-
logical, DSM-IV Axis I/II, or systemic medical illness.

The recruited MDD subjects and healthy controls were divided into
a training set and a test set. The training set, including 82 first-episode
drug-naïve MDD subjects and 82 healthy controls, was used to iden-
tify potential urinary metabolite markers for MDD; the remaining sub-
jects were used to construct the test set to independently validate the
diagnostic generalizability of these urinary metabolite markers. The
use of wholly independent samples in the validation is an essential
step prior to moving ahead with the use of identified biomarkers in
clinical studies (24).

The clinical characteristics of the recruited MDD subjects and
healthy controls (HCs) are shown in Table I. All MDD subjects scored
higher on the HDRS than healthy controls in both training and test
sets. The MDD group and HC group did not significantly differ in
terms of gender and body mass index in either set. As for age, the
MDD subjects and HCs were matched in the training set but not in the
test set.

Sample Preparation and NMR Acquisition—After overnight fasting
of the subjects, morning urine samples were collected in sterile cups
and transferred into sterile tubes. All urine samples were then centri-
fuged at 1500 g for 10 min. The resulting supernatant was divided into
equal aliquots and stored at �80 °C until later analysis.

For NMR analysis, urine samples were thawed and centrifuged at
1500 g for 10 min to remove precipitation. Then, 500 �l of urine was
mixed with 100 �l of phosphate buffer (90% D2O, 1 mM 3-trimethyl-
silyl-1-[2,2,3,3-2H4] propionate (TSP), and 3 mM sodium azide; pH
7.4). After centrifugation at 12,000 rpm for 10 min, 500 �l samples of
supernatant were transferred into 5 mm NMR tubes.

The proton spectra were collected on a Bruker AVANCE II 600
spectrometer (Bruker Biospin, Rheinstetten, Germany) operating at
600.13 MHz 1H frequency. A standard one-dimensional pulse se-
quence was used (recycle delay-90°-t1–90°-tm-90°-acquire free in-
duction decay (FID)). Typically, 64 transients and 16K data points
were collected with a spectral width of 8000 Hz, an acquisition time of
0.945 s, and a relaxation delay of 2 s. The FID was zero-filled, and an

exponential line-broadening function of 0.3 Hz was applied to the FID
prior to Fourier transformation. Urine resonance assignments were
performed according to references from existing literature and public
and in-house NMR databases (20, 25, 26).

Metabonomics Data Analysis—All spectra were manually phased
and baseline referenced to TSP resonance at �0.0. The NMR spectra
(0.5–9.5 ppm) were segmented into equal widths (0.005 ppm) using
the AMIX package (Bruker Biospin, Germany). Spectral regions of the
water and urea resonances (�4.13–6.8) were removed in order to
eliminate baseline effects of imperfect water saturation. The remain-
ing spectral segments in each NMR spectrum were normalized to the
total sum of the spectral intensity to partially compensate for differ-
ences in concentration among the numerous metabolites. The nor-
malized integral values were imported into SIMCA-p � 12.0 software
(Umetrics, Umeå, Sweden) as variables.

A supervised multivariate approach, termed orthogonal partial
least-squares discriminant analysis (OPLS-DA), was performed on the
unit-variance-scaled spectral data to visualize discrimination between
HCs and MDD subjects (27, 28). The quality of the OPLS-DA models
was described in terms of three parameters (R2X, R2Y, and Q2Y),
which were calculated by the default leave-one-out procedure. R2X
and R2Y were used to quantify the goodness-of-fit; Q2Y was em-
ployed to assess the predictability of the model (29). To rule out the
non-randomness of separation between groups, a 300-iteration per-
mutation test was performed (30). If the values of Q2 and R2 resulting
from the original model were higher than the corresponding values
from the permutation test, the model was considered valid (29).

