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Abstract
Rationale—Accelerated lung function decline is a key COPD phenotype; however its genetic
control remains largely unknown.

Methods—We performed a genome-wide association study using the Illumina Human660W-
Quad v.1_A BeadChip. Generalized estimation equations were used to assess genetic
contributions to lung function decline over a 5-year period in 4,048 European-American Lung
Health Study participants with largely mild COPD. Genotype imputation was performed using
reference HapMap II data. To validate regions meeting genome-wide significance, replication of
top SNPs was attempted in independent cohorts. Three genes (TMEM26, ANK3 and FOXA1)
within the regions of interest were selected for tissue expression studies using
immunohistochemistry.

Measurements and Main Results—Two intergenic SNPs (rs10761570, rs7911302) on
chromosome 10 and one SNP on chromosome 14 (rs177852) met genome-wide significance after
Bonferroni. Further support for the chromosome 10 region was obtained by imputation, the most
significantly associated imputed SNPs (rs10761571, rs7896712) being flanked by observed
markers rs10761570 and rs7911302. Results were not replicated in four general population cohorts
or a smaller cohort of subjects with moderate to severe COPD; however, we show novel
expression of genes near regions of significantly associated SNPS, including TMEM26 and
FOXA1 in airway epithelium and lung parenchyma, and ANK3 in alveolar macrophages. Levels
of expression were associated with lung function and COPD status.

Conclusions—We identified two novel regions associated with lung function decline in mild
COPD. Genes within these regions were expressed in relevant lung cells and their expression
related to airflow limitation suggesting they may represent novel candidate genes for COPD
susceptibility.
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INTRODUCTION
COPD is the third leading cause of death in the United States and the fifth leading cause of
death worldwide, and its prevalence is expected to increase in upcoming decades.1–3 The
majority of COPD is caused by environmental exposures. In developed countries, this
exposure is primarily cigarette smoke; however only a minority of all smokers develops
COPD.4 Furthermore, strong familial aggregation of COPD suggests a large role for genetic
susceptibility to the detrimental effects of smoking.5

Genome-wide association studies (GWAS) have identified several novel COPD candidate
genes, including FAM13A, HHIP, and CHRNA 3/5.6;7 However, two pathogenetic
pathways likely contribute to the development of COPD; attainment of lower than maximal
lung size and function by young adulthood, and an accelerated decline in lung function over
time, and it is likely that different genes impart susceptibility to these processes. Although
heritability of lung function decline is well-established8 and several candidate gene
association studies have supported a genetic basis for lung function decline9–19, the genes
controlling loss of lung function in smokers remain largely unknown.20
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The NHLBI-supported Lung Health Study (LHS) was a multi-center randomized clinical
trial in the U.S. and Canada to determine whether or not a program of smoking intervention
and use of an inhaled bronchodilator could slow the rate of decline in pulmonary function in
smokers with mild airflow limitation. The LHS has been a landmark study in understanding
the longitudinal effects of smoking on short and long-term outcomes in mild COPD. It is
uniquely suited to investigate causes of lung function decline since subjects were
comprehensively assessed for smoking habits and lung function at each annual visit over a
5-year period with exceptionally high follow-up rates.21 Here we report results from the first
GWAS of lung function decline in individuals with mild COPD and report replication of our
results and lung tissue expression of relevant genes.

METHODS
Population

The LHS was a multicenter clinical study of current smokers with mild COPD. Lung
function was measured annually over a 5-year period21;22 and data from Annual Visits 1 to 5
were used for the current analyses. Additional details of LHS 23;24 provided in Online
Resource. The GWAS included 4,251 European American LHS participants with adequate
DNA.

Genotyping and Quality Control
Samples were genotyped using the Illumina Human660W-Quad v.1_A BeadChip (see
Online Resource). Sample and SNP quality control (QC) was done using
IlluminaBeadStudio (see Online Resource). Overall, 98.4% of samples (n=4,181) passed
initial quality-control standards and genotypes were released for 559,766 SNPs. 133
additional samples were removed for quality control criteria for a final sample of n=4,048.

