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Multiplexed bead-based flow cytometric immunoassays
are a powerful experimental tool for investigating cellular
communication networks, yet their widespread adoption
is limited in part by challenges in robust quantitative anal-
ysis of the measurements. Here we report our application
of mixed-effects modeling for the normalization and sta-
tistical analysis of bead-based immunoassay data. Our
data set consisted of bead-based immunoassay measure-
ments of 16 phospho-proteins in lysates of HepG2 cells
treated with ligands that regulate acute-phase protein
secretion. Mixed-effects modeling provided estimates for
the effects of both the technical and biological sources of
variance, and normalization was achieved by subtracting
the technical effects from the measured values. This ap-
proach allowed us to detect ligand effects on signaling
with greater precision and sensitivity and to more accu-
rately characterize the HepG2 cell signaling network us-
ing constrained fuzzy logic. Mixed-effects modeling analy-
sis of our data was vital for ascertaining that IL-1� and
TGF-� treatment increased the activities of more pathways
than IL-6 and TNF-� and that TGF-� and TNF-� increased
p38 MAPK and c-Jun N-terminal kinase (JNK) phospho-
protein levels in a synergistic manner. Moreover, we used
mixed-effects modeling-based technical effect estimates to
reveal the substantial variance contributed by batch effects
along with the absence of loading order and assay plate
position effects. We conclude that mixed-effects modeling
enabled additional insights to be gained from our data than
would otherwise be possible and we discuss how this
methodology can play an important role in enhancing the
value of experiments employing multiplexed bead-based
immunoassays. Molecular & Cellular Proteomics 12:
10.1074/mcp.M112.018655, 245–262, 2013.

Cells adapt to their environments primarily through the ac-
tivities of receptor-mediated signal transduction networks (1).
These networks consist mainly of proteins, such as kinases,

phosphatases, adaptor proteins, and transcription factors,
whose activities often depend on post-translational modifica-
tions such as phosphorylation. Signal transduction activities
are therefore commonly inferred by measuring the levels of
post-translationally modified proteins. However, interpreting
these measurements to infer how cells functionally respond to
their environment is not straightforward because these adap-
tations result from the dynamic integration of numerous sig-
nals. To address this complexity, “systems” approaches to
studying cell signaling have emerged, which feature a stereo-
typical workflow that includes perturbing the system experi-
mentally, measuring the responses of as many of its compo-
nents as practical, and applying mathematical models to infer
how the network transduces the information (2).

The systems approach to biology depends vitally on high-
throughput measurements. One high-throughput method for
measuring multiple phosphorylated proteins in a single sample
is multiplexed bead-based immunoassays (3). These assays
combine features of sandwich enzyme-linked immunosorbant
assays (ELISA) and flow cytometry. The core components of the
assay are microsphere beads labeled with two fluorescent dyes
that are excited by the same wavelength of light but emit at
different wavelengths (4). By coating groups of beads with dif-
ferent ratios of the dyes, the identity of the beads can be
distinguished. Beads with the same dye ratio comprise a single
“bead classifier” (5) and each bead classifier is conjugated to a
capture reagent, such as an antibody, which is specific for a
single analyte such as a unique phospho-protein (3). A second
reporter fluorophore-conjugated antibody, which binds to a dis-
tinct epitope on the analyte, is used to quantify the number of
analytes bound to each bead. The analyte is therefore bound by
two antibodies in a “sandwich”-like manner, akin to a sandwich
ELISA. Multiplexing is achieved by mixing each cell lysate with
multiple bead classifiers and their corresponding detection an-
tibodies. The unbound antibodies are washed away and the
bead suspensions are analyzed in a specialized flow cytometer
that interrogates each bead with two lasers, one for detecting
the bead dyes and another for detecting the fluorescence emit-
ted by the reporter fluorophore (4). The assay output is the
median fluorescence intensity (MFI)1 per bead for each bead
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classifier. In addition to measuring phospho-proteins, bead-
based assays are used to measure diverse analytes such as
secreted proteins (e.g. cytokines) and nucleic acids (3).

Multiplexed bead-based immunoassays are favorable com-
pared with singleplex assays such as immunoblots because
they save time and sample volume and confer data that are
internally consistent by sample. However, as with any exper-
imental technique, each observation is a function of multiple
sources of variation. These sources of variation stem from
both biological and technical factors. Biological factors reflect
the applied treatments or properties of the sample that are of
interest in the experiment. Technical factors, which stem from
the technical or logistical properties of the experiment, are
usually not of primary interest. Indeed, technical factors are
generally a nuisance because they can inflate the observed
experimental error and/or confound the treatment effects,
thus reducing the precision, sensitivity, and specificity of the
assay. Some of the most notorious technical effects are batch
effects, which can contribute variance whose magnitude
matches or exceeds the observed treatment effects (6). Strat-
egies exist for mitigating the impact of technical factors. First,
the experimental design should feature the randomization of
both the assignment of treatments to experimental units
(which are the basic entities being studied, see the Supple-
mentary Information for more detail) and the order in which
the samples are processed (7). Second, in situations for which
randomization is unfeasible, blocking strategies are employed
to prevent the confounding of treatment factors with technical
factors (7). Finally, normalization of the data is performed to
remove unwanted systematic variance introduced by techni-
cal factors (8, 9). Because numerous technical factors could
plausibly affect multiplexed bead-based immunoassay data
(Table I), the experimental design and normalization strategies
should be carefully considered for any experiment involving
these assays.

In addition to managing the technical factors, quantitative
frameworks for analyzing the effects of the biological factors
of interest are also needed. The establishment of such frame-
works is in its infancy for bead-based immunoassays. For
experiments seeking to detect differences among phospho-
protein levels across different treatments, statistical analyses
relying on classic techniques such as t-tests (10, 11), analysis
of variance (12–14), or their nonparametric equivalents (15)
have most typically been used. Recently, an intriguing algo-
rithm called “significance analysis of xMAP cytokine bead
arrays” (SAxCyB) was shown to increase the sensitivity and
accuracy of statistical inferences for bead-based cytokine
measurements (16). We have developed logic- and regres-
sion-based methods to infer signal transduction networks
from multiplexed bead-based immunoassay (“network-level”
models) (2). However, none of these methods distinguishes
between biological and technical sources of variance in the
data, such that normalization must be performed separately
from the downstream analysis. This is a potentially important

flaw given that considering all sources of variance globally
within the same model has numerous advantages (17), includ-
ing that it can be important for drawing correct inferences (9).

Mixed-effects models are emerging as a standard method
for normalizing and analyzing many types of high-throughput
data such as microarrays (9, 18), quantitative real-time po-
lymerase chain reaction (19), nucleic acid bead arrays (20),
large-scale immunoblotting (21), peptide antigen arrays (22)
and genetic screens (23). Mixed-effects models, and the re-
lated hierarchical or multilevel models that represent a subset
of mixed-effects models (24), extend classic regression and
analysis of variance methods by incorporating both fixed- and
random-effect terms. The models are generally fitted numer-
ically according to the restricted maximum likelihood (REML)
criterion (25), which requires specialized but readily available
software to implement. Mixed-effects models can accommo-
date many types of experimental designs, grouped (corre-
lated) observations, hierarchical error structures, and missing
data (24–26), all of which are commonly present in high-
throughput data sets. Moreover, the error estimates and in-
ferences about the fixed effects tend to be more robust than
if analyzed using techniques such as t-tests because statis-
tical power for error estimation is “borrowed” across samples
(24). Mixed-effects models are therefore ideally suited for
serving as a rigorous and broadly applicable statistical frame-
work for normalizing and analyzing high-throughput data.

Here we report our use of linear mixed-effects modeling for
normalizing and analyzing multiplexed bead-based immuno-
assay data. We apply mixed-effects modeling to a new ded-
icated experimental study of multipathway phospho-protein
signaling in hepatocytes treated with inflammatory cytokines
that elicit acute-phase protein secretion (27). We use a mixed-
effects model to: (1) normalize the data and show the benefits
of such normalization for deriving insights arising from the
actual biological effects and (2) estimate the various technical
effects and examine their relative contributions to the ob-
served measurement variation. These diverse kinds of bene-
fits enhance the appeal of multiplexed bead-based immuno-
assays as a measurement method.