The coefficient loading plots of the OPLS-DA model were used to
identify the spectral variables responsible for sample differentiation
on the scores plot (31). Based on the number of samples used to
construct the OPLS-DA models, a correlation coefficient of r � 0.276
was adopted as a cut-off value for statistical significance based on
the discrimination significance at the level of p � 0.01. The colors of
spectral signals projected onto the coefficient plot are proportional to
the magnitude of the metabolites attributed to the discrimination
between groups based on r values. Red coloring denotes a high
correlation, and blue coloring denotes no correlation. Moreover, be-
cause of the intrinsic quantitative property of NMR technology, the
intensity of each peak in the NMR spectra was proportional to the
concentration in the samples (the concentrations of the metabolites
were calculated relative to that of TSP, which was quantitatively
added into the samples as a reference.). Thus, the metabolites iden-
tified as contributing to the discrimination between MDD subjects and
HCs using multivariate analysis were manually calculated by means of
peak integration. The nonparametric Mann–Whitney U test was used
to detect statistically significant differences between the two groups.

Procedure for Identification of Urinary Biomarkers for MDD—The
overall workflow involved in identifying a simplified set of urinary
metabolite biomarkers for MDD is summarized in Fig. 1. Because
diagnosis based on the quantification of a small number of metabo-
lites would be more feasible and convenient in clinical practice, a
stepwise optimization algorithm based on Akaike’s information crite-
rion was employed to optimize the metabolite biomarker combination
(32). To further evaluate the diagnostic performance of this simplified
set of MDD biomarkers, a receiver-operating characteristic (ROC)
curve analysis was carried out to quantify the ability of this metabolite
biomarker panel to discriminate between MDD subjects and HCs in
both training and test sets (33).

Statistical Analysis—As appropriate, comparisons of demographic
characteristics between groups were performed using the parametric
Student’s t test, the nonparametric Mann–Whitney U test, or the
chi-square test (SPSS 13.0). A p value of less than 0.05 was consid-
ered statistically significant.
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RESULTS

Metabonomic Analysis of Urine Obtained from MDD Sub-
jects and HCs—In the training set, OPLS-DA analysis was
carried out to explore the metabolic differences between
MDD subjects and HCs. Representative 600 1H NMR spectra
of urine obtained from an MDD subject and an HC are shown
in supplemental Fig. S1. The spectrum resonances assigned
to the key metabolites are noted. The score plots of the
OPLS-DA model showed that the MDD subjects were distin-
guishable from HCs with mild overlap (R2(X) cum � 12.7%,
R2(Y) cum � 58.6%, Q2 � 47.2%; Fig. 2A). The values of the
parameters (R2X, R2Y, and Q2Y) describing the OPLS-DA
model were positive, demonstrating a robust metabolic dif-
ference between MDD subjects and HCs. Furthermore, a
permutation test was employed to validate the OPLS-DA
model. The validation plot demonstrated that the OPLS-DA
model was valid, as the original Q2 and R2 values to the right

were significantly higher than all corresponding permutated
Q2 and R2 values to the left (Fig. 2B). To independently
validate the diagnostic performance of the OPLS-DA model,
the model was then used to predict class membership in the
test set. The T-predicted scatter plot from the OPLS-DA
model demonstrated that 34 of the 44 MDD subjects and 42
of the 52 HCs were correctly predicted by the OPLS-DA
model, yielding a predictive accuracy of 79.2% (Fig. 2C).
These results show that this OPLS-DA model generated by
urinary metabolite profiling holds promise as an empirical
diagnostic tool for MDD.