Tests for association
Generalized estimation equations were used to test for the genetic contribution to lung
function decline.25 Baseline predictors included gender, age, and study site. BMI and
smoking status were included as time-varying covariates. Smoking was encoded in three
different time-varying covariates to model effects of starting/quitting smoking: 1) average
number of cigarettes smoked per day over previous year, 2) smoking status, defined as
smoker or non-smoker, for the current year and 3) for the previous year. Interactions of
smoking and gender with time and the first five principal components computed via
Eigenstrat, in order to address the potential effects of population stratification, were
included. The genetic contribution to lung function decline was assessed by testing the
parameter for SNP by time interaction (allowing for genotype main effect in the model, but
not part of the hypothesis test), using dominant coding for genotype. This coding allows for
two separate trajectories of FEV1 thus comparing lung function decline of subjects with and
without variant alleles. Because of its known strong link with absolute FEV1, height was
included as a covariate in sensitivity analysis. To account for multiple testing, a Bonferroni
threshold of p<9.45 × 10−8 was considered statistically significant, based on the 528,817
SNPs passing QC.

Imputation
We imputed genotypes for all polymorphic HapMap Phase 2 SNPs using hidden Markov
model with MACH version 1.0 (http://www.sph.umich.edu/csg/abecasis/MACH/). (see
Online Resource).
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Replication
Replication of the top 10 genotyped SNPs associated with lung function decline was
attempted in independent cohorts sampled from distinct general populations (Cardiovascular
Health Study (CHS), Framingham Heart Study (FHS) Offspring cohort, Baltimore
Longitudinal Study of Aging (BLSA) and Dutch-Belgian Lung Cancer Screening Trial
(NELSON) cohort) and one cohort of smokers with moderate-severe COPD (Evaluation of
COPD Longitudinally to Identify Predictive Surrogate End-points (ECLIPSE)). (see Online
Resource).

Immunohistochemistry
Immunohistochemistry was used to test for the pulmonary expression of genes within the
two loci meeting genome-wide significance, (chr 10: ANK3, CDK1, RHOBTB1, TMEM26;
chr14: FOXA1) in lung tissue obtained from both the Lung Tissue Research Consortium
(LTRC) and a tissue bank from St. Paul’s Hospital, Vancouver, Canada.26 ANK3, TMEM26
and FOXA1 were selected based on their proximity to risk loci and evidence of significant
expression in the lung in published data and real-time PCR (data not shown). Carriers of the
risk alleles with and without airflow obstruction were compared using quantitative
morphology (see Online Resource).

RESULTS
Clinical characteristics of subjects are presented in Table 1. The GWAS sample represents
69.7% of the 5,638 European American volunteers who participated in the LHS study.
Importantly, LHS subjects included in the GWAS had demographics (including age, gender
and BMI) and rates of lung function decline (mean annual change in FEV1% predicted)
similar to those not included in the GWAS: −0.94 %/yr vs. −1.01 %/yr, p=0.23, reflecting
little selection bias for our primary outcome. They were, however, more likely to have quit
smoking after 5 years.

A summary of the tests for association between individual SNPs across the entire genome
and lung function decline are presented in Figure 1. A Q-Q plot of these results is presented
in Figure 2, and the 10 most strongly associated SNPs (representing seven different regions)
are listed in Table 2. Two SNPs (rs10761570 and rs7911302) on chromosome 10 and one
SNP on chromosome 14 (rs177852) met a Bonferroni threshold for genome-wide
significance (p<9.45×10−8). To refine these two regions, we imputed SNPs in these regions
of chromosomes 10 and 14 (Figure 3). Observed and imputed genotypes for those two
regions overall were in high (chr10) to moderate (chr14) linkage disequilibrium (LD). The
most significantly associated imputed SNPs (rs10761571 and rs7896712, both p=3.7 × 10−8)
on chromosome 10 are flanked by the two genotyped SNPs that reached genome-wide
significance. Several additional SNPs in this region reached genome-wide or near genome-
wide significance. One imputed SNP (rs12147245, p=2.1 × 10−8) in chromosome 14 was
more significantly associated with lung function decline than the genotyped SNP, and two
additional, imputed SNPs were equally associated (rs177858 and rs177859, p=9.9×10−7)
(Figure 4).

