
Kalman Filter Techniques for Accelerated Cartesian Dynamic
Cardiac Imaging

Xue Feng1, Michael Salerno1,2,3, Christopher M. Kramer2,3, and Craig H. Meyer1,2

1Department of Biomedical Engineering, University of Virginia, Charlottesville, VA
2Department of Radiology, University of Virginia, Charlottesville, VA
3Department of Medicine, University of Virginia, Charlottesville, VA

Abstract
In dynamic MRI, spatial and temporal parallel imaging can be exploited to reduce scan time. Real-
time reconstruction enables immediate visualization during the scan. Commonly used view-
sharing techniques suffer from limited temporal resolution, and many of the more advanced
reconstruction methods are either retrospective, time-consuming, or both. A Kalman filter model
capable of real-time reconstruction can be used to increase the spatial and temporal resolution in
dynamic MRI reconstruction. The original study describing the use of the Kalman filter in
dynamic MRI was limited to non-Cartesian trajectories, because of a limitation intrinsic to the
dynamic model used in that study. Here the limitation is overcome and the model is applied to the
more commonly used Cartesian trajectory with fast reconstruction. Furthermore, a combination of
the Kalman filter model with Cartesian parallel imaging is presented to further increase the spatial
and temporal resolution and SNR. Simulations and experiments were conducted to demonstrate
that the Kalman filter model can increase the temporal resolution of the image series compared
with view sharing techniques and decrease the spatial aliasing compared with TGRAPPA. The
method requires relatively little computation, and thus is suitable for real-time reconstruction.

Keywords
Kalman filter; dynamic MRI; parallel imaging; real-time reconstruction

INTRODUCTION
Dynamic magnetic resonance imaging (MRI), which acquires a series of MR images to
capture evolving physiological phenomena, is becoming more popular in many clinical
applications including real-time cardiac function imaging, myocardial perfusion imaging,
dynamic MRA and functional MRI. Short scan time is typically needed to reduce motion
artifacts in dynamic imaging. One important method to reduce scan time is to exploit the
redundancy in the acquired data and/or the raw images so that less k-space data are required
for a given spatial and temporal resolution. Parallel imaging techniques, such as SMASH
(1), SENSE (2) and GRAPPA (3), have been demonstrated to effectively reduce scan time
without degrading image quality. These techniques take advantage of the spatial redundancy
of the image with multiple receiver coils to reduce the amount of k-space data required.
Similarly, in most dynamic image series, temporal redundancy can be also exploited, since
the images are highly correlated. Various view-sharing techniques have been developed to
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make use of the temporal redundancy to reduce the number of k-space phase-encoding lines
acquired for each image. These include the commonly used sliding window, which fills the
unacquired k-space data with the previously acquired time-adjacent k-space data, and
SLAM (4), which fills the unacquired k-space data by interpolating from neighboring
frames. These techniques are the principal methods used clinically due to their simplicity
and robustness, despite the fact that they can only increase the apparent temporal resolution
and may introduce temporal blurring and ghost artifacts to the dynamic image series.

Instead of exploiting the redundancy in the time domain, other techniques apply a 1D
Fourier transform along the time direction to explore the redundancy in the frequency
domain and then use advanced reconstruction methods to recover the image series. These
techniques include UNFOLD (5), kt-BLAST (6) and kt-FOCUSS (7), and they show
advantages over the view sharing techniques in reducing aliasing and temporal blurring.
Another category includes many reduced FOV (rFOV) methods (8–10), which take
advantage of the fact that some parts in the FOV are relatively static in a dynamic image
series so that the number of required k-space lines to update an individual image can be
reduced. One representative method called Noquist (10) can effectively reconstruct the
image series without residual artifacts from undersampled k-space data by decomposing the
image and the corresponding Fourier transform matrix into dynamic and static parts and
solving the resulting inverse problem with greatly reduced degrees of freedom, because the
static part of the image series stays the same throughout the image series and requires much
less data to reconstruct. However, these two types of methods often use retrospective
reconstruction, which inhibits their adoption in many clinical applications in which real-time
reconstruction is required, such as real-time catheter tracking and cardiac stress function
studies. Furthermore, these techniques are not always robust; for example, in real-time
cardiac imaging, the effectiveness of these methods can be impaired by respiratory motion
during free breathing (11).

Recent techniques based on compressed sensing, including the aforementioned kt-FOCUSS
and temporally constrained reconstruction methods (12), which exploit sparsity in the time
and/or frequency domain, have gained attention. However, a major disadvantage of these
methods is the long reconstruction time due to the iterative reconstruction, so that physicians
cannot get the reconstructed images for rapid feedback during the scan. Furthermore, the
nonlinear characteristics of these techniques make it difficult to predict and evaluate the
noise in the images compared with linear methods.