Analysis of the OPLS-DA loading coefficient plots resulted
in the identification of 23 differential metabolites with a cor-
relation coefficient of r � 0.276. The relative concentration of
these 23 metabolites responsible for discriminating between
MDD subjects and HCs is presented in supplementary Table
S2. Relative to HCs, MDD subjects were characterized by
higher levels of alanine, citrate, formate, glycine, isobutyrate,
methylmalonate, nicotinate, succinate, taurine, and �-keto-
glutarate, and lower levels of 3,4-dihydroxymandelate, choline,
creatinine, dimethylamine, dimethylglycine, glyceroylphos-
phocholine, hippurate, malonate, m-hydroxyphenylacetate,
N-methylnicotinamide, phenylacetyglycine, p-hydroxyphenyl-
acetate, and trimethylamine-N-oxide (Fig. 3A). Univariate sta-
tistical analysis was then applied to validate the metabolic
changes identified through multivariate statistical analysis; the
majority of differential metabolites remained significantly
changed (Table II). In addition, the other metabolites that were
not considered as differential metabolites between the MDD
and HC groups ( r � 0.276) are listed in supplemental Table
S3. The relative concentrations of these non-differential me-
tabolites are presented in supplementary Table S4.

Identification and Validation of Urinary Metabolite Biomarker
Panel for Diagnosis of MDD—In order to identify a simplified
metabolite biomarker panel for MDD diagnosis, a stepwise
optimization algorithm based on Akaike’s information criterion
(AIC) was performed. A stepwise regression analysis demon-
strated that the most significant deviations between MDD
subjects and HCs could be described by five metabolites:
malonate, formate, N-methylnicotinamide, m-hydroxyphenyl-

FIG. 1. An overview of the NMR-based metabonomic workflow
identifying urine metabolite biomarkers for MDD.

TABLE I
Demographic and clinical details of recruited subjects

Training set Test set

HC MDD Pa HC MDD Pa

Sample size 82 82 – 52 44 –
Medication (Y/N) N N – N 13/31 –
Sex (M/F) 53/29 46/36 0.26 27/25 17/27 0.19
Age (years)b 34.2 � 10.1 32.2 � 10.3 0.20 28.8 � 9.8 34.1 � 9.1 0.01
BMIb 20.9 � 2.6 21.6 � 2.7 0.15 21.3 � 2.4 22.1 � 3.1 0.14
HDRS scoresb 0.2 � 0.6 22.4 � 4.6 0.00 0.3 � 0.7 25.7 � 3.9 0.00

HC, healthy control; MDD, major depressive disorder; Y/N, yes/no; M/F, male/female; BMI, body mass index; HDRS, Hamilton Depression
Rating Scale.

Chi-square analyses for categorical variables (sex).
a Two-tailed Student’s t test for continuous variables (age, BMI, and HDRS scores).
b Values expressed as the mean � S.D.
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acetate, and alanine. Therefore, these five biomarkers yielded
the highest predictive power for future diagnostic applications
(Fig. 3B). An ROC analysis was further performed to quantify
the diagnostic performance of this panel in both training and
test sets. The area under the curve (AUC) of this panel was
0.81 (95% confidence interval: 0.74–0.87) in the training sam-
ples (82 MDD subjects and 82 HCs) and 0.89 (95% confi-
dence interval: 0.83–0.95) in the test samples (44 MDD sub-
jects and 52 HCs) (Figs. 3C and 3D). The diagnostic
performance of this panel is similar to that of the OPLS-DA
model constructed with all the differential metabolites, dem-

onstrating the efficacy of this simplified urinary metabolite
panel in MDD detection.

DISCUSSION

MDD is a widespread and debilitating mental disorder. Cur-
rently, no biomarkers are available to aid clinicians in diag-
nosing this disorder. In this study, an NMR-based metabo-
nomic approach was employed to identify potential urinary
metabolite biomarkers for MDD. A panel consisting of five
urinary metabolite biomarkers—malonate, formate, N-methyl-
nicotinamide, m-hydroxyphenylacetate, and alanine—was