Height significantly explained some variability in the absolute measurement of FEV1, but
was not associated with lung function decline in our preliminary analyses, and the results of
association of genetic markers with lung function decline were not meaningfully different
when height was included as a covariate in the model in sensitivity analyses (data not
shown).
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Replication
To test for generalizability of associations with lung function decline in general population
cohorts (smokers and non-smokers without regard to pulmonary function), we compared our
results with GWAS data from four independent general population samples with
longitudinal data on lung function (Table 3). In addition, our results were compared to those
of the ECLIPSE cohort which included subjects with GOLD stage II-IV COPD. In the
NELSON cohort we observed nominal significance for rs2030436 on chromosome 12
(p=0.05) which did not hold its significance after Bonferroni correction. No significant
evidence for association was observed in the CHS, FHS, BLSA or ECLIPSE cohorts.

Tissue Validation for chromosome 14 locus
Staining for FOXA1 in the airway epithelium (a) and parenchyma (b) using tissue samples
from the St. Paul’s’ Hospital repository is shown in supplementary Figure E1. In the airway
epithelium, nuclei in all layers of the pseudostratified epithelium were stained positively for
FOXA1. In the parenchyma, staining was confined to the alveolar epithelium and appeared
to be associated with type II pneumocytes. There was a significant relationship between the
extent of staining of the airway and parenchymal epithelium (r2=0.56, p<0.0001). FOXA1
expression was higher in the epithelium and parenchyma of smokers with airways
obstruction compared with smokers without airways obstruction (p<0.001, both
comparisons). There was no significant effect of FOXA1 genotype on FOXA1 protein
expression (Figure E3). These results were not confounded by smoking status, as there was
no differential expression by whether subjects were current or former smokers. There was
no staining of alveolar macrophages. Similar findings were obtained in the LTRC cohort
(data not shown).

Tissue validation for chromosome 10 locus
Using specimens from St. Paul’s Hospital cytoplasmic staining for TMEM26 occurred in the
airway epithelium (a) and parenchyma (b), as shown in supplementary Figure E4 and there
was a significant but weak to modest correlation between the extent of staining of the airway
and parenchymal epithelium (r2=0.22, p=0.002). Subjects with airways obstruction had
significantly decreased epithelial TMEM26 staining, and increased parenchymal TMEM26
staining, compared to those without airways obstruction (Figure E5). There was no effect of
genotype and no evidence of interaction between genotype and lung function. Current
smokers had significantly lower expression in the airway epithelium (31% vs. 45%, p=0.03)
but there was no effect of current smoking on alveolar staining. Similarly, using the LTRC
samples, immunohistochemical staining of lung sections for TMEM26 showed protein
expression in the cytoplasm of the airway epithelium. Quantitative immunohistochemistry
revealed no significant difference in staining between epithelium of subjects with COPD
compared with epithelium of smokers without COPD (39.8% vs. 48.5%, p=0.17; Figure
5A). Subjects without COPD who were homozygous for the chromosome 10 risk allele
(n=3) as compared to those without the risk allele (n=3) had increased TMEM26 staining
(47% vs. 20%, p=0.02), but there was no statistical difference between genotypes in those
with COPD.