MATERIALS AND METHODS

Cells, Reagents, and Experimental Protocol—Human hepatoma
HepG2 cells were maintained at 5% CO2 and 37 °C in Eagle’s Mini-
mum Essential Medium (EMEM; American Type Culture Collection)
supplemented with 1% penicillin and streptomycin (Invitrogen, Carls-
bad, CA) and 10% fetal bovine serum (HyClone Labs, Logan, UT). For
experiments, the cells were seeded in 24-well plates at a density of
1,500 cells/mm2 in the morning, allowed to settle for 4–6 h and serum
starved overnight. On the following morning, the cells were subjected
to a medium exchange, DMSO (Sigma) or dexamethasone (1 �M,
Sigma) for 4 h, after which combinations of recombinant interleukin-6
(IL-6), interleukin-1� (IL-1�), transforming growth factor-� (TGF-�),
and/or tumor necrosis factor-� (TNF-�) (Pepro Tech, Rocky Hill, NJ)
or their vehicle (0.1% BSA) were spiked into the medium. The final
concentrations of the ligands were 200 ng/ml for IL-6, IL-1� and
TGF-� and 300 ng/ml for TNF-�. These concentrations were selected
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because they elicited maximal phospho-protein levels in prior dose-
response experiments (data not shown). After 30 min, the culture
medium was aspirated, the cells were washed with ice-cold phos-
phate-buffered saline (Invitrogen), snap frozen with liquid N2 and
stored at �80 °C. The cells were lysed with 140 �l of Bio-Plex
Phospho-protein lysis buffer (Bio-Rad) and processed according to
the manufacturer’s protocol.

Acute-phase protein secretion was measured in a separate exper-
iment. In this case, we followed the protocol as above except the cells
were treated for 24 h with selected combinations of different doses of
IL-6 and IL-1� (5, 10, and 200 ng/ml) or vehicle in the presence or
absence of �8 h pretreatment with dexamethasone (1 �M). The
culture media were collected in microfuge tubes, snap frozen in N2,
and stored at �20 °C until assayed for acute-phase protein levels.

Multiplexed Bead-based Flow Cytometric Immunoassays—We
used Bio-Plex assays (Bio-Rad) to simultaneously measure the rela-
tive levels of 16 phospho-proteins in each sample. The assay was
performed according to the manufacturer’s instructions. We ran-
domly assigned the samples to the wells of a 96-well filter plate and
loaded them in order by column (i.e. wells A1 through H1, A2 through
H2, to well H12). The 16 phospho-proteins assayed, with the specific
phospho-sites in parentheses, were Akt (Ser473), c-Jun (Ser63),
cAMP-response element binding protein (CREB; Ser133), extracellu-
lar-signal-regulated kinase (ERK; isoform 1 - Thr202/Tyr204 and iso-
form 2 - Thr185/Tyr187), glycogen synthase kinase (GSK)-3�/�
(Ser21/Ser9), heat shock protein 27 (Hsp27; Ser78), I�B-� (Ser32/
Ser36), insulin receptor substrate (IRS)-1 (Ser636/Ser639), c-Jun N-
terminal kinase (JNK; Thr183/Thr185), mitogen-activated protein ki-
nase kinase 1 (MEK1; Ser217/Ser221), p38 mitogen-activated protein
kinase (p38 MAPK; Thr180/Tyr182), p53 (Ser15), p70 ribosomal pro-
tein S6 kinase (p70 S6k, Thr421/Ser424), p90 ribosomal protein S6
kinase (p90 RSK; Thr359/Thr363), signal transducer and activator of
transcription 3 (STAT3; Tyr305) and S6 ribosomal protein (S6RP;
Ser235/Ser236). These proteins were chosen because they were
known to be responsive to the ligands and because their assay
reagents were reported by the manufacturer to not cross-react.

The secreted acute-phase proteins were measured using the Bio-
Plex Pro Human Acute-Phase Assay Panel (Bio-Rad) according to the
manufacturer’s instructions.

Statistical Modeling—A glossary of the terminology used to de-
scribe elements of the model is presented in the Supplementary
Information. Because the error in protein assays tends to be multipli-
cative (21), we first log-transformed the raw data from the Bio-Plex
instrument to stabilize the variance as a function of the signal mag-
nitude. We then proposed the following linear mixed-effects model,
which included terms representing all sources of variance in the
experiment for which we could account:

yghijl � � � vg � kh � �vk�gh � ti � �kt�hi � �j � �k��hj � �t��ij

� �l � 	ghijl

the terms of which are defined in Table II. The random-effect terms
were specified to account for the sources of variance listed in Table
I although we emphasize that the model terms generally accounted
for aggregate effects of the specific sources of variance (i.e. they are
“lumped” parameters). For example, �l, the between-well or between-
sample main effect, represented the sum of effects of all the factors
listed in the “Between well or sample” column of Table I. However,
some terms did account for distinct technical factors, such as the (t�)ij
term, which accounted for the day-specific differences in the concen-
trations and/or specific activities of the ligands (Table II, “Between
Day” column). We note the special case of kh (the “Kit” or analyte main
effect), which accounted for both biological and technical factors;
specifically, kh represented the effects of the analytes as well as their

corresponding assay kits, with the analyte effects presumably caused
by their different total protein abundances and the assay kit effects
presumably caused by differences in antibody properties such as
binding affinities.

We note that the model above incorporates all known sources of
variance and is therefore a single “global” model. Our global ap-
proach might be counterintuitive because usually one thinks of the
signals (analytes) as independent response variables. Furthermore,
precedence exists for fitting separate models to each gene in the
analysis of microarray and genetic screen data in order to facilitate
computationally tractable analysis (e.g. 18, 23). Indeed, univariate
statistical methods are commonly used for analyzing multiplexed
bead-based data (10, 13, 16), which is akin to fitting separate models
for each phospho-protein analyte. Doing so, however, sacrifices the
numerous benefits of the global approach. First, a principal advan-
tage of specifying a global model is that the effects are estimated in
context of one another, which can strengthen the validity of the
associated inferences (9). Second, the global modeling approach
provides the most degrees of freedom for estimating effects, espe-
cially once nonsignificant terms are eliminated through variable se-
lection. In addition, the global modeling approach accounts for
the degrees of freedom allocated for normalization (17). Therefore, we
implemented the global approach by defining the response variable
as the log-transformed MFI values from the Bio-Plex instrument and
we classified each phospho-protein analyte as a predictor variable,
represented by the kh term in the algebraic model. We evaluated
whether a treatment significantly affected the levels of an analyte by
examining the corresponding treatment-by-kit interaction term.

Once the model terms were determined, we classified each term as
fixed or random (Table II, Supplementary Information). The distinction
between fixed and random effects lies in the inferences to be made.
Terms are assigned as fixed if they represent factors whose levels
featured in the experiment are of specific interest and the inferences
about those factors are restricted to those levels (25, 26). Random-
effect terms are used to represent factors whose levels are consid-
ered to be randomly sampled from a population of theoretically infinite
size and the inferences about that factor apply to the population of its
levels (25, 26). In practice, terms for continuous factors, i.e. those
whose levels can assume any value such as ligand doses, are almost
always set as fixed effects (25). Also, factors corresponding to exper-
imental treatments are usually specified as fixed-effect terms whereas
nuisance factors are usually considered as random-effect terms (25).
We followed these guidelines in specifying the terms in our model:
Terms associated with biological (treatment) factors were considered
fixed, whereas technical factors (Day and Well) were assigned as
random effects (Table II). There was one special case: Terms asso-
ciated with DMSO treatments, which we considered a technical fac-
tor, were assigned as fixed effects because the concentration of
DMSO is a continuous variable. In the case of an interaction term
containing both fixed and random effect terms, the interaction term
must be random (25); thus, interaction terms involving the factor
“Day” were random.