The Kalman filter, a widely used method in many engineering fields including real-time
object tracking, can also exploit the temporal redundancy in a time series by describing the
dynamic problem with a time-evolving state model and rapidly estimating the current state
using a real-time linear filtering process. Therefore, it is plausible to use this method in
dynamic MRI for real-time imaging and real-time reconstruction. The original adoption of
Kalman filter in dynamic MRI was proposed by Sümbül et al. (13–14). However, this
method was confined to non-Cartesian k-space trajectories because of a limitation intrinsic
to the model used in that study. In this paper we adapt the Kalman filter model to make it
available for the more widely used Cartesian trajectory.

Spatial and temporal redundancy can be exploited in combination to more effectively reduce
the scan time. Previous spatiotemporal acceleration approaches include TSENSE (15) and
TGRAPPA (16), which mainly rely on spatial parallelism but improve the results with the
temporal information; kt-SENSE (6), which is an expansion of kt-BLAST that incorporates
coil sensitivity into the model; and PINOT (17), which combines the SPACE-RIP parallel
imaging method (18) and the Noquist method. In this paper we also combine the Kalman
filter model with spatial parallel techniques. If reliable coil sensitivity maps can be acquired,
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they can simply incorporate them into the model as in kt-SENSE and non-Cartesian Kalman
filter combined with SENSE (13); however, since accurate coil sensitivity maps in many
dynamic problems are difficult to achieve, we also developed a method that combines the
Kalman filter with TGRAPPA to avoid the coil sensitivity estimation step.

In this paper, we will first introduce the implementation of the Kalman filter in Cartesian
dynamic MRI, including the combination with parallel imaging techniques. Next, we focus
on non-gated real-time cardiac imaging to study the performance of the Kalman filter model
by both simulation and experiment. Finally, we will discuss our results and possible
extensions.

THEORY
In general, a Kalman filter model is composed of a system model that describes the
relationships among the time-evolving states and a measurement model that describes the
measurement of the state at a given time. Usually the current measurement at a given time
alone is not sufficient to obtain an accurate estimate of the current state. The key to the
Kalman filter is to use all previous measurements and the relationship between states as
described by the system model to estimate the current state. Furthermore, the estimation
process is recursive, so there is no need to store past measurements for the purpose of
computing present estimates. Thus, the process can be very fast and memory efficient. The
general model of a Kalman filter is given as follows (19):

[1]

where xk is the system state in a vector form, Φk is the state transition matrix, wk is the
system noise vector assumed to have a zero-mean Gaussian distribution with covariance
matrix Qk, Hk and zk are the measurement matrix and the corresponding measurement data,
and vk is the measurement noise also assumed to have a zero-mean Gaussian distribution
with covariance matrix Rk. Given the appropriate initial conditions and assuming wk and vj
are independent, we can get the state estimate x̂k by a prediction-correction process
described as

[2]

where the − and + refer to the predicted and corrected state estimates and Kk is the Kalman
gain matrix calculated from Hk, Qk, Rk and Φk (19). The general equations to calculate Kk
are omitted here for brevity, as they will be discussed below in the Model Implementation
section.

If we want to directly apply the Kalman filter model to a dynamic MRI application acquiring
a 2D image series, the state to be estimated at each time point k is one individual image from
the image series and the corresponding measurement is the acquired k-space data, where the
measurement matrix is the 2D Fourier transform in matrix form. One major obstacle here is
the size of the vectors and matrices. For an individual N by N image, the dimension of the
state vector is N2*1 and the corresponding matrix is N2*N2, which is generally too large to
handle for a typical value of N. In Sümbül’s paper (13), a diagonalization assumption is
made for Qk, Rk and Hk

T Hk so that the prediction-correction process can be performed on a
pixel-by-pixel basis to bypass the matrix multiplication and inversion steps in calculating
Kk. The diagonalization of Qk and Rk can still be applied for Cartesian trajectories, because
Qk reflects statistical properties of the dynamic image series that are independent from the
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data acquisition, and the diagonalization of Rk is intrinsic due to the whiteness of the
measurement noise.

However, the diagonal simplification for Hk
T Hk is only possible for a non-Cartesian k-

space trajectory such as a spiral trajectory. Assuming Hk is the undersampled 2D Fourier
transform matrix connecting the image domain and the k-space domain with a matrix-vector
multiplication, the off-diagonal terms of Hk

T Hk are determined by the aliasing pattern as
displayed in the point spread function. For a spiral trajectory, the aliasing is diffuse and the
side lobes of the point spread function are more evenly distributed; therefore, each single
off-diagonal term is very small compared to the diagonal term and can be ignored without
nullifying the model. However, for a Cartesian k-space trajectory, the aliasing pattern is
generally very conspicuous as shown by separate peaks in the point spread function;
therefore, the off-diagonal term of Hk

T Hk cannot be ignored. Without the diagonalization of
Hk

T Hk, the direct implementation of the Kalman filter is impractical since the matrix
calculation process can be extremely complicated and will greatly increase the
reconstruction time. However, in an undersampled 2D Cartesian k-space measurement,
undersampling usually only happens in the phase encoding direction and k-space is often
fully sampled or even over sampled in the readout direction. Therefore, we can first apply a
direct 1D Fourier transform along the readout direction and then use the Kalman filter for
the reconstruction along the phase encoding direction for each readout pixel. By doing that,
for the same N by N image, we now have N Kalman filter models which can be calculated in
parallel and for each model, the dimension of the state vector becomes N and the matrix size
becomes reasonable. Furthermore, since we have already transformed into the image domain
along the readout direction before the Kalman filter model implementation, in many cases
we need fewer than N Kalman filter models to cover the ROI along the readout direction,
because portions of the object may not experience rapid motion. In this case, view-sharing
techniques can be used for the remaining regions to further reduce the reconstruction time,
as discussed below.

