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Abstract Modern semiempirical methods are of sufficient
accuracy when used in the modeling of molecules of the
same type as used as reference data in the parameterization.
Outside that subset, however, there is an abundance of
evidence that these methods are of very limited utility. In
an attempt to expand the range of applicability, a new
method called PM7 has been developed. PM7 was parame-
terized using experimental and high-level ab initio reference
data, augmented by a new type of reference data intended to
better define the structure of parameter space. The resulting
method was tested by modeling crystal structures and heats
of formation of solids. Two changes were made to the set of
approximations: a modification was made to improve the
description of noncovalent interactions, and two minor
errors in the NDDO formalism were rectified. Average
unsigned errors (AUEs) in geometry and ΔHf for PM7 were
reduced relative to PM6; for simple gas-phase organic sys-
tems, the AUE in bond lengths decreased by about 5 % and
the AUE in ΔHf decreased by about 10 %; for organic
solids, the AUE in ΔHf dropped by 60 % and the reduction
was 33.3 % for geometries. A two-step process (PM7-TS)
for calculating the heights of activation barriers has been
developed. Using PM7-TS, the AUE in the barrier heights
for simple organic reactions was decreased from values of
12.6 kcal/mol-1 in PM6 and 10.8 kcal/mol-1 in PM7 to
3.8 kcal/mol-1. The origins of the errors in NDDO methods

have been examined, and were found to be attributable to
inadequate and inaccurate reference data. This conclusion
provides insight into how these methods can be improved.
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Introduction

In computational chemistry, semiempirical methods occupy
a position intermediate between molecular mechanics and
ab initio theory. By using approximations to avoid compu-
tationally intensive steps, and by using empirically deter-
mined parameters to obtain the best fit of predicted results to
a training set of reference data, a method that is considerably
faster than ab initio methods and considerably more versa-
tile than molecular mechanics methods can be developed.
Methods of this type—part quantum theory and part empir-
ical—are known as semiempirical methods. One of the more
robust families of such methods are the neglect of diatomic
differential overlap (NDDO) methods [1, 2] first developed
by Pople. Following the pioneering work of Dewar and
Thiel in developing the modified neglect of differential
overlap (MNDO) method [3, 4], several modifications were
made to the NDDO formalism in attempts to increase accu-
racy and generality, among which the most popular are AM1
[5], PM3 [6, 7], PM6 [8], and RM1 [9].

As each new method became available, it exhibited some
advantages over previous methods; thus, when PM6 was
developed, the average unsigned error (AUE) in the calcu-
lated ΔHf values for simple organic compounds decreased
by about 30 % relative to PM3. These advantages made
each new method more attractive than its predecessors for
modeling chemical systems. Unfortunately, an inevitable
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drawback of new methods is that, with increased usage, new
limitations or faults become apparent. Many of these faults
were present in earlier methods but were hidden by more
severe limitations in those methods, and only became evi-
dent when the masking effects of the earlier faults were
eliminated.

The advantages and faults of PM6 were typical of this
pattern. The increased accuracy of PM6 compared to PM3
made it the preferred NDDO method, but, with increased
usage, various faults—some previously undetected and
some introduced during the development of PM6—became
apparent. Among the latter was the incorrect prediction that
the Si–O–H system was linear, a fault that was not present in
PM3. Other errors became apparent when attempts were
made to model systems, in particular various simple solids,
which were very different from the species used in the
parameter optimization.

The objective of the work described in the present paper
was to investigate the causes of some of the known errors in
PM6, in the hope that they could then be corrected and the
applicability of the NDDO methods to biochemical macro-
molecules and crystalline solids improved. Because of the
importance of structure in solids, and because of the
increasing use of these methods when modeling systems
of biochemical interest, increased emphasis was placed
on heats of formation and geometries, and less emphasis
on electronic phenomena such as dipole moments and
ionization potentials.

Known faults in PM6

After PM6 was published, several types of errors were
found. Many of these errors were of the type that could
have been corrected, had they been detected during the
development of the method. Among these was the reduced
or missing repulsion between certain pairs of atoms, most
importantly Na–Na, Br–N, Br–O, Br–Br, S–N, S–S, S–O,
S–Cl, I–N, I–O, and I–I. Several other less important errors
were found, all of which could have been eliminated had
they been detected before the method was released.

Another type of error in PM6 was detected only after an
attempt was made [10] to use PM6 to model crystal structures.
This error was unique in that it had an insignificant effect on
discrete species such as atoms, molecules, and ions, on poly-
mers, and even on layer systems, but gave rise to an infinite
error when applied to solids. A re-examination of the approx-
imations allowed the origin of the error to be identified and a
correction was made [10] to PM6; however, to avoid method
proliferation, this correction was implemented only when
PM6 was used in the modeling of crystalline solids.

A procedural fault was identified during the development
of PM6. This fault was present in the earlier methods, but its

importance only became apparent with the release of PM6.
Despite the fact that great care was taken during the devel-
opment of PM6, a process that took many years, most of the
faults in it were not identified during the development
phase; they were only detected after the method was pub-
lished. As most of these faults could have been corrected if
they had been detected before the method was completed,
this phenomenon—readily correctable errors lying undetect-
ed until after the method was finalized, and then being
discovered when the method was used “in the field”—
should itself be regarded as a fault that should be corrected.