Representative ANK3 immunohistochemical staining of lung sections from at-risk and
COPD patients from the LTRC shows predominant staining in the alveolar macrophage
compartment. Quantitative immunohistochemistry demonstrated increased staining in
macrophages of COPD specimens compared with at-risk smokers without COPD (25.6% vs.
65.4%, p=0.0007; Figure 5B). There was no significant effect of genotype at the
chromosome 10 region with ANK3 macrophage expression.
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DISCUSSION
In this first GWAS of lung function decline, we have identified two novel regions, one on
chromosome 10 and one on chromosome 14, which were associated with decline in FEV1 in
a cohort of European Americans with mild COPD. The Lung Health Study is uniquely
suited to investigate genetic risk to smoking-induced lung function decline as it includes
over 4,000 smokers with airflow limitation who have exquisitely characterized smoking
status and annual lung function over 5 years and designed with rate of lung function decline
as the primary endpoint of the study. Two intergenic SNPs (rs10761570 and rs7911302) on
chromosome 10 and one SNP on chromosome 14 (rs177852) met a Bonferroni threshold of
genome-wide significance for the outcome, rate of decline of lung function. Further support
for the chromosome 10 locus was obtained by imputing additional markers, where the most
significantly associated imputed SNPs (rs10761571 and rs7896712) were flanked by the two
observed markers (rs10761570 and rs7911302). Immunohistochemistry performed on lung
tissue from smokers demonstrated, for the first time, that ANK3, TMEM26 and FOXA1
proteins, which are encoded by genes neighboring the most significant SNPs in the GWAS,
were expressed in the airway epithelium, lung parenchyma or alveolar macrophages, with
differential expression in smokers with airways obstruction compared to smokers without
airways obstruction. These results implicate these genes as novel biologically plausible
candidate genes for lung function decline and COPD pathogenesis.

Using the ENCODE database (http://www.genome.gov/10005107), the chromosome
10q21.2 region has been determined to be a regulatory region with very specific binding
sites for several regulatory proteins, including NFkB and STAT1, both of which have been
implicated in COPD.27;28 Furthermore, the most significantly associated SNPs are flanked
by RHOBTB1, CDK1 and ANK3 (upstream) and TMEM26 (downstream). Using both real-
time PCR and immunohistochemistry, we saw protein expression of ANK3, TMEM26 and
FOXA1, but negligible expression of RHOBTB1 and CDK1, in human lung tissue
specimens irrespective of COPD status (data not shown). Ankyrins play a key role in
activities such as cell motility, activation, proliferation, contact and the maintenance of
specialized membrane domains. In humans, ANK3 proteins have been identified in a variety
of epithelial cells, bone marrow macrophages and neurons.29;30 We demonstrate the novel
finding that ANK3 protein is expressed in alveolar macrophages. Furthermore, its
expression was higher in alveolar macrophages from subjects with COPD compared to at
risk smokers without evidence of airways obstruction. Little is known about TMEM26
(transmembrane protein 26). It has previously been identified in a GWAS as being
associated with blood pressure.31 This is the first demonstration that TMEM26 is expressed
in airway epithelium and lung parenchyma, and smokers with airways obstruction had
increased parenchymal, but decreased TMEM26 expression compared to smokers without
airways obstruction. Except for subjects without COPD who were homozygous for the
chromosome 10 risk allele (rs177852 (CC)) having increased TMEM26 staining compared
to those without the risk allele in the LTRC samples, no associations were observed between
genotype and protein expression. This may be because the susceptibility alleles do not
influence risk by changing the level of protein expression, or because
immunohistochemistry is insensitive to detect changes in the level of expression.
Immunohistochemistry has utility for the detection of changes in the area fraction stained
positive and but not the intensity of staining as would be the case if the same number of cells
expressed more protein. In addition, we were likely underpowered to detect an association
given our small sample size in the immunohistochemistry studies. Although the genetic
associations observed in the current study do not implicate any of these genes directly, the
location of the association signal and the novel finding of protein expression of ANK3 and
TMEM26 in lung tissue and association with airways obstruction suggest these genes may
be involved in COPD pathogenesis.
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The chromosome 14 region also met genome-wide significance for association with lung
function decline. The gene encoding forkhead box protein A1 (FOXA1), previously termed
hepatocyte nuclear factor (HNF-3), is in the vicinity of the most significant SNPs and
encodes a transcription factor previously known to be expressed in epithelial cells of the
conducting airways and in type II alveolar epithelial cells.32 FOXA1 may regulate
respiratory epithelial differentiation and structural maturation of the lung during
development 32 and has recently been reported to play a role in regulation of apoptotic cell
death in various diseases. Specifically, it has been shown to play a pro-apoptotic role during
oxidative-stress induced apoptosis in type II pneumocytes.33 Over-expression of FOXA1
has been shown to promote apoptosis,34 which has been implicated as a mechanism
contributing to COPD and emphysema progression.35 We demonstrate expression of
FOXA1 protein in airway epithelium and lung parenchyma. Furthermore, FOXA1
expression was inversely associated with lung function, increased expression in alveolar and
airway epithelium in subjects with severe airway obstruction compared with smokers
without airways obstruction. An RNA seq-based survey of a limited number of small airway
brush specimens confirmed expression of FOXA1 and ANK3 genes in the lungs of COPD
patients (R.C., data not shown). Together these data support FOXA1 as a biologically
plausible candidate gene for the pathogenesis of COPD.