In the following paragraphs we will focus on a particular application: non-gated real-time
imaging of cardiac function. We will describe a specific Kalman filter model and use this
model to perform image reconstruction from undersampled data. Cardiac imaging has
demanding requirements for a dynamic imaging method, because of the fast and complex
motion of the heart combined with chest motion from breathing. First, we will introduce the
implementation of the Kalman filter model and describe how to obtain the signal estimates.
Then we will discuss several potential algorithms to simplify the model to reduce the
reconstruction time. Finally we will discuss the combination of the Kalman filter with
parallel imaging techniques.

Model Implementation
In a dynamic cardiac image series, the differences between two consecutive images are
generally very small except for certain areas experiencing rapid changes; therefore, for
simplicity, we can assume the state transition matrix is an identity matrix and the difference
can be modeled as system noise having a zero-mean Gaussian distribution (13). In fact, the
variance of this system noise can represent the degree of variation at each corresponding
pixel as the absolute value of the image differences are generally larger in more dynamic
areas and smaller in less dynamic areas.

Therefore, together with the 1D simplification, the Kalman filter model for real-time cardiac
function imaging can be written as:
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[3]

where xk is simplified to be the image column vector assuming the row vector is along the
readout direction for the 2D image, wk is the system noise vector with covariance matrix Qk,
Fk is the 1D Fourier transform matrix, zk is the corresponding k-space data column vector
after the 1D Fourier transform along the readout direction, and vk is the measurement noise
with covariance matrix Rk. Given the initial estimate x̂0 and the initial estimation error
covariance matrix P0, the subsequent estimation of xk is given as:

[4]

where Pk is the estimation error covariance matrix at each time step k and is a vital
intermediate parameter to calculate the Kalman gain matrix Kk.

Parameter Estimation
From Equation [4] we can see that the parameters that need to be estimated include the
system noise covariance matrix Qk, the measurement noise covariance matrix Rk, the initial
state estimate x̂0 and the initial estimation error covariance matrix P0.

First, we make an assumption that the distributions of the system noise vector wk and the
measurement noise vector vk do not change during the scan, because the dynamic process
(e.g., periodic cardiac motion) is stable from a statistical point of view. With this
assumption, we have Qk = Q and Rk = R. The estimation of Q and R are discussed below.

In Sümbül’s paper (13), as discussed before, Q was assumed to be a diagonal matrix to
simplify the computation process. This assumption was also validated in the paper by
determining that the cross-correlation terms of Q were very small, as shown in Fig. 1 of
(13). The diagonal Q was then roughly estimated from a low spatial resolution training scan
covering only the center of k-space or more precisely estimated from multiple training scans
covering different portions of k-space in each scan.

In our model, the diagonal assumption of Q is not necessary from a computational point of
view due to the 1D simplification; therefore, in theory it is possible to use a general
covariance matrix Q in which the off-diagonal term can reflect the relationships among
neighboring pixels to provide a better estimation of the image column vector xk. However,
in practice, it is difficult to estimate Q, since no prior information about the distribution of
wk is given and thus we must rely solely on the sample observations of wk. From statistics,
for an N-dimensional vector wk, the number of observations should be much greater than N
to provide a reliable estimate of its covariance matrix Q. For MRI, N is usually very large
and hence the amount of training data needed would be even larger, which would result in
an extremely long training scan. Furthermore, the error in the estimation of a general
covariance matrix Q can sometimes cause divergence of the Kalman filter model. On the
other hand, if we assume Q is a diagonal matrix and ignore the cross-correlation terms, the
estimation of Q becomes a pixel-by-pixel problem; only the variance of wk at each pixel
needs to be estimated and the required sample observations can be greatly reduced. As
compared with a potentially inaccurate general covariance matrix Q, a diagonal but more
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accurate Q is used in our model, and the accuracy of this simplification will be demonstrated
in the simulation study described below.

To estimate the diagonal terms of Q, we use a low-resolution training scan that only acquires
the center k-space lines. The fraction of the k-space lines acquired for the training is
determined by the under sampling ratio in data acquisition so that the temporal resolution of
the training images is the same as that of the actual images. Although the accuracy of the
variance estimation can be impaired at sharp edges in the image with a low-resolution
training scan due to blurring, we have found the error in pixel variance estimation to be
acceptable, because the Kalman filter uses all previous measurements to arrive at the current
estimate and thus exploits the overall redundancy of the k-space data.