The algebraic model was translated into a computational model,
with each term described in Table II. The model was implemented
using the “lme4” package (version 0.999375–42) in the software R
(version 2.14.0), which employs the restricted maximum likelihood
criterion to optimize the effect estimates. We also fitted the model
using the maximum likelihood criterion in order to compute the Akaike
Information Criterion and the Bayesian Information Criterion (28).
Plots and additional analyses were performed in Excel (Microsoft) and
Matlab (The MathWorks). In general, mixed-effects models provide
different types of estimates for the fixed and random effects. For
fixed-effect terms, the model estimates the effects with their uncer-
tainties as model coefficients with standard errors, respectively. For
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the random effects, the model estimates the variance of the popula-
tion from which the levels of the random-effect terms were drawn.
Therefore, an additional advantage of specifying a term as a random
effect is that only a single parameter is estimated for that term no
matter how many levels the corresponding factor includes. We still
obtained effect “estimates” for the levels of a random factor, known
as the best linear unbiased predictors (BLUPs) (25, 26), and we used
these to normalize the data. Further details on the distinction between
estimating fixed-effects parameters and the random effects are pro-
vided elsewhere (28).

Variable Selection and Data Normalization—In conducting the sta-
tistical modeling, we sought the simplest model that fit the data well.
We started with the fully specified global model (the “full” model) and
simplified it by removing terms through variable selection. The per-
formance of the resulting models was assessed using several metrics
including the Akaike Information Criterion (AIC), the Bayesian Infor-
mation Criterion (BIC), the Pearson correlation between the fitted
values and the observed data (rfit), model predictivity as assessed by
the Pearson correlation between the observed and predicted values
from leave-one-out cross-validation (rLOOCV), Gaussian distribution of
the residuals as assessed by the Shapiro-Wilk test (PSW) and a
signal-to-noise ratio (SNR) defined as the ratio of standard deviations
of the model fits to the residuals (21). We eliminated terms from the
model if their 95% highest probability density (HPD) intervals encom-
passed zero, unless their inclusion was merited by hierarchy principle
considerations (i.e. lower-level terms that are the basis for significant
higher-order interaction terms should be retained in the model even if
they themselves were not statistically significant (7)). The HPD inter-
vals were calculated via Markov Chain Monte Carlo (MCMC) sampling
implemented in the “pvals.fnc” function in the “languageR” package
(version 1.2). Variable selection was iteratively performed as above
until all the terms were significant, at which point outliers were re-
moved. Observations were assigned as outliers and eliminated if their
residuals caused the distribution of residuals to clearly depart from
Gaussian (7, 26). After outlier removal, a final round of variable selec-
tion was performed to obtain the final model.

Once the final model was obtained, we normalized the data by
subtracting the technical effects from each observation in the data set
according to the following equation:

y*ghijl � yghijl 
 �vg � kh � �vk�gh � �j � �k��hj � �t��ij � �l�

Note that the DMSO effect was subtracted from observations featur-
ing either DMSO or dexamethasone treatments, because DMSO was
the vehicle for dexamethasone.

We compared the final model to a regression model that incorpo-
rated only the fixed effects terms from the mixed-effects model. The
regression model was computed using the ‘lm’ function in R.

Constrained Fuzzy Logic Modeling—We modeled two data sets
using constrained fuzzy logic (cFL): The raw data and the normalized
back-transformed data in which the data was log-transformed, nor-
malized and then taken to the power of ten to reverse the log trans-
formation. We scaled the MFI values from both the raw data and the
normalized back-transformed data for each analyte under each con-
dition between zero and one by dividing the relative-fold increase of
the signal value in the stimulated versus unstimulated condition by the
maximum relative-fold increase observed for that analyte across all
conditions. A cFL model was trained to both data sets (raw and
normalized back-transformed) using previously described methods
(29). Briefly, a prior knowledge network (PKN) was constructed from
literature-curated molecular pathways and interactions known to exist
between the ligands used in the experiments and the measured
analytes. After structural processing of the PKN to compress nodes
that were neither measured nor perturbed, the network was con-
verted into a cFL model. The topology and parameters of this model

were trained simultaneously using a genetic algorithm that, for each
interaction, chooses one of a predefined set of mathematical func-
tions to relate the input and output species, including the possibility
that they do not relate. Finally, a heuristic reduction and refinement
step was carried out to remove interactions that were not necessary
to fit the data. The resulting trained models contained only interac-
tions that were consistent with the data and were thus used as a tool
to determine if the data was consistent with the PKN.

Data Presentation and Statistical Significance Testing—The box-
plots presented in this paper were defined as follows: A red horizontal
line represented the median and the horizontal edges of the boxplots
represented the 25th and 75th quartiles such that the box spanned
the interquartile range. The whiskers extend 1.5� the interquartile
range from the boxplot edges, while values outside of the whiskers
were denoted as red “�” symbols.

Several methods were used to test for statistical significance. For
the mixed-effects and regression models, we tested the null hypoth-
esis that each term’s effect was equal to zero. In the case of the
mixed-effects models, the HPD interval software described above
provided both an empirically derived p-value estimate as well as a t
test-based estimate for each term. For the regression model, the test
of statistical significance was a t-test (7). In addition, we tested
whether the deviation of the Well effect means for each row and
column were statistically different from zero using an empirical test.
Specifically, we randomly shuffled the Well effects relative to their
actual well addresses and recomputed the row- and column-specific
means 10,000 times. We then estimated the probabilities of the
observed means by determining their locations within the 10,000
resampled means. For all tests, the level of significance was set at
0.05 and adjusted for multiple comparisons by controlling the false
discovery rate (30).

RESULTS

Hepatocyte Inflammatory Signaling Experiment—We stud-
ied hepatocyte intracellular signal transduction leading to
acute-phase protein secretion. We modeled this scenario in
vitro using HepG2 cells exposed to combinations of the in-
flammatory cytokines IL-6, IL-1�, and TNF-�, in addition to
the stress-responsive glucocorticoid hormone analog dexa-
methasone and the growth factor TGF-� (Fig. 1A). We mea-
sured the levels of 16 phospho-proteins that operate as part
of receptor-mediated signaling pathways downstream of the
applied ligands using Bio-Plex multiplexed bead-based im-
munoassays (Fig. 1A). The design featured combinatorial
treatments of dexamethasone, IL-6, TNF-�, and TGF-�, as
well as IL-1� applied combinatorially with dexamethasone
and IL-6 (Fig. 1B, Supplementary Spreadsheet file, “Arrayed
data” worksheet). Ligand vehicle and DMSO controls were
also included (Figs. 1B and 1C). One replicate of each condi-
tion was performed on each of three different days with the
exceptions of the vehicle control, DMSO control, and the
dexamethasone conditions, which were applied twice as
within-day biological replicates on each day (Fig. 1C). For the
Bio-Plex assay, we also performed technical replicates. One
of the between-day biological replicates from each condition
was randomly chosen to be applied twice to the assay plate
(Figs. 1B and 1C). Hence, each condition had a total of at least
four replicates: Three between-day replicates and one tech-
nical replicate. The DMSO and vehicle conditions featured
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seven total replicates: Two within-day biological replicates
collected on each of the 3 days and one technical replicate.
The dexamethasone condition had eight total replicates: Two
within-day biological replicates collected on each of the 3
days and two technical replicates. We therefore assayed a
total of 86 samples. To round out the Bio-Plex assay 96-well
plate, we added duplicates of positive and negative control
lysates for each analyte supplied by the manufacturer. Each of
these controls behaved as expected (data not shown) and
they were not included in the mixed-effects model analysis.

Model Building and Performance—Preliminary analysis of
the raw data indicated that it exhibited considerable variabil-

ity. In general, each analyte presented a typical range of signal
(MFI) as indicated by the heterogeneity of color between
columns in the heat map in Fig. 1B. In all cases, the principal
putative downstream signals of the ligands applied in the
experiment showed increased phosphorylation after 30 min.
For example, TGF-� treatment markedly increased phospho-
Akt levels, while IL-1� treatment increased phospho-I�B-�

and phospho-JNK levels (Fig. 1B). However, reliably identify-
ing treatment effects was difficult by visual inspection alone.
Furthermore, additional preliminary plots of the raw data
showed that the Day factor contributed substantial variance.
These analyses revealed that the data could benefit from
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FIG. 1. Experimental design and raw data. A, A schematic view of the experiment. We investigated the cell signaling network of HepG2
cells by treating the cells with combinations of the ligands (green) including the inflammatory cytokines interleukin-6 (IL-6), tumor necrosis
factor-� (TNF-�), interleukin-1� (IL-1�), the glucocorticoid hormone analog dexamethasone (Dex) and the growth factor transforming growth
factor-� (TGF-�). We used multiplexed bead-based immunoassays to measure the levels of phospho-proteins (blue) that function in
intracellular signaling. The full names of the phospho-proteins are listed in the Materials and Methods section. B, Design matrix and raw data.
The design matrix (at left) is shown with the columns pertaining to the replicate types, defined in panel C, shaded in orange. The filled boxes
indicate the samples for which the corresponding treatments were applied. For the Day column, the unfilled boxes denote Day 1, the boxes
filled gray denote Day 2 and the boxes filled black denote Day 3. The raw data is presented on the right as a heat map with one column for
each of the 16 phospho-protein analytes and each row representing a single replicate of a particular condition. The colors represent MFI values
spanning 68 to 26,103. C, Definition of replicate types. Our experiment featured three types of replicates: (1) Between-day biological
replicates (“Day”), which we defined as cells independently treated with the same experimental perturbation but on different days
(batches), (2) Within-day biological replicates (“Biol”), which we defined as cells independently treated with the same experimental
perturbation on the same day (i.e. in the same batch), and (3) Technical replicates (“Tech”), which we defined as biological samples that
were divided and pipetted into separate wells in the Bio-Plex assay plate. These replicate types are subject to different types of variance:
Technical replicates are subject to variance introduced in the assay process, within-day biological replicates are subject to both assay
variance and variance introduced by the act of experimentally manipulating the cells and between-day biological replicates are subject to
the previous sources of variance in addition to batch effects.
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normalization to remove unwanted technical variance and
from statistical analysis to detect subtle but significant ef-
fects. We proceeded to accomplish these tasks using mixed-
effects modeling.

We constructed a “full model” that contained terms repre-
senting all the sources of variance for which we could ac-
count. The full model contained 304 fixed-effects terms and 8
random-effect terms with a total of 167 levels (Table II;
Supplementary spreadsheet file, “Full model” worksheet). We
then evaluated the performance of the full model using the
metrics listed in the Materials and Methods (Table III, Figs.
2A–2D). We found that the full model performed well, as
indicated by the very strong correlation (r 	 0.99) observed
between the model fit and data (Table III, Fig. 2A). However,
the effect estimates for many terms were not statistically
significant (Supplementary spreadsheet file, “Full model”
worksheet), which suggested that they could be eliminated
without detrimentally affecting model performance. Indeed,
eliminating these terms markedly lowered the BIC but only
marginally affected the goodness-of-fit (Table III). In the sec-
ond-to-last step of the variable selection, we eliminated six
outliers on the basis that these values caused the residuals to
depart from Gaussian distribution, as shown by the points
deviating from the red dashed line at each end of the curve in
the normal probability plot (Fig. 2D, red arrows). Four outliers
were measurements involving phospho-I�B-�, three of which
were from DMSO-treated samples and the other from a TGF-
�-treated sample. The other two outliers were measurements
of phospho-STAT3 in response to IL-6 and IL-6 plus TNF-�.
Interestingly, measurements of phospho-I�B-� and phospho-
STAT3 represented 13 of the top 15 residuals with respect to
magnitude. Upon removal of the outliers, the distribution of

the residuals approached Gaussian, as indicated by the
closer alignment of the data to the red dashed line in the
normal probability plot (Fig. 2H) and an increase in the p-value
in the Shapiro-Wilk test (Table III).

The final model featured 62 fixed-effect terms and five
random-effect terms containing 149 levels (Supplementary
spreadsheet file, “Full model” worksheets), yet performed
almost equivalently to the full model with respect to good-
ness-of-fit (Fig. 2E) and predictivity (Table III, rLOOCV) and
better with respect to parsimony and residual behavior (Table
III, Fig. 2D versus 2H). The residuals for both the full and final
models were homogeneously distributed as a function of the
model fits (Figs. 2B and 2F), which validated our assumption
of variance homogeneity for the log-transformed MFI data.
The random effects were also approximately normally distrib-
uted (Supplemental Fig. S1).

Normalization Increases the Observed Precision and Sensi-
tivity of the Multiplexed Bead-based Immunoassay Data and
the Accuracy of Downstream Biological Analysis—With the
final model in hand, we normalized the data by subtracting the
effect estimates of the technical factors from the observed
data (Supplementary Spreadsheet file, “sm8 analysis” work-
sheet). The normalized data was clearly less variable, due
chiefly to the removal of the Kit main effects and terms in-
volving Day (Fig. 3). Next, we used the model effect estimates
to investigate the ligand effects on each analyte (Fig. 4;
Supplementary Spreadsheet file, “sm8 analysis” worksheet).
We observed that IL-1� and TGF-� treatments markedly in-
creased the levels of most phospho-proteins whereas IL-6
and TNF-� treatments increased the levels of only a few
phospho-proteins (STAT3 for IL-6 and I�B-�, JNK, and c-Jun
for TNF-�) (Fig. 4); the capability of modeling-based normal-

TABLE I
Possible technical factors influencing multiplexed bead-based immunoassay data

Procedure step
Levels at which the technical factors act

Between day or batch Between plate Between well or sample

Seed cells Cell counting accuracy Cell seeding accuracy (pipetting)
Apply experimental treatments Concentrations and specific activities

of reagents
Timing of treatments and

plate processing
Media volumes per well

(pipetting)
Order bias

Process cells (wash, freeze, and lyse) Lysis buffer reagent concentrationsa Number of adhered, healthy cells
present at experiment’s end

Lysis buffer volume (pipetting)
Measure total protein concentrations,

dilute samples to a common
concentration

Accuracy of protein assay
standards

Accuracy of protein
concentration measurements

Accuracy of assay buffer dilution
volume

Perform the assay Bead concentrationsa Factors affecting the number of
beads and antibody amounts

Antibody concentrationsa Effects introduced by multiple
wash & rinse steps

Instrument calibration and
performancea

Resuspension volume (pipetting)
Liquid evaporation
Spillage, leakage, and/or

clogging of the filter plates
Bead carryover between wells (5)

a These between-day effects would pertain to cases in which the cell processing and assay themselves were performed on separate days.
In our experiment, only the treatments were performed on separate days.
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ization to discern truly significant activations can be appreci-
ated by comparison to Fig. 1B. Such subtle treatment effects
were not apparent for dexamethasone (Fig. 4), which suggested
that the effects observed for the other ligands were real. In
addition, we plotted the same data except with the Day and Well
effects added. We observed that the Day and Well effects

contributed considerable variability as indicated by the elon-
gated boxplots (Fig. 4, right panels). The additional variability
blurred the distinction of phospho-protein levels from the un-
treated versus treated conditions seen with the normalized data.

By eliminating systematic variance in the data, normaliza-
tion should benefit its downstream analysis. We evaluated our

TABLE II
Specification of the full model

Algebraic model
terma Variable or factor Effect type and

assumptionb
Subscript range (main effects)

or number of terms (interactions) Terms in the computational modelc

yghijl Response variable log10(MFI)
� Mean MFI of phospho-Akt measurements

from vehicle-treated samples
1 Intercept

vg Vehicle main effects Fixed g 	 1,2 (ligand vehicle)d, dmso
kh Kit (analyte) main effect Fixed h 	 1–16 (akt)d, erk, gsk, ikb, jnk, p38, p70,

p90, cjun, creb, hsp27, irs, mek,
p53, stat3, s6rp

(vk)gh Vehicle � Kit interaction Fixed 15 dmso � 15 kits
ti Treatment main and interaction effects Fixed i 	 1–17 Main: d, 6, L, N, G

2-way interactions: d�6, d�L,
d�N, d�G, 6�L, 6�N, 6�G,
N�G

3-way interactions: d�6�L,
d�6�N, d�6�G, d�N�G

(kt)hi Treatment � Kit interactions Fixed 17 treatment effects � 15 kits 	
255

Each treatment term � 15 kits

�j Day main effect Random j 	 1–3 d1, d2, d3
d�N(0,�d

2)
(k�)hj Day � Kit interaction Random 3 days � 16 kits 	 48 Each day term � each of the 16

Kit terms(kd)�N(0,�kd
2)

(t�)ij Day � Treatments (main effects only)
interaction

Random 3 days � 5 treatments � 2 levels of
each treatment 	 30

Each day term � each of d, 6, L, N
and G(td)�N(0,�td

2)
�l Well (sample) effects Random l 	 1–86 Well addresses (e.g., A9, G12, etc.)

w�N(0,�w
2)

�ghijl Residual error Random
e�N(0,�2)

a The algebraic equation is a compact representation of the mixed-effects model that must be translated into a computationally readable
form. Although R can handle categorical variables specified in compact form (e.g., specifying a factor such as “Kit” and listing its constituents
as levels in the data column), doing so precludes eliminating terms from within that factor during variable selection. We therefore explicitly
specified each level of the factor as its own term in models subjected to variable selection. See the spreadsheet file in the Supplementary
Information for more details.

b The random effects were assumed to be independent values of their respective variables that are normally distributed with mean of zero
and variance as indicated.

c Legend: d 	 Dexamethasone, 6 	 interleukin-6, L 	 interleukin-1�, n 	 tumor necrosis factor-�, G 	 transforming growth factor-�, d1 	
Day 1, d2 	 Day 2, d3 	 Day 3.

d Terms listed in brackets did not have their own terms in the computational model but instead served to estimate the intercept, relative to
which the effects of the remaining terms were computed.