FIG. 2. Metabonomic analysis of urine samples from MDD subjects and HCs. A, the OPLS model was used to discriminate between 82
first-episode drug-naïve depressed subjects (black boxes) and 82 HCs (red dots) in the treating set. The OPLS-DA score plots show a clear
discrimination between MDD subjects and demographically matched HCs. B, permutation test showing the original R2 and Q2 values (top right)
as significantly higher than corresponding permuted values (bottom left), demonstrating the OPLS-DA model’s robustness. C, the OPLS-DA
model constructed with 82 MDD patients (black squares) and 82 HCs (red dots) was used to predict the class membership of 52 HCs (purple
triangle) from the test set; 42 of 52 HCs were correctly predicted. D, the OPLS-DA model generated with 82 MDD patients (black squares) and
82 HCs (red dots) was used to classify 44 depressed patients (blue triangles) from the test set; 34 of 44 depressed patients were correctly
classified.
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identified. This panel enabled the discrimination of MDD sub-
jects from HCs with AUCs of 0.81 and 0.89 in the training set
and test set, respectively. These findings demonstrate that
urinary metabolite biomarkers can facilitate MDD detection
and could aid the development of objective laboratory-based
diagnostic tools for MDD.

In order to capture the urinary metabolite biomarkers that
truly reflect the pathophysiologic changes inherent in the
MDD disease state, only first-episode drug-naïve MDD sub-
jects were recruited into the training set. However, given that
medication use is common in most MDD patient populations,
unselected subjects—both medicated and unmedicated—
from the test set were used to independently validate the
diagnostic generalizability of the biomarkers. Furthermore, the
MDD subjects and HCs were not age-matched in this test set.
Under these circumstances, the panel still distinguished
blinded MDD subjects from HCs with an AUC of 0.89 in the
test set, highlighting the diagnostic robustness of the bio-
marker panel.

In this study, 23 differentially expressed metabolites were
initially identified that distinguished MDD subjects from HCs.

The combination of these 23 differential metabolites enabled
discrimination between MDD subjects and HCs in the test set
with an accuracy of 79.2%. This finding suggests a robust
diagnostic performance of these 23 metabolites. However, in
clinical practice, it is not feasible, convenient, or economical
to simultaneously measure a large number of metabolites in
order to diagnose a disease state. Therefore, using a stepwise
optimization algorithm based on AIC, a simplified biomarker
panel of only five metabolites was constructed to discriminate
MDD subjects from HCs while retaining high accuracy. Be-
cause of this analytically selective strategy, the smaller bio-
marker panel is likely to be of more clinical value than those
from previous metabolomic studies on MDD (20, 34).

Among the five select biomarkers in the panel, levels of
alanine and formate were not significantly perturbed in the
univariate statistical analysis. However, these metabolites
were included in the simplified diagnostic signature, as they
were identified by multivariate analysis. This was done be-
cause the stepwise regression analysis showed that the ad-
dition of these two amino acid metabolites resulted in the
highest predictive power. This result shows the advantage of

FIG. 3. Identification and validation of urinary metabolite markers of MDD. A, to identify the spectral variables responsible for
discrimination between MDD patients and HCs, the corresponding loading coefficient plots of the OPLS-DA model were analyzed. In all, 23
metabolites were identified with a correlation coefficient of r � 0.276. Peaks in the positive direction indicate that metabolite levels are
increased in HCs; peaks in the negative direction indicate that metabolite levels are increased in MDD subjects. B, different combinations of
urine metabolites were used to construct various logistical regression models. Akaike’s information criterion (AIC) of each model is presented.
The model constructed with five select urine metabolites—N-methylnicotinamide, m-hydroxyphenylacetate, malonate, alanine, and formate—
showed the highest predictive ability. C, D, receiver operating characteristic curve analysis was performed to evaluate the diagnostic
performance of these five metabolite biomarkers, obtaining area under the curve (AUC) values of 0.81 (95% confidence interval (0.74, 0.87))
in the training set and 0.89 (95% confidence interval (0.83, 0.95)) in the test set.
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a multivariate statistical approach in detecting the potential
significance of subtle metabolic differences between experi-
mental groups related to an associated univariate analysis
(35). To better understand the underlying pathogenesis of
MDD, the differential metabolites were comprehensively ana-
lyzed in terms of in vivo metabolic activity. These metabolites
were found to be primarily involved in (i) energy metabolism,
(ii) gut microbial metabolism, and (iii) tryptophan-nicotinic acid
metabolism, which are discussed in detail below.