An alternative way to estimate Q is to use multiple training scans to cover different parts of
k-space, similar to the use of different spiral rings as introduced in (13). However, this
requires multiple training scans and thus greatly increases the scan time. Furthermore, the
effect of this more precise Q is not obvious in terms of the accuracy of the state vector
estimate, which is our ultimate goal. Therefore, we prefer to use the low-resolution training
scan to get Q. The accuracy of this approach will also be demonstrated in the simulation
study described below.

In our estimation process, we use the differences between magnitude images rather than
complex images to estimate the variance at each pixel. When using complex differences,
differences in phase that result from off-resonance, motion or noise between consecutive
training images can significantly increase the variance and thus make the estimate
unreliable. This is especially true in regions where the image magnitude is small. The
measurement noise can also affect the estimation of Q, but this can be corrected as described
in the following paragraph.

To estimate Rk, we also use the diagonal and time-invariant assumptions, since the
measurement noise can be regarded as independent white noise and does not change with
time. Therefore, we have Rk =R = σ2I, where I is the identity matrix. It is necessary to
mention that this noise is not the original 2D k-space measurement noise but the noise after
a 1D Fourier transform along the readout direction; however, since the Fourier transform is
an orthonormal transform, the whiteness of the noise is maintained. As discussed before, the
estimation of Q is contaminated with measurement noise because the training data
measurement is not noise-free and the noise is brought into the training images via the
Fourier transform. Assuming the raw estimation of Q is given as Qraw, we can derive that Q
=Q raw − 2cσ2I, where c is a constant determined by the normalization factor of the Fourier
transform. To jointly correct for the contamination of measurement noise to get Q and
estimate the noise level σ, we simply make the assumption that the minimum diagonal term
of Q is close to zero, because there exists at least one pixel that stays almost the same during
the dynamic process and consequently, the minimum diagonal term in Qraw is due to the
measurement noise. So we can get the estimate of σ and the corrected Q.

Finally, we need to initialize the model with the initial conditions of x̂0 and its estimation
error covariance matrix P0. It is impossible to provide an accurate and alias-free initial
image due to limited temporal and spatial resolution. The options are either the spatially-
blurred image from the low-resolution training scan or the temporally-blurred image
reconstructed using view sharing techniques. However, since the Kalman filter is a robust
filter that can correct for the inaccuracy in the initial estimates with more and more
measurements, the influence of the inaccuracy of the initial image will fade away; therefore,
we choose an initial image with faster convergence. The performance of these two options
are compared with the simulation study described in the following sections. Similarly, the
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inaccuracy in P0 will also be corrected by the Kalman filter; therefore, we just empirically
choose it to be Q multiplied by the undersampling ratio, because the estimation error of x̂0 at
one pixel is roughly proportional to the variance of that pixel and the undersampling factor.

Simplifications of the Kalman Filter Model
From Equation [4] we can see that the most time-consuming step is the calculation of the
Kalman gain matrix Kk and the intermediate parameter Pk. However, as discussed before,
the system noise covariance matrix Q and the measurement noise covariance matrix R are
assumed to be time-invariant; therefore, the only matrix that changes from step to step
involved in calculation of Kk and Pk is the measurement matrix Fk. If the k-space sampling
pattern is periodic over the entire image series, the corresponding matrix Fk is also periodic.
Because P0 is a manually chosen parameter, the Kalman gain matrix Kk, as well as Pk, will
gradually converge to a periodic steady state after several steps. After that, the update of Kk
using Equation [4] can be replaced by using the pre-calculated periodic Kk. The
reconstruction time can thus be greatly reduced. The convergence of Kk is demonstrated
with the simulation study in the following sections.

In addition, as discussed before, we do not have to use the Kalman filter model for every
phase encoding line. Each phase encoding line corresponds to one readout location after the
1D Fourier transform along the readout direction. If this phase encoding line is within a
static or slowly-varying area, the simple view sharing methods are sufficient to reconstruct
this line without aliasing, and thus the reconstruction time can be reduced. Instead of
retrospectively selecting these areas, Q can provide this information, because in static or
slowly varying areas the corresponding variance is very small compared to that in more
dynamic areas. Specifically, we examine the variance vector Ql that corresponds to each
readout location and determine whether max(Ql) < Qmean/2, where Qmean is the mean
variance across the entire 2D image. If this is true, then we use a linearly interpolated view
sharing method (SLAM) instead of the Kalman filter model. The effect of this simplification
is examined in the simulation study below.