TABLE III
Variable selection metrics

Modela Modifications
Selection criteria

AICb BICb rfit rLOOCV SNR PSW

1 Full model �2653 �1016 0.992 0.989 9.2 
3 � 10�16

2 Remove terms �2741 �1827 0.994 0.988 8.5 
3 � 10�16

3 Remove terms �2772 �1988 0.993 0.990 8.5 
3 � 10�16

4 Remove terms �2772 �2113 0.993 0.990 8.3 
3 � 10�16

5 Remove terms �2807 �2426 0.993 0.990 8.1 
3 � 10�16

6 Remove terms �2806 �2446 0.992 0.990 8.1 
3 � 10�16

7 Remove outliers �2981 �2621 0.993 0.992 8.7 2.1 � 10�6

8 Remove terms (“Final model”) �2983 �2628 0.993 0.992 8.7 2.1 � 10�6

a Eight iterations of variable selection were performed, each resulting in a different model.
b The AIC and BIC metrics were computed from models fit according to the maximum likelihood criterion instead of the restricted maximum

likelihood criterion because the former is required for correct AIC and BIC estimates (28).
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expectation with three analyses. First, we found that the co-
efficients of variation (CV) calculated from the replicates of
each experimental condition (Supplementary Spreadsheet
file, “sm8 analysis” worksheet) were generally reduced for the
normalized data, as indicated by the data points located
mostly below the line of unity (Fig. 5A). Specifically, 62% of
the CV’s calculated from the normalized data were lower than

those calculated from the log-transformed data, with a max-
imum CV of 8% as compared with a maximum of 15%,
respectively (Fig. 5A). Second, we estimated the Pearson
correlation coefficients between all pairs of distinct signals
(e.g. phospho-Akt versus phospho-ERK, etc.) using both the
log-transformed and normalized data. We found stronger cor-
relation coefficients and lower p-values for the normalized

FIG. 2. Model fits and residual analyses. A and E. Scatterplots of the fitted values from the models (“Model fits”; full model, A, and final
model, E) and the observed data (“Data”). The diagonal line represents the line of unity. Note the close correspondence of the model fits to
the observed data, suggesting that the model fit the data well. B and F. Scatterplots of the residuals and the model fits. The residuals were
distributed evenly around zero and exhibited no functional dependence on the magnitude of the fitted values, thus supporting the assumptions
of homogeneous variance and independence (full model, B, and final model, F). C, D, G, and H. Histograms (C and G) and normal probability
plots (D and H) of the residuals were plotted for the full (C and D) and final (G and H) models. The presence of outliers (identified in D by the
red arrows) in the data set used to fit the full model caused the residuals to deviate from Gaussian distribution. Eliminating these outliers and
fitting the remaining data to the final model led to residuals that were approximately normally distributed (compare panels D and H).
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data as indicated by the concentration of points above and
below the line of unity in each plot, respectively (Fig. 5B).

Third, we evaluated the sensitivity of the mixed-effects
model for discriminating statistically significant terms. Specif-
ically, we compared the mixed-effects model to a regression
model that contained the same fixed-effects terms as the final
model but that lacked the random-effect terms associated
with the Day and Well factors. Removing the random-effect
terms shifted the variance of those terms into the residual
variance of the regression model. The residual variance in part
determines the standard errors of the effect estimates. If the
residual variance is higher, then the standard errors will be as
well, with the consequence of reducing the probability of
detecting differences between means. Accordingly, we ob-
served that several terms were statistically significant in the
mixed-effects model but not in the regression model (Supple-
mentary spreadsheet file, “Compare models” worksheet).
Two examples were the three-way interaction terms of TNF-
� �TGF-� � phospho-JNK and TNF-� � TGF-� � phospho-

p38 MAPK (Table IV), which indicated non-additive effects of
TNF-� and TGF-� on these analytes. We observed that the
effect estimates were similar but that the standard errors for
these estimates were almost double for the regression model
(Table IV, Supplementary spreadsheet file, “Compare models”
worksheet), which reflected the higher variability observed in
the merely log-transformed data compared with the normal-
ized data (compare boxplot lengths in the top versus bottom
panels of Fig. 5C).

Finally, we evaluated the effect of data normalization on
the interpretations gleaned from a network-level modeling
technique, constrained fuzzy logic (cFL), which seeks to
deduce multipathway influences among protein signals (29).
We applied cFL modeling to explore the hepatocyte signal-
ing network underlying the secretion of acute-phase pro-
teins. The principal ligands involved in acut-phase protein
secretion are IL-6, IL-1�, and glucocorticoid hormones (of
which dexamethasone is a synthetic analog), which prompt
the secretion of proteins such as fibrinogen, serum amyloid

FIG. 3. Normalization of the data using the final mixed-effects model. A, Heat maps showing the raw, log-transformed and normalized
data. Two heat maps for the normalized data are shown, the one above in which the colorbar was scaled to the entire matrix of values (“Scaled
to matrix”) and the one below in which the colors were scaled to the values within each column (“Scaled to column”) to more clearly represent
the treatment effects. The colorbars correspond to the MFI or log MFI values except that of the “Scaled to column” heat map, which represents
log MFI values rescaled to 0 to 100. B, Boxplots of the log-transformed and normalized data grouped by analyte and by day (the three boxplots
for each analyte represent in order the data from days 1, 2, and 3). Note that the boxplots of the normalized data are aligned at a log MFI of
just under 4. The scaling of the data to this particular value was because of all the effects being computed relative to phospho-Akt (for the sole
reason that it was alphabetically the first term among the Kit effects) such that the data was normalized relative to its average log MFI in the
vehicle-treated condition (log MFI 	 3.85, corresponding to MFI � 	 7,100). The details of the boxplot construction are presented in the
Materials and Methods section. RFU 	 relative fluorescence units.
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A and haptoglobin (Supplemental Fig. S2). Although IL-6
and IL-1� function through well characterized signaling
pathways, the mechanisms by which other modulatory li-
gands act are less clear.

Glucocorticoid hormones directly regulate transcription by
translocating into the cell, binding steroid receptors and then
binding DNA (31). However, glucocorticoid hormones may
also regulate signaling events via membrane-bound glucocor-
ticoid receptors (15, 32). Therefore, we evaluated the possi-
bility that dexamethasone influenced the levels of the phos-
pho-proteins in our system. To test this notion, we trained cFL
models using a prior knowledge network in which we intro-
duced edges connecting a node representing dexametha-
sone to nodes representing the measured phospho-proteins
(Supplemental Fig. S3A). We note that a family of models,
which are essentially equivalent with respect to goodness-of-
fit, is typically produced (29). If the edges were consistent with
the data, then the cFL algorithm would retain the edges in the

resulting family of fitted models. This approach assumed that
the data faithfully reflected the biology—if it did not then the
approach would become vulnerable to false positives or false
negatives. By extracting technical sources of variance, nor-
malizing the data helps to ensure that the data is at least
predominantly a function of the biological sources of variance.
To evaluate the effect of technical variance in data used for
cFL modeling, we compared cFL models trained using either
the raw or normalized back-transformed data. When the cFL
models were fit to the raw data (Supplemental Fig. S3B), we
observed edges between dexamethasone and the phospho-
proteins in many of the models, which was indicated by the
thicknesses of the edges (Fig. 6). In the case of cFL models fit
to the normalized back-transformed data (Supplemental Fig.
S3C), few of the models contained edges between dexameth-
asone and the signals, indicated by the faint lines between
dexamethasone and four of the downstream signals (Fig. 6).
Qualitatively distinct results of the cFL modeling were there-

FIG. 4. Ligand main effects on phospho-protein levels with and without technical variance. Boxplots of the normalized log MFI for each
analyte were plotted as a function of the presence (turquoise) or absence (red) of each ligand shown at the far right. For the panels on the left,
the plotted values were computed by summing the mixed-effects model estimates of the intercept, the residuals and the effects for the all the
terms that included the ligand specific to that panel, thus representing normalized data. The panels on the right feature those same values
except with the Day and Well effects added, thus representing nonnormalized data. The variability contributed by the Day and Well factors is
indicated by the elongated boxplots in the right panels versus those in the left panels. The details of the boxplot construction are presented
in the Materials and Methods section. RFU 	 relative fluorescence units.
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fore obtained according to whether the models were fit to the
raw or normalized back-transformed data, indicating the sig-
nificant impact that technical variance in the data can have on
cFL modeling.