Energy Metabolites—Urinary levels of three tricarboxylic
acid (TCA) cycle–associated metabolites—�-ketoglutarate,
succinate, and malonate—were significantly perturbed in
MDD subjects relative to HCs. �-ketoglutarate and succinate
are the two metabolic precursors immediately preceding suc-
cinate dehydrogenase (or succinate-coenzyme Q reductase
(SQR)), the TCA cycle enzyme complex that converts succi-
nate into fumarate. The significantly increased �-ketoglutarate
and succinate levels in the urine of MDD subjects found here,
in conjunction with the significantly decreased levels of
plasma acetate, glucose, lactate, and pyruvate found in MDD
subjects from this group’s previous study (20), likely indicate
greater carbon flux through the TCA cycle accompanied by
reduced SQR activity (Fig. 4). Levels of malonate, which com-
petitively inhibits SQR, were significantly decreased in MDD
subjects relative to HCs. This decrease in malonate levels
might be a corrective feedback mechanism to compensate for
an underlying decrease in SQR activity. Moreover, the in-

creased excretion of the related metabolite methylmalonate
also observed in MDD subjects here is produced from methyl-
malonyl-CoA, a metabolite in equilibrium with succinyl-CoA.
This increased methylmalonate excretion likely indicates an
increased succinyl-CoA level in MDD subjects, which is con-
sistent with the aforementioned increased TCA cycle flux in
MDD subjects (Fig. 4).

More holistically, given that glucose is the primary carbon
source for glycolysis, this increased TCA cycle flux may be

FIG. 4. Summary of the urinary metabolites involved in disturb-
ance of energy metabolism. These differential metabolites suggest
increased three tricarboxylic acid (TCA) cycle flux in MDD subjects.

TABLE II
Key urinary metabolites responsible for the discrimination between MDD subjects and HCs

Chemical shift/ppm multiplicitya Metabolites rb p valuec

1.14(d) Isobutyrate �0.306 0.594
1.48(d) Alanine �0.510 0.106
2.45(t), 3.01(t) �-ketoglutarate �0.328 0.015
2.54(d), 2.69(d) Citrate �0.500 0.325
2.72(s) Dimethylamine 0.539 0.000
2.78(s) Dimethylglycine 0.407 0.000
3.05(s), 4.06(s) Creatinine 0.336 0.000
3.12(s) Malonate 0.480 0.000
3.20(s) Choline 0.428 0.000
3.23(s) Glyceroylphosphocholine 0.487 0.000
3.27(t), 3.43(t) Taurine �0.430 0.001
3.30(s) Trimethylamine-N-oxide 0.373 0.000
3.57(s) Glycine �0.430 0.084
3.78(s), 7.14(d), 7.21(d) p-hydroxyphenylacetate 0.359 0.000
3.80(s), 7.32(d), 7.49(m), 7.69(s), 7.76(d) m-hydroxyphenylacetate 0.491 0.000
3.97(d), 7.55(t), 7.64(t), 7.84(d) Hippurate 0.311 0.000
6.87(d), 6.92(s), 6.98(d) 3,4-dihydroxymandelate 0.328 0.000
7.28(d), 7.36(t), 7.42(dd) Phenylacetyglycine 0.359 0.000
8.46(s) Formate �0.460 0.054
8.21(d), 8.90(d), 8.97(d), 9.29(s) N-methylnicotinamide 0.529 0.000
1.24(d) Methylmalonate �0.345 0.003
8.03(m), 8.58(d), 8.85(d), 9.13(s) Nicotinate �0.355 0.482
2.41(s) Succinate �0.343 0.048

a Multiplicity: s, singlet; d, doublet; t, triplet; q, quartet; dd, doublet of doublets; m, multiplet.
b Positive correlation coefficients indicate significantly lower levels in MDD subjects relative to HCs; negative values indicate significantly