Multiple Coils
If multiple receiver coils are available, we can extend the Kalman filter model to incorporate
the measurements from different coils by combining the Kalman filter with SENSE. If the
coil sensitivity map is available, we can include the data from different coils, which results
in the following model(13):

[5]

where n is the number of receiver coils and Skn is the coil sensitivity map. For generality,
the coil sensitivity map is assumed to be time-variant, because in imaging during free
breathing, the chest motion can cause the coil elements to move. To dynamically estimate
the coil sensitivity map, we use the coil images reconstructed with view sharing techniques.
Correct normalization of the coil sensitivity map is important to avoid divergence of the
Kalman filter solution. The disadvantages of using this SENSE-based method include
difficulty in accurately estimating the coil sensitivity map in dynamic imaging and greatly
increased computation. The computation increases because the dimension of the
measurement model is increased by n and the periodic property of the Kalman gain matrix
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Kk is lost, because the measurement matrix is no longer periodic due to non-periodic Skn.
Therefore, we also developed a method of combining the Kalman filter with GRAPPA to
more effectively use the multi-coil measurements.

Compared with traditional GRAPPA, TGRAPPA is advantageous in dynamic cardiac
imaging since no separate training step is required and the GRAPPA kernel is updated for
every frame in the image series (16). In our model, first we use the updated GRAPPA kernel
to fill all the missing k-space lines for each individual coil. We know that the filled k-space
data is not accurate enough to generate an alias-free and high SNR image when the
undersampling ratio is very high if we just do a Fourier transform and combine the coil
images, as in TGRAPPA. However, we can still input this approximate k-space data into the
modified Kalman filter model as follows:

[6]

where zk is the measured k-space data and zk _TG is the unacquired k-space data estimated
from zk and the corresponding GRAPPA kernel; F, which replaces Fk in the original model,
is now the fully sampled 1D Fourier transform matrix, since zk and zk _TG together cover all
of k-space. It is worth mentioning that the measurement noise covariance matrix Rk_TG
corresponding to zk _TG is no longer determined by the actual k-space measurement noise
since zk _TG is not the measured k-space data. On the contrary, Rk _TG reflects the reliability
of the filled k-space data using the GRAPPA kernel by considering the deviation of the
filled k-space data from the “true” k-space data as noise. Similarly with Rk, for simplicity,
Rk _TG is also assumed as white and time-invariant, given as Rk _TG = RTG = p2σ2I, in
which p describes the reliability of the filled data relative to the measurement noise. In fact,
the off-diagonal terms of Rk _TG are not exactly zero as the missing k-space data points in
one frame are generated using the same TGRAPPA kernel; the results might be more
accurate with an approximate model to handle the noise related to TGRAPPA, but this is
beyond the scope of this paper. Empirically, we have observed that p = 6r2/n, in which r is
the undersampling ratio and n is the number of the coils. It is assumed that with a larger
undersampling ratio, the standard deviation of the filled k-space data increases much faster
and can be modeled with a square relationship. By this modified model, we can efficiently
combine the spatial parallel information with the temporal model to give a better estimate of
the dynamic image series. Also, with each coil, from Equation [4], the Kalman gain matrix
Kk can still converge to save reconstruction time, since Qk, Rk and Rk_TG are time-invariant
and F is a constant.

METHODS
Simulations

To verify the basic concept of the Kalman filter model in dynamic MRI, we first did a
numerical phantom study by constructing a dynamic image series containing three pairs of
concentric circles with fixed radius, slowly oscillating radius and rapidly oscillating radius,
respectively. To simulate the data acquisition process using a Cartesian trajectory, we
calculated the instant image at a given time point and its Fourier transform and selected the
corresponding k-space data of one phase encoding line assuming the actual measurement
was done at that time point. The training data used for the Kalman filter model was
simulated using the same method before the data acquisition. Then we reconstructed the
simulated data set using sliding window, SLAM and the Kalman filter model with an
acceleration factor of 2.
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To study the effect of the Kalman filter model in reconstruction of undersampled data, we
then conducted a series of more realistic simulations, where we reconstructed the image
series after retrospectively throwing out a portion of the k-space data and then compared the
reconstructed image series with the fully sampled data. The baseline image series were
acquired using a balanced SSFP sequence in a real-time ungated cardiac MRI (CMR) study
under both breath-hold and free-breathing situations. 2x TGRAPPA was used to increase the
temporal resolution. A total of 80 frames covering approximately 9 heart cycles were
generated. Then we did a Fourier transform for the baseline image series to get the fully
sampled k-space data and manually undersampled that using a given sampling pattern with
undersampling ratio 2 and/or 4. The training data for parameter estimation was also obtained
from the fully-sampled k-space data of the first 40 frames by selecting the center ¼ of the k-
space data.

To study the effect of Q in the Kalman filter model, in addition to the diagonalized Q
estimated from the low-resolution training data, we also obtained a diagonalized Q and a
non-diagonalized Q with fully-sampled training data in which no manual undersampling was
performed. The performance of the Kalman filter model using these three Q s were
compared by calculating the root mean square differences between the reconstructed image
series and the baseline image series. Similarly, to study the effect of the initial image in the
Kalman filter model, we used the spatially-blurred initial image and the temporally-blurred
initial image and compared the root mean square differences.