Analysis of the Technical Sources of Variance—The mixed-
effects model algorithm provides “estimates” of the random
effects in the form of BLUPs (26, 28). These estimates provide
a means to analyze how the data were affected by the tech-
nical factors, which could lead to important insights into qual-
ity control and experimental design strategies for multiplexed
bead-based immunoassay experiments. We first compared
the effects of the technical factors relative to each other and
to the biological effects. To do so, we calculated the percent-
age variance of the technical and biological factors on each
observation using the following formula:

%ij �
�effectij�

�
i	1

n

�effectij�

�100

where %ij is the percent variance contributed by the ith effect
to the total variance of observation j. We then summed the
percent variances associated with the biological factors for
each observation and plotted them against the percent
variances contributed by each technical factor (Fig. 7,
Supplementary Spreadsheet file, “Var_contrib” worksheet). In
general, the biological factors contributed most of the vari-
ance to each observation, indicated by the grouping of the
data in the lower right quadrants of the plots (Fig. 7). However,
the plots reveal a number of cases in which the technical
factors contributed as much or more variance than the bio-
logical factors, as indicated by data points in the center and
upper left quadrants of the plots (Fig. 7). In general, we
observed that the Day factor contributed proportionally the
highest amount of variance among the three technical fac-
tors because the distribution of points in the Day plot was
shifted upward compared with those in the Well and DMSO
plots (Fig. 7).

FIG. 5. The effect of normalization on the precision and sensi-
tivity of multiplexed bead-based immunoassays. A, Scatterplot of
the coefficients of variation (CVs) of replicate data for both log-
transformed and normalized data. Each data point represents a CV
calculated from the replicates of a particular observation, with n 	 4,
7, or 8 depending on the condition (see text for details). B, Scatter-
plots of the Pearson correlation coefficients (left) and corresponding
p-values (right) for each pair of analytes from the log-transformed (left)
and normalized data (right; n 	 162 	 256 points per plot). C,
Illustration of the effect of data normalization on testing for statistical
significance. The upper and lower panels feature boxplots from the
log-transformed and normalized data, respectively, that show the
effect of TNF-� and TGF-� factorial treatments on MFIs for Akt, JNK
and p38 MAPK. Akt is shown because it is the basis for comparison
in the mixed-effects model. n 	 the number of observations contrib-
uting to the corresponding boxplot above. The boxplots for the nor-
malized data are generally shorter than those for the log-transformed
data and thus indicate reduced variability. The details of the boxplot
construction are presented in the Materials and Methods section.

TABLE IV
Mixed-effects model estimates and statistics for three-way

interactions involving TNF-� and TGF-� treatments

Model terms Modela Coefficient Standard
Error t-value p-valueb

N � G � JNK 1 0.098 0.032 3.10 0.002

2 0.087 0.062 1.42 0.157

N � G � p38 1 0.125 0.028 4.41 
0.001

2 0.096 0.055 1.75 0.081

a Model 1 was the final mixed-effects model and Model 2 was a
regression model equivalent to Model 1 except that it lacked the
random-effect terms. Model 2 was fit using the “lm” function in R.

b The p-values for the two models were computed using different
techniques, such that they are only roughly comparable. The p-values
for the terms in Model 1 were both significant at the 0.05 level after
correcting for multiple comparisons using the false discovery rate,
whereas the p-values for Model 2 did not achieve significance.
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Next, we searched for additional technical factors that may
have affected the assay but for which we did not account in
the model. In particular, we were concerned about order and
position effects in the assay plate. Order effects arise if the

sequence in which the samples were loaded onto the assay
plate contributed systematic variance. Position effects refer to
the row and column effects that are sometimes observed in
plate-based assays (33). Because we randomly assigned
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FIG. 6. Constrained fuzzy logic models trained to raw and normalized data. The cFL model algorithm takes as input a prior knowledge
network and experimental data and retains the edges are required to best fit the data. The green nodes represent the ligands applied in the
experiment, the blue nodes represent measured phospho-proteins and the white nodes represent molecules that were neither measured nor
perturbed but whose retention in the model was necessary for logical consistency. The thickness of an edge is proportional to the number of
models within the family of trained models in which the edge was retained and thus reflects the likelihood that the connection the edge
represents exists in reality. CFL models trained to the raw data indicated that several edges between dexamethasone and phospho-proteins
were consistent with the data. In contrast, cFL models trained to the normalized back-transformed data contained only edges of very low
confidence between dexamethasone and four of the phospho-proteins.

FIG. 7. The contributions of the biological and technical factors to the total explained variance. Scatterplots show the percent
contributions to the total explained variance by the biological (treatment) and the individual technical factors (Day, Well, and DMSO) for each
measurement (n 	 1376). Each plot features a scatter of points triangular in shape, which is expected because the sum of the percent variance
contributions cannot exceed 100%. A data point in the lower right quadrant of a plot means that the biological factors contributed more
variance than the indicated technical factor for that observation whereas the converse was true for a data point in the upper left quadrant.
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samples to wells on the assay plate, any order or position
effects, if present, should manifest themselves as patterns in
either the Well effects or the residuals. In accordance with the
randomization of sample assignments to the wells, we ob-
served no obvious patterns in the assignment of samples to
the assay plate (Fig. 8A). We then plotted the Well effects and
residuals as a function of loading order and plate row and
column and searched for patterns and substantial deviations
from zero. Both the Well effects and residuals were indepen-

dent of loading order (Fig. 8B) and the residuals were inde-
pendent of the plate rows and column (Figs. 8C and 8D, right
panels). Some variation was observed among the Well effects
as a function of the rows and columns but these deviations
were not statistically significant (p � 0.05 after correction for
the false discovery rate; Figs. 8C and 8D, left panels). The Well
effects’ variation with position relative to the residuals is rea-
sonable because the sample sizes associated with the Well
effects were considerably smaller than for the residuals (n 	

FIG. 8. Evaluation of order and position as possible technical factors. A, Plots of the randomized assignment of samples to the wells of
the Bio-Plex assay plate. A filled well denotes that its corresponding sample was treated with the ligand labeled above the plate. A well filled
for multiple ligands simply denotes a sample that was treated with a combination of ligands. Note the absence of obvious patterns in the
assignment of samples to the assay plate. B, The well effects (left) and residuals (right) were plotted as a function of sample loading order in
the Bio-Plex assay plate. The samples were loaded in vertical order, i.e. from well A1 to H1, A2 to H2 and so forth until well H12. A single well
effect and 16 residuals were associated with each well, such that we used a bar chart to visualize the Well effects and boxplots to visualize
the residuals. The details of the boxplot construction are presented in the Materials and Methods section. Note the lack of obvious patterns
in the Well effects plot and the centering of the boxplots at zero in the residuals plot. C and D, Well effects (left) and residuals (right) were plotted
as a function of plate column (C) and plate row (D) in the Bio-Plex assay plate. Scatterplots and boxplots were used to visualize the Well effects
and residuals, respectively, because the Well effects featured only a few data points (n 	 6–12) per group compared with the residuals (n 	
96–192; see main text for more details). Position effects would be indicated by an obvious deviation of the average of the data points or
boxplots from zero, which we did not observe here.
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9–12 for rows and n 	 6–8 for columns for the Well effects
versus n 	 144–192 for rows and n 	 96–128 for columns for
the residuals). We concluded that our data were free of order-
and position-related technical effects.