higher levels in MDD subjects relative to HCs.
c p values were derived from the non-parametric Mann–Whitney U test.
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associated with the upstream deficiencies in circulating glu-
cose levels previously observed in MDD subjects. Glycolysis
coupled with the TCA cycle fully oxidizes glucose and sup-
plies energy for the brain. Although the adult human brain
constitutes a mere 2% of total body weight, this energy-
intensive organ consumes 25% of total body glucose (36).
Therefore, the reduction in circulating glucose levels might
lead to chronic glucose deficiencies in the brains of MDD
subjects. Accordingly, previous studies have shown a reduc-
tion in glucose metabolism in several brain regions of MDD
patients (37, 38). When the decreased glucose metabolism
was reversed in these patients, the depressive symptoms
were ameliorated (39). Moreover, the increased urinary excre-
tion of formate, an electron acceptor, from MDD subjects in
the current study implies a reduced capacity for energy pro-
duction. These findings suggest that decreased central en-
ergy production in MDD subjects may be mirrored by periph-
eral metabolic perturbations.

Gut Microbial Metabolites—Urinary levels of five microbi-
otic metabolites—m-hydroxyphenylacetate, hippurate, di-
methylamine, dimethylglycine, and trimethylamine-N-oxide—
were significantly decreased in MDD subjects relative to HCs.
These metabolites are uniquely produced by bacterial metab-
olism in the intestinal tract, indicating that MDD may be as-
sociated with variations in intestinal microflora. Accordingly,
previous urinary metabonomic analysis in a depressed animal
model has shown that depressed behavior is associated with
changes in gut microflora (17). Interestingly, several clinical
studies have demonstrated that MDD patients display a high
comorbidity of irritable bowel syndrome (IBS) (40, 41), a dis-
order involving gut microflora. The fecal microflora in IBS
patients show abnormally higher numbers of facultative or-
ganisms and lower numbers of lactobacilli and bifidobacteria
(42). These combined findings highlight the potential involve-
ment of gut microbiotic variation in the development of MDD.

Tryptophan–Nicotinic Acid Metabolism—N-methylnicotin-
amide (NMNA), an end-product of nicotinamide metabolism,
was significantly increased in MDD subjects relative to HCs.
Given that the NMNA precursor nicotinamide is involved in the
tryptophan–nicotinic acid pathway (43), the increased excre-
tion of urinary NMNA observed here suggests an up-regula-
tion of tryptophan–nicotinic acid pathway activity in MDD
subjects. Tryptophan is the biochemical precursor of both
serotonin and nicotinic acid (21). Therefore, increases in the
downstream metabolites of nicotinic acid metabolism might
indicate decreased serotonin biosynthesis. This speculation is
in concord with the well-established theory that serotonergic
neurotransmission deficiencies contribute to the pathoetiol-
ogy of MDD (44).

The results and conclusions of this study should be cau-
tiously interpreted on account of several limitations. The di-
agnostic performance of the urinary metabolite biomarker
panel was confirmed solely by discriminating MDD subjects
from HCs. Future work should focus on whether or not these

biomarkers can be applied to differentiate MDD from other
psychiatric disorders. Moreover, all subjects were of the same
ethnicity and were recruited from the same site; thus, ethno-
and site-specific biases cannot be ruled out. Further studies
involving heterogeneous populations from multiple clinical
sites are required.

In conclusion, with the use of a 1H NMR-based metabo-
nomic method, a panel of urinary metabolite biomarkers for
MDD was identified using a homogeneous sample set. This
panel was then independently validated in a diverse sample
set. Five metabolite biomarkers—malonate, formate, N-methyl-
nicotinamide, m-hydroxyphenylacetate, and alanine—could
be used to accurately distinguish MDD subjects from HCs in
both treating and test sets. These findings lay the groundwork
for the future development of a urine-based diagnostic test for
MDD.
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