In addition, to test the simplifications of the Kalman filter model, we implemented the
original Kalman filter model without any simplifications, the Kalman filter model with the
convergent simplification and the Kalman filter model with the convergent simplification
and combined with SLAM. We compared their performances based on the root mean square
differences.

For these simulations, a periodic sampling pattern is required when evaluating the
convergence of the Kalman filter. Therefore, we used four types of sampling patterns
satisfying the periodic requirement and compared their performance. For types I–III, we first
fixed the phase encoding line order for a fully-sampled data set and then select a subset of
phase encodings corresponding to one frame based on the undersampling factor. The subsets
selected for Type I were interleaved, those for type II were bit-reversed, and those for type
III were random. For type IV, we generated a collection of random k-space lines based on
the undersampling factor and repeated this collection for every frame.

Finally, to compare the Kalman filter method with other available real-time reconstruction
methods represented by the view sharing techniques, we also implemented the sliding
window method and SLAM. Furthermore, we used kt-FOCUSS as a representative of
iterative reconstruction methods based on compressed sensing and compared it with the
Kalman filter method with the same undersampling factor but a Gaussian random
undersampling pattern. In addition to the root mean square differences between the
reconstructed image series and the baseline image series, we also calculated the structural
similarity index, which measures the similarity between two images based on human eye
perception to better estimate the performance of each reconstruction method.

Experiments
The non-gated real-time cardiac imaging experiments were performed on a Siemens Avanto
1.5 T scanner (Erlangen, Germany) equipped with a 12-channel body coil array and a 32-
channel body coil array. We used both coils in our experiments. A 2D Cartesian bSSFP
sequence was used with sequence parameters as follows: TR = 2.14 ms, TE = 1.07 ms, FOV
= 380–400 mm, slice thickness = 8 mm, flip angle = 46°, # PE lines = 128, # RO samples =
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128, image matrix size = 128*128. A training scan of about 2.5 s was performed before the
data acquisition to collect the center k-space lines. The total scan time was about 10 s. Both
short axis and long axis views of the heart were imaged under breath held and free breathing
conditions with acceleration factor 4. Array compression (20) was used for the primary coil
data to simplify the calculation process for the large coil arrays. The data was then
reconstructed using sliding window, SLAM, TGRAPPA, KF-SENSE and KF-TGRAPPA.

In order to independently assess the extent of spatial aliasing and to assess the image quality
of rapid moving structures, two cardiologists (M.S. and C.M.K) graded the images for the
severity of spatial aliasing and temporal blurring each on a 5-point scale. The ratings were
then statistically analyzed with a two-tailed Wilcoxon test. For the spatial aliasing
assessment a score of 1 corresponded to very severe aliasing precluding evaluation of
myocardial function; 2 to severe aliasing but adequate to evaluate function; 3 to mild-
moderate aliasing but not affecting region of interest; 4 to mild aliasing; and 5 to no aliasing.
The perceived temporal blurring was graded as a score of 1 for virtually no temporal
information; 2 for severe temporal blurring limiting ability to assess function; 3 for temporal
blurring evident, but not affecting assessment of LV function; 4 for mild temporal blurring
evident; and 5 for no temporal blurring. The image reviewers are both level III trained in
CMR and have 6 and 20 years experience interpreting clinical CMR images.

A software implementation of the method is available at http://bme.virginia.edu/meyer/
software/

RESULTS
Simulations

Figure 1 gives the results for the numerical phantom simulation in which the reconstructed
images at one time point (top row) and the image intensities along one vertical line versus
time (bottom row) using sliding window, SLAM and the Kalman filter model are shown.
The three pairs of concentric circles, from left to right, are with fixed radius, slowly
oscillating radius and rapidly oscillating radius, and the red lines indicate the image cross-
section displayed in the bottom row. The ghost artifacts due to the change in radius are very
obvious with the sliding window and SLAM methods, but are greatly reduced with the
Kalman filter model. In addition, the temporal resolution with the Kalman filter is much
higher than with the two view sharing methods, as can be seen in the images in the bottom
row. Temporal blurring can be seen both by the smoothing of the peaks as a function of time
and by spatial blurring vertically between the white center region (simulated left ventricle)
and the gray outer region (simulated myocardium). This improved temporal resolution
comes from the fact that the Kalman filter model can distinguish the more dynamic areas
from the less dynamic areas and hence more effectively use the undersampled data to catch
the movement in the more dynamic areas.