There are several potential reasons for the lack of replication in general population cohorts.
First, genetic factors influencing susceptibility to cigarette smoke might have little or no
influence on the rate of lung function decline due to aging in general population cohorts.
Accelerated lung function decline is likely to be strongly affected by environmental
exposures, particularly cigarette smoking, and therefore requires both a sufficient
environmental exposure and a genetically susceptible individual. Second, in the LHS
accurately accounting for the effects of cessation and re-initiation of smoking greatly
affected an individual’s lung function trajectory. For this reason, we included subjects’
smoking habits in three different time-varying covariates, including average number of
cigarettes smoked per day over the previous year at each annual visit and a subject’s
smoking status for each of the two previous years to model the effects of starting / quitting
smoking. It is therefore not surprising that, in general populations not specifically designed
to assess longitudinal changes in lung function, self-report of cigarette smoking ascertained
at intervals spanning several years may not accurately reflect the intermittency of smoking
exposure. Failure to incorporate effects of intermittent smoking may lead to a considerable
residual confounding by smoking exposure, and consequently, an underestimation of the
importance of genetic factors. Indeed, previous results from the FHS showed estimates of
heritability in lung function decline among relatives increased when the analysis was
restricted to relative pairs concordant for smoking status.8 Given the comprehensive
evaluation of smoking status at each annual visit in LHS, this cohort of smokers is uniquely
suited to identify genetic factors underlying smoking-related lung function decline. Third,
despite high correlation between pre- and post-BD spirometry, pre-BD FEV1 may be
reduced due to bronchoconstriction as well as by airway remodeling. Thus, genetic factors
contributing to post-BD FEV1 may not be identified in a study where the outcome is pre-BD
spirometry. The ECLIPSE cohort is most similar to the LHS cohort because it involves
subjects who were recruited because they had COPD and because it incorporated regular
assessment of post-BD spirometry and smoking status. However, ECLIPSE includes only
subjects who have moderate, severe, or very severe COPD (mean baseline FEV1 of 48%
predicted).36 The factors associated with lung function decline in the later stages of disease
may be different from those associated with rates of decline in early-stage COPD. For
instance, the rate of lung function decline may decelerate in those with more severe
disease;37 or may be modified by medications used to treat those with more severe disease
(i.e., combination therapy with inhaled corticosteroids and long-acting beta agonists).37 One
notable difference between the studies was that bronchodilator reversibility was found to be
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associated with lung function decline in subjects with moderate-severe COPD in ECLIPSE
but not in those with early stage COPD in LHS.36;38 Lack of available cohorts with mild-
moderate COPD with longitudinal assessment of post-BD lung function and smoking status
ascertained at annual visits was likely a key limiting factor in appropriate replication;
however, despite correction for multiple testing, we cannot exclude the possibility that the
signals were false-positive results of the GWAS.