DISCUSSION

We report here the use of mixed-effects modeling to nor-
malize and statistically analyze multiplexed bead-based im-
munoassay data. Specifically, we fit a single global model to
the data that included terms representing each of the biolog-
ical and technical factors for which we could account. The
model provided estimates of the effects associated with these
factors. We then normalized the data by subtracting the tech-
nical effects, which left as remainder the intercept, the bio-
logical effects and the residual error. We used this normalized
data for further analyses.

Benefits of Processing Bead-Based Assay Data Using
Mixed-Effects Models—We found that the mixed-effects
model offered exceptional insight to our data. By deconvolut-
ing the biological and technical effects, we could analyze
them in isolation. Removing the technical effects via normal-
ization led to inferences about the biological effects that were
of higher confidence owing to improved precision and sensi-
tivity (Figs. 4 and 5, Table IV). This was particularly true for
interaction effects such as those between TNF-� and TGF-�

in promoting JNK and p38 MAPK phosphorylation. The sig-
nificant interaction term indicated a synergistic effect of
TNF-� and TGF-� on the phospho-levels of these proteins.
Functionally important synergy between these two ligands
has been previously found in human mesenchymal stem cells
for secretion of hepatocyte growth factor (HGF) and vascular
endothelial growth factor (34, 35). In the case of HGF secre-
tion, the synergy was dependent on p38 MAPK signaling (34).
Analogous synergy between TNF-� and TGF-� in our hepatic
systems is likely physiologically important because signaling
from their respective downstream receptors, the TNF receptor
and epidermal growth factor receptor, regulates acute-phase
protein secretion (27, 36). Synergistic and antagonistic rela-
tionships have been typically evaluated using methods incor-
porating Bliss independence or Loewe additivity, which are
widely featured in drug combination studies (37). Applying
these methods to evaluate synergy between TNF-� and
TGF-� would require a separate set of dose-response exper-
iments and our results motivate further investigation in this
regard.

We note that the data featured in this study were generated
from experiments in which saturating doses of ligands were
used, which elicited biological effects of maximal magnitude.
Even with these maximal effects, the technical effects still
contributed proportionally substantial variance in many cases
(Fig. 7), such that the analysis benefitted from normalization.
We expect that the analysis of experiments with treatments
featuring submaximal doses of ligands or small-molecule in-
hibitors, such as dose-response experiments, would espe-

cially benefit from normalization using mixed-effects models
because the biological and technical effects would be ex-
pected to exhibit lesser and similar magnitudes, respectively,
to those observed in the experiment reported in this paper.

Normalizing the data with mixed-effects models can benefit
downstream analysis of the data using mechanistically ori-
ented network-level modeling methods such as those based
on differential equations or logic models (38, 39) or data-
driven statistical frameworks (e.g. principal components anal-
ysis, partial least squares regression, clustering, etc.) (40).
Such models are used to integrate the data from large multi-
variate data sets to infer network topologies, to quantify the
strength of connections between network nodes and to pre-
dict the effects of perturbations (2, 38, 40, 41). The biological
relevance of the model predictions is intimately linked to the
degree to which the data is a function of the biology, which
can be compromised by the presence of technical effects.
Here we observed that cFL models fit to raw and normalized
back-transformed data gave qualitatively different outputs in
which fewer edges between dexamethasone and measured
signaling nodes were observed in the models from the nor-
malized data (Fig. 6). These results have opposing biological
interpretations: Model outputs based on the raw data implied
that dexamethasone somehow promoted the phosphorylation
of certain signaling proteins whereas outputs based on the
normalized back-transformed data implied that dexametha-
sone did not regulate signaling.

We cannot definitively conclude that more physiologically
correct cFL models resulted from using the normalized data,
but they do match our expectations from known biology and
our data. Specifically, despite the existence of evidence for
glucocorticoid hormones being able to regulate cell signaling
(15, 32), their principal mode of action is direct transcriptional
regulation (31), such that we expected dexamethasone to
have little to no effect on phospho-protein levels. Accordingly,
we observed that dexamethasone treatment for 4 hours did
not alter phospho-protein levels (Fig. 4). The apparent dis-
crepancy between the data (Fig. 4) and the cFL models (Fig.
6) with respect to dexamethasone arose because the cFL
algorithm is sensitive to the increase in signal on stimulation
compared with its vehicle control, which in this case involved
the signals in response to dexamethasone and DMSO being
compared (Supplemental Fig. S3B, dex 	 1 column). Variance
induced by the technical factors caused slight increases in
some signals in the dexamethasone-treated samples com-
pared with DMSO (Supplemental Fig. S3B). In contrast, the
plot in Fig. 4 featured all of the observations grouped accord-
ing to whether they were treated with dexamethasone. The
ability to rigorously normalize the data allows us to retain the
sensitivity of the cFL algorithm while defending against pos-
sible false positive results caused by technical variance. We
note that normalizing the data by mixed-effects modeling
could precede the other types of network-level models such
that it represents a general strategy for improving data quality.
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Mixed-effects modeling of the data presents an additional
possible benefit for network-level modeling. Mixed-effects
models provide an estimate of the residual variance, which if
all other sources of variance are accounted for in the model,
represents an estimate of the random experimental error or
noise. This residual variance estimate could be used for sen-
sitivity analyses of the network-level model to random error.
Specifically, the model could be fit to synthetic data sets
generated by Monte Carlo sampling of the distribution of
residuals in order to determine how experimental error prop-
agates through the modeling algorithm and affects the
predictions.

We also used the mixed-effects modeling approach to ob-
tain insights into the properties of the technical factors. We
compared the model-based estimates of the technical effects
and observed that the Day factor contributed the most vari-
ance (Fig. 7). This result has two important implications: First,
assay reproducibility should be evaluated with experiments
performed on different days (or in different batches) and sec-
ond, the experimental design and analysis should guard
against potential batch effects (c.f. 6). We expand on these
thoughts in the subsection below on experimental design.
Furthermore, we found no evidence that additional technical
factors such as order or position were present in our experi-
ments. This result instills further confidence in the robustness
of multiplexed bead-based immunoassays.

We used the totality of the data for classifying measure-
ments as outliers. By definition, an outlier is an observation
whose value lies outside the typical range of values caused by
the known sources of variance. By analyzing the complete
data set using a model that included all the sources of vari-
ance, we quantitatively established this typical range, which is
less than what might be estimated by inspecting replicate
measurements or boxplots in isolation. For example, a num-
ber of red “�” markers are featured in the boxplots of Fig. 4,
which represent data points that lie beyond the whiskers of
the boxplot and are conventionally considered “outliers.” Here
we eliminated observations whose residuals caused the dis-
tribution of residuals to substantially deviate from Gaussian
distribution, which is an assumption that must be satisfied
when using the model to make statistical inferences. Using
this criterion, we removed a mere six observations out of a
total of �1400. That so few observations were considered
outliers demonstrates the internal consistency of our data. We
do not know why those six observations were outlying and we
acknowledge that it can be unfavorable to remove outliers
from a data set unless valid reasons exist to do so. However,
because each effect estimate was based on many degrees of
freedom, removing the six outliers had little influence on these
estimates (data not shown) but did ensure that the distribution
of residuals approached Gaussian such that the statistical
tests would be valid. Furthermore, we performed all analyses
other than the statistical analysis with the outliers reinserted

into the data set and found that the interpretations remained
unchanged.

Mixed-effects models are advantageous compared with
other methods of analysis. Experiments with random factors
can be analyzed with analysis of variance (7). However, anal-
ysis of variance techniques for designs with random factors
have important limitations, most notably that they can only
accommodate balanced designs in which the same number of
observations are allocated to each experimental treatment
(25). Mixed-effects models offer a more flexible approach
because they can handle missing data and unbalanced ex-
perimental designs (25, 42). Now that powerful software ca-
pable of fitting mixed-effects models is widely available, we
expect that they will replace analysis of variance as the
method of choice for analyzing biological experiments.