Figure 2 plots the root mean square differences between the reconstructed image series and
the baseline image series using a diagonalized Q estimated from the low-resolution training
data and from the fully-sampled training data (left) and using the spatially-blurred initial
image and the temporally-blurred initial image. The reconstructed image series using a
general Q estimated from the fully-sampled training data diverges, indicating the Kalman
filter model fails with such an inaccurately estimated Q. The left side of Fig. 2 indicates that
the result using the low-resolution training data is very similar to the fully-sampled training
data or even performs better (lower root mean square differences) with certain frames.
Therefore, this data indicates that it is unnecessary to use multiple scans for a more precise
Q. The right side of Fig. 2 shows that the choice of initial image is not critical, because both
initial images give the same results after approximately 10 frames. However, even though
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the root mean square differences are larger with the spatially blurred initial image in the
beginning, they converge faster as the values drop faster compared with the temporal-
blurred initial image. Therefore, we chose the spatially blurred initial image in our
experiments.

The left side of Fig. 3 shows the root mean square differences of the reconstructed image
series and the baseline image series using the original Kalman filter model, the convergent
Kalman filter model and the convergent Kalman filter model combined with SLAM. It
indicates that the results using the original algorithm and the two simplified algorithms are
almost identical, meaning the simplifications of the Kalman filter model do not harm the
effectiveness of the model. The right side of Fig. 3 plots the value of Kk at a fixed location
with the original Kalman filter model. The result conforms to our expectation as Kk
approaches a periodic steady state with period 4, which is the undersampling ratio used in
this simulation. Therefore, in practice we use the convergent Kalman filter model combined
with SLAM to maximally reduce the reconstruction time.

Figure 4 plots the 4 types of sampling patterns (left) and the resulting root mean square
differences using these sampling patterns. There are no apparent differences among the first
three types of the sampling patterns in terms of root mean square differences and they all
perform better than the fourth type of the sampling pattern. This shows that a sampling
pattern that covers the entire k-space in several frames is preferred. This is because the
Kalman filter relies on all previous measurements to give an optimal estimate of the current
state, so acquiring all of k-space provides comprehensive information to better estimate the
current image, even though the k-space acquisition is completed over several frames.

Figure 5 shows example images reconstructed using the sliding window, SLAM, kt-
FOCUSS and the Kalman filter with undersampling ratio of 2 (top row), the corresponding
difference images with the raw image (middle row) and the image intensities of one phase
encoding line as indicated in the top left image across the entire image series (bottom row)
in a single-coil simulation study with a free breathing short axis image series. The ghost
artifacts due to motion are obvious in the sliding window and SLAM methods and are
greatly alleviated with Kalman filter method. The aliasing pattern with kt-FOCUSS is
different from the other methods due to the non-linearity of the reconstruction. In addition,
some blurring occurs in free-breathing situations as illustrated by the arrows in Fig. 5. The
images along the bottom row show that the Kalman filter provides the highest temporal
resolution as the changes of the left ventricle radius are the sharpest. Figure 6 shows a plot
of the root mean square error (RMSE) and the structural similarity index (SSIM) between
the reconstructed image series and the raw image series in the same simulation study. The
Kalman filter provides a lower RMSE and a higher SSIM compared with sliding window
(SW) and SLAM in most of our simulation studies with undersampling ratios of 2 and 4,
including the study shown in Fig. 5. As shown in Fig. 6, the decrease of RMSE and increase
of SSIM are more obvious in frames when the cardiac motion is very fast, such as the end-
systolic phase of the cardiac cycle. Comparing the Kalman filter with kt-FOCUSS, kt-
FOCUSS yielded the lowest RMSE with most breath-held simulations; however, with free-
breathing simulations, kt-FOCUSS sometimes had higher RMSE than the Kalman filter
method.

Experiments
Figure 7 shows the results of the blind review for a total of 8 experiments including 4 short
axis and 4 long axis experiments with acceleration factor 4. The visually assessed temporal
resolution is improved with TGRAPPA, KF-SENSE and KF-TGRAPPA (KF-TG) compared
with sliding window and SLAM and the improvement was statistically significant from the
two-tailed Wilcoxon signed rank test (p<0.05 for SW vs. KF-SENSE, SW vs. KF-TG,
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SLAM vs. KF-SENSE, SLAM vs. KF-TG). For the degree of spatial aliasing, the ratings of
KF-SENSE and KF-TGRAPPA were not statistically different from sliding window and
SLAM, although KF-SENSE and SLAM were slightly better than SW and KF-TG.
Comparing KF-TGRAPPA with TGRAPPA, there was significant reduction in spatial
aliasing (p<0.05) and slightly better temporal resolution.

DISCUSSION
We have developed a Kalman-filter-based image reconstruction method for real-time
reconstruction of Cartesian dynamic image series and implemented it in a real-time CMR
study. We combined the model with SENSE and TGRAPPA. The major advantages of this
method include the capability for non-iterative real-time reconstruction and significantly
improved temporal resolution. The capability for non-iterative real-time reconstruction lies
in the fact that as long as the model is established, the Kalman filter can generate an optimal
estimate of the current state given all previous measurements with a single prediction-
correction process without iteration. The reconstruction in this study was performed offline
using Matlab and has not yet been implemented on the scanner’s reconstruction computer.
However, the computational load is relatively small and can be realized with moderate
computing hardware. The offline reconstruction time for an entire image series (80 frames,
128*128) is about 4 seconds in Matlab using a laptop with a 2.2 Ghz CPU and without
parallel computing. This corresponds to a computation time of 50 ms per temporal frame.
Furthermore, as discussed previously, if the sampling pattern is periodic, the major
computation, which is the calculation of the Kalman gain matrix Kk, can be performed
before the data acquisition and thus the subsequent reconstruction requires only two matrix-
vector multiplications and one vector-vector addition per readout pixel. In addition, the
algorithm is easily parallelizable, because each readout pixel can be treated independently;
thus, parallel computing can be easily implemented to reduce the reconstruction time.