In summary, we have identified two novel regions, one on chromosome 10 and one on
chromosome 14, associated with decline in FEV1 in a longitudinal cohort of smokers with
COPD. These results appear to be unique to smoking individuals who have mild to moderate
COPD. In addition, immunohistochemistry results confirmed localization of proteins coded
by genes in the vicinity of the most significant SNPs, including TMEM26, ANK3 and
FOXA1, and suggest differential expression in the lungs of subjects with COPD compared
to non-obstructed smokers. These results implicate two novel loci likely involved in lung
function decline in smokers with early COPD.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Manhattan Plot
Genome-wide association for FEV1 decline ordered by chromosome position. The X-axis
shows chromosome position and the Y-axis shows the −log10(P-value).

Hansel et al. Page 13

Hum Genet. Author manuscript; available in PMC 2014 January 01.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text



Figure 2. QQ plot
Quantile-quantile plot of GWA results for FEV1 decline

Hansel et al. Page 14

Hum Genet. Author manuscript; available in PMC 2014 January 01.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text



Figure 3. Results of lung function decline analysis on chromosome 10 (Panel A) and chromosome
14 (Panel B) regions of association
The genotyped SNPs in blue and the imputed SNPs in gray are shown in the upper track of
the figure labeled as ‘plotted SNPs’. The relative location of the genes in each region and the
direction of transcription are shown in the bottom track of the figure, and the chromosomal
position is shown on the x axis. The light blue line shows the recombination rate across the
region (right y axis), and the left y axis shows the significance of the associations. The
purple circle shows the P value for the top signal in each region (rs10994644 and rs177852,
respectively). The remaining circles show the P values for all other SNPs and are color
coded according to the level of LD with the top SNP in the 1000 genome Nov 2010 CEU
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population (red, r2 > 0.8; orange, r2 = 0.6–0.8; green, r2 = 0.4–0.6; light blue, r2 = 0.2–0.4;
dark blue, r2 = 0.0–0.2).
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Figure 4. Linkage Disequilibrium plots
Plots of linkage disequilibrium (R2) patterns for chromosome 10 and 14 regions of interest:
black squares for strong LD, gray squares nonsignificant LD, and white squares for little or
no LD.
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Figure 5. Localization of TMEM26 and ANK3 in lungs of smokers with and without COPD
A. Representative TMEM26 immunohistochemical staining of lung sections from at risk and
COPD patients shows staining in the cytoplasm of airway epithelium. Bottom panel shows
quantitative immunohistochemistry demonstrating no significant difference in staining in
epithelium of COPD patients and smokers without COPD. B. Representative ANK3
immunohistochemical staining of lung sections from at risk and COPD patients shows
predominant staining in the alveolar macrophage compartment. Arrowheads denote
macrophages. Bottom panel shows quantitative immunohistochemistry demonstrating
increased staining in macrophages of COPD patients compared with smokers without
COPD. All figures are 20X magnification. HZ-homozygosity for chromosome 10 at risk
haplotype. WT-homozygosity for chromosome 10 wild-type haplotype. Numbers in columns
indicate number of samples examined.
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Table 1

Lung Health Study Subject Characteristics

n=4048

Baseline Characteristics

Mean age (SD) 48.6 (6.7)

Male, N (%) 2554 (63.1)

BMI, kg/m2 25.5 (3.9)

Smoking, pack-years (SD) 40.6 (18.7)

Post-BD Lung function

 FEV1, L (SD) 2.8 (0.6)

 FVC 4.3 (1.0)

 FEV1/FVC 0.65 (0.06)

 FEV1 % predicted, % 78.6 (9.0)

Longitudinal Characteristics at 5 years

 Post-BD ΔFEV1, mL/year −56.8 (79.3)

Post-BD ΔFEV1 % predicted, %/yr −1.02 (2.26)
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