Implications for the Design and Conduct of Experiments—A
key limitation of multiplexed bead-based immunoassays is
their considerable cost. From a statistical perspective, exper-
iments have three basic purposes: To estimate treatment
effect magnitudes and their precisions and to demonstrate
reproducibility. Experiments should therefore be designed to
maximize efficiency in which the minimum number of obser-
vations is used to achieve these goals. In practice, this implies
that the number of replicates should be minimized. A tradeoff
exists, however, because replicate observations are neces-
sary for providing the statistical power necessary to robustly
estimate precision and demonstrate reproducibility. Applying
a statistical model to the data allows one to minimize the
replicates while maintaining statistical power (24). We discuss
in detail how the use of statistical models can lead to efficient
experimental designs.

Using a statistical model enables the use of three strategies
for efficient experimental designs. First, statistical models
enable the use of factorial designs, which involve combinato-
rially applying the treatment factors, rather than varying the
factors one-at-a-time. Factorial designs are more efficient
because they allow interaction effects to be estimated and
because replication is inherently achieved due to each treat-
ment being applied to multiple experimental units (7). Be-
cause the treatments are combinatorially applied, a statistical
model is necessary to decouple the factor effects from one
another. Second, statistical models can serve as the basis for
estimating a priori the number of replicates necessary to
achieve a desired level of precision (18, 43) such that excess
replicates can be avoided.

Third, statistical models enable the use of between-day
biological replicates, which allows replicates to be used to
simultaneously estimate variance, contribute degrees of free-
dom and assess reproducibility. A key concept underlying our
argument is that of statistical independence. Two events are
statistically independent if the probability of occurrence of
one event does not affect the probability of occurrence of the
other event. In the case of observations in an experiment,
statistical independence implies that the residuals of each

Mixed-effects Modeling of Multiplexed Bead-based Assay Data

Molecular & Cellular Proteomics 12.1 259



observation are uncorrelated. A standard assumption of re-
gression and mixed-effects models is that the residuals are
independent.

Despite mathematical clarity, defining independence in
practice is not straightforward. In cell biology experiments,
the minimum standard for classifying replicates as statistically
independent is that they be within-day biological replicates
(as opposed to technical replicates; see Fig. 1C) (44). How-
ever, the threshold for independence becomes murky when
certain technical sources of variance such as batch effects
impinge on the experiment because they introduce system-
atic bias that ultimately correlates the measurements. To en-
sure the statistical independence of replicates, the experiment
should be performed in the presence of primary threats to
reproducibility such as batch effects.

A downside to replicating experiments in the presence of
technical sources of variance is introducing variability that can
reduce precision and decrease the probability of finding sta-
tistically significant results. Biologists therefore typically at-
tempt to stringently control sources of variance extraneous to
the experiment. In particular, experiments are usually per-
formed using within-day biological replicates in order to avoid
introducing between-day variation. Reproducibility is then as-
sessed by conducting a separate experiment on another day
and comparing the results to those from the first experiment.
If the results are sufficiently similar then the experiment is
considered reproducible. Typically, the data from only one of
the experiments is reported in a publication (as “representa-
tive” data).

An alternative, more efficient approach depends on analyz-
ing the data using a statistical model such as the mixed-
effects model used in this study. By normalizing the variance
contributed by the technical sources of variance, the use of
statistical models allows the experiment to be performed
using exclusively between-day biological replicates, such that
replicates can be simultaneously used to estimate precision
and evaluate reproducibility. The gains in efficiency with this
approach can be illustrated with the following example. Sup-
pose a biologist conducts an experiment in which three rep-
licates of each treatment are desired. The typical strategy
would involve performing one experiment with three within-
day biological replicates and then repeating the experiment
on a different day to ensure that the results were reproducible.
Between the two experiments, six observations per treatment
would be collected. The alternative approach would involve
collecting a single replicate per treatment on each of 3 days to
collect three between-day biological replicates. The variance
introduced by performing the experiment on different days
could be normalized using a statistical model containing
terms adjusting for the between-day effects. The alternative
approach is more efficient because it involves collecting half
the number of observations per treatment (three versus six)
yet features one more between-day replicate to evaluate re-
producibility (three versus two). Furthermore, the data from

the three between-day replicates would all be presented in a
publication. Therefore, by purposefully performing between-
day replicates, even if it is logistically unnecessary to do so, and
using a statistical model to analyze the data, replication and
reproducibility assessment can be achieved efficiently and with-
out adversely affecting statistical power.

Caveats of Using Mixed-effects Models for Data Normaliza-
tion and Analysis—The mixed-effects modeling approach has
some limitations that must be considered. First, to reliably
estimate the variance components of the random-effect
terms, considerable replication is required. For example, the
confidence intervals for the variance estimates of the Day-by-
Kit interactions were large (Supplementary spreadsheet file).
Therefore, if one uses the model with the intent of rigorously
estimating variance components, one must ensure sufficient
replication. Second, the models do not distinguish the mech-
anisms underlying the technical factors. For example, we
know that the specific batch of an experiment contributes
significant variance but the model does not tell us why; we
can propose a number of reasonable mechanisms (Table I)
but ultimately cannot prove their contributions. On the one
hand, this feature is beneficial because known variance can
still be captured without knowing its mechanisms. However it
could also be possible to propose terms for the model that
improve the appearance of the data but whose inclusion is not
mechanistically justified. It is therefore important to justify
each term in the model by considering the potential sources
of variance in the experiment (e.g. Table I).

The linear mixed-effects modeling approach is powerful for
the design presented here. However, other common experi-
mental designs, such as time courses and dose-response
experiments, often feature nonlinearity that must be accom-
modated by the model. Linear and nonlinear mixed-effects
models present viable analytical frameworks for such data
and several strategies are available for their implementation.
First, in some cases, data transformations can sufficiently
linearize the data. Second, the levels of continuous factors
can be considered as distinct categorical factors, each with
their own term in the linear model (21). Third, nonlinear mixed-
effects models can also be used if the functional relationship
between the predictor and response variables is known (45).
This approach would probably be best suited to dose-re-
sponse data in which sigmoidal functional relationships are
commonly observed. A related approach involves using
splines in a mixed-effects modeling framework, also known as
semiparametric regression (46). Finally, a sequential approach
could be used in which a linear mixed-effects model is used to
model and normalize the technical effects, after which a mod-
eling framework that can handle nonlinearity (such as cFL) is
used to model the normalized values (which correspond to the
residuals of the first model). Sequential approaches have
been used in several studies to ensure computational tracta-
bility of the modeling (18, 23). Although this approach is
appealing, it is important to recognize that estimates will likely
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be more accurate if the data is modeled using a single model
(9). Our future work will seek to devise and test methods for
handling nonlinear data.

We remark that the mixed-effects model approach does not
require the use of housekeeping protein measurements,
which often serve as a basis for data normalization. However,
including housekeeping protein measurements in the experi-
ment could improve the interpretability of the model. The
model requires that a single condition be used as the basis for
comparison and its value is equal to the intercept. The effect
estimates for all other terms are calculated relative to the
intercept, which can obscure the interpretability of those es-
timates. In our case, phospho-Akt was the basis for compar-
ison such that the intercept was the average log MFI for
phospho-Akt in the vehicle-treated condition. Treatment-by-
Kit interaction terms distinguished the differences in log MFI
values of the remaining analytes from those of Akt. So, if the
log MFI of an analyte in response to a treatment was indis-
tinguishable from that of phospho-Akt, the term in the model
would be nonsignificant, even if that treatment caused a
change in the levels of the analyte. Such was the case for
phospho-p38 MAPK in response to TGF-�, for example (Fig.
4). If an unresponsive housekeeping protein was used as the
basis for comparison instead, then the treatment-by-kit inter-
action effect estimates should more closely align with expec-
tations from visually inspecting the data and therefore be
more intuitively interpretable. Nevertheless, this is a minor
limitation and does not adversely affect the modeling results.

In summary, we have implemented linear mixed-effects
models for rigorously normalizing and analyzing multiplexed
bead-based immunoassay data. Mixed-effects modeling of
our data provided exceptional insights into the biological and
technical factors influencing our data and improved its quality
for downstream analyses. The models can serve a critical
role in conducting informative and efficient experiments,
thus promoting the utility and feasibility of multiplexed bead-
based immunoassays. Finally, the mixed-effects modeling
approach reported here is generally applicable to all types of
bead-based assay data, including those used to measure
cytokines, secreted proteins, intracellular proteins, and nu-
cleic acids.
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