The improvement in temporal resolution with this method is because the Kalman filter can
capture rapid changes with limited measurements. For example, if the k-space measurements
are under-sampled, the information is not enough to get an accurate current estimate from
just that data; however, the relationship between the current and the past states represented
by the state model can be exploited to benefit the current estimate. In this study, the pixels
with lower variance rely more on past states by the prediction step; the pixels with larger
variance rely more on the measurements by the correction step. Therefore, since the number
of pixels with large variance is much smaller than the total number of pixels, the information
contained in the k-space measurements is sufficient to provide an accurate current estimate.

Although in this paper we focused on the real-time cardiac study, this model is not limited to
this application. In this application, we make a simple assumption to just copy the previous
state to get the current state. For other applications, the model might need some
modifications if we can get some information about the evolvement of the states. However,
the framework to simplify the 2D problem to a 1D problem makes it easier to modify and
implement a more complicated model such as the APMA model to more accurately describe
the relationships among the states.

The combination with parallel imaging techniques can further reduce scan time and improve
image quality, as demonstrated by KF-SENSE and KF-TGRAPPA. Both are suitable for
real-time reconstruction, although KF-SENSE is more computationally demanding, resulting
in longer image reconstruction times. The coil sensitivity estimation in KF-SENSE can be
further explored to improve image quality. For KF-TGRAPPA, the error covariance of the
filled k-space data in this paper is not an optimal choice but simply an empirical one.
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Therefore, further research is necessary to reduce the spatial aliasing by tuning this
parameter.

Upon visual analysis, the improvement in temporal resolution is obvious with the Kalman
filter; however, the cardiologists who scored the images were not bothered by some aliasing
artifacts that were apparent in difference images in the simulation study, because they
mainly focused on the cardiac region and the aliasing was relatively small in that region.
There are some flickering artifacts with the Kalman filter model that lead to a lower rating in
spatial unalising. Further study is needed to provide a more comprehensive understanding of
the advantages and disadvantages of the Kalman filter model.

In conclusion, the Kalman filter method is a novel real-time reconstruction method in
dynamic MRI that can improve the temporal resolution. The potential for real-time
reconstruction may be valuable compared with retrospective and/or iterative reconstruction
methods. The versatility of the model is also an advantage and is a promising topic for future
study.
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APPENDIX
Derivation of Q =Qraw − 2cσ2I

The k-space data from the training scan zt is contaminated with measurement noise nt given
as zt =st + nt and the covariance matrix Qraw is estimated from the differences of two
consecutive images ii+1 − it in which it = F−1 zt+1. Therefore, we have

in which the mean of the cross terms between st+1 − st and nt+1 − nt is zero due to the
whiteness of the noise and c is a constant determined by the normalization factor of the
Fourier transform matrix F.
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Figure 1.
Numerical phantom study. The reconstructed images (top row) and the image intensities
along the red vertical line versus time (bottom row) using the sliding window, SLAM and
Kalman filter methods. The three pairs of concentric circles are with fixed radius, slowly
oscillating radius and rapidly oscillating radius (from left to right). The Kalman filter
method substantially reduces aliasing and temporal blurring. The reduction in temporal
blurring can be seen in the sharper temporal response and the reduced blurring of the
boundaries between regions of the phantom.
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Figure 2.
Root mean square differences of the Kalman filter model using different Q (left) and initial
images (right).
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Figure 3.
Left: Root mean square differences of the Kalman filter model using the original algorithm
and the simplified algorithms. The simplified algorithms produce similar results. Right:
Simulation demonstrating that Kk approaches a periodic steady state.
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Figure 4.
Root mean square differences of the Kalman filter model using different sampling patterns.
The three sampling patterns that cover all of k-space in several frames result in similar error
levels, and they each have substantially lower error than a random sampling pattern.
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Figure 5.
Images reconstructed using sliding window, SLAM, kt-FOCUSS and Kalman filter methods
with undersampling factor of 2 (top row), the corresponding difference images with the raw
image (middle row) and the image intensities along the red vertical line (top left image) as a
function of time (bottom row). Aliasing and temporal blurring are lowest for the Kalman
filter method.
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Figure 6.
RMSE(left) and SSIM(right) between the reconstructed image series and the raw image
series.
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Figure 7.
Temporal resolution and spatial unaliasing ratings by two blinded expert readers.
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