Theory

Further modifications to the NDDO formalism

Constraint on the value of the core–core interaction

Early NDDO methods were parameterized to reproduce
properties of molecules. Various constraints were imposed
in order to ensure physically realistic behavior. For example,
it is essential that the nuclear–nuclear interaction energy
converges asymptotically to the exact value as the inter-
atomic separation increases. Constraints of this type were
sufficient for discrete species, but when applied to crystal-
line systems, the early NDDO approximations were found to
be inadequate [10], and additional constraints were required.
In conventional NDDO methods, the rate at which different
nuclear–nuclear interactions converged on the exact value as
the interatomic distance increased differed depending on the
specific atoms involved. This difference would obviously be
very small (at 10 Å the difference would be chemically
insignificant); however, when infinite sums of the type
found in solids are involved, such small differences could
become very large. In the specific case of solids, the error
due to differing nuclear–nuclear interactions would be infi-
nite [10]. A minor change was made to the NDDO formal-
ism for solids to avoid this catastrophe and allow the
electron–electron, electron–nuclear, and nuclear–nuclear
terms to converge to exact values at separations greater than
5 Å. Having different approximations for the electrostatic
interaction in discrete species and solids is obviously not
ideal, so in the current work the solid-state form of the
electrostatic interaction was used for both isolated species
and for solids. To minimize the effect of this change on
isolated species, the distance for completion of the transition
to the exact value was increased to 7.0 Å, well beyond the
covalent bonding distance. Any modification of this type
would have a small but significant effect on solid-state
properties, an effect that could be minimized by increasing
the rate of transition to the exact point charge value. The rate
of this transition could not be set arbitrarily high: if the rate
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of transition were too high, the electrostatic terms between
atom pairs would become unrealistic—with increasing dis-
tance, the magnitudes of all electrostatic terms and their first
derivatives would no longer decrease monotonically (a nec-
essary condition for the interaction to be physically sensi-
ble). A compromise that satisfied these three requirements—
minimizing changes to discrete species, eliminating infinite
errors in solids, and ensuring realistic physical behavior—
was achieved by replacing the two-electron two-center inte-
gral <ss|ss>, normally abbreviated to γAB (see Eq. 4 in [10]),
with Eq. 1 for all interatomic separations R of less than 7.0
Å; up to that distance, a smooth transition from the NDDO
approximation to the exact point charge expression was
used, as shown in Fig. 1. In this expression, GA is the two-
electron one-center integral for atom A.

gAB ¼ 1

R
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Constraint on the value of the electron–electron repulsion
integral

A consequence of the previous constraint requiring the
<ss|ss> term to converge to the exact solution at a finite
distance was that the nuclear–nuclear and electron–nuclear
terms also had to be modified in a similar way. Changes of
this type are necessary in order to satisfy the requirement

that there must be no net attraction or repulsion between any
two well-separated neutral atoms. However, while examina-
tion of various atom pairs showed that this was true for two
hydrogen atoms, there were small but finite forces present
for all other atom pairs. These forces were traced to the one-
center multipole terms, which increase or decrease the ap-
parent distances between atoms. As also seen for the nucle-
ar–nuclear and electron–nuclear terms, although the effect
of individual perturbations of this type was small, the effect
on solids would be infinite. The correction was also similar:
a constant was added to the nine integrals of the type
<pp|pp> so that the average value was exactly equal to
that of the <ss|ss> integral.

Similar changes were made to the three integrals of type
<ss|pp>, and, where relevant, to integrals of type <ss|dd>,
<pp|dd>, and <dd|dd>. The result was an exact balance of
electron–electron repulsion, electron–nuclear attraction, and
nuclear–nuclear repulsion at all distances beyond 7 Å, en-
suring that, at such distances, there was no net attraction or
repulsion between neutral atoms.

A second modification was made to correct a spurious
contribution to the energy of solids arising from hybrid
orbitals or lone pairs. Two types exist: the s-p type, best
exemplified by the lone pair in ammonia, and the s-d type,
found in some transition metal complexes. Errors in inter-
action energies involving atoms separated by 10 Å are small
compared to the error just described; however, in solids, all
such infinite summations of even very small errors generate
infinite errors. The correction made was to decrease the

Fig. 1 Energy versus distance
for two unit point charges,
showing the transition from
conventional NDDO (dashed
line), exact point charge
repulsion (solid line), and the
new approximation used in
PM7 (dotted line)
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value of the hybrid NDDO integrals in a manner similar to
that in Eq. 1 but without adding in any compensating term,
with the result that the modified integrals converged to zero
with increasing distance faster than the original NDDO
integrals.

Energy of p-shell electrons in transition metals

There is a paucity of reliable thermochemical data on gas-
phase transition metal compounds. In an attempt to augment
the data, recourse was made to the Moore atomic energy
level data [11–13]. These data provide information on the
internal structures of individual atoms and ions. No prob-
lems were encountered for states involving only s or d
electrons; however, during parameter optimization of the
transition metals, a problem was encountered when data
representing atomic energy levels involving p electrons
were included. Initially, the resulting parameters appeared
reasonable: as expected, the p populations of all transition
metal atoms in all systems used in the parameterization were
very small. Additionally, in most solids involving transition
metals, the p population was again very small. However, in
a limited number of systems, specifically some metallic
elements, the p population increased considerably and the
calculated heat of formation (ΔHf) became unrealistically
negative.

This catastrophe was traced to one of the main features of
NDDO theory: the neglect of differential overlap. In transi-
tion metals, the p atomic orbitals are highly diffuse, so the
interaction of such orbitals with any nearby atom would be
very small. This was the situation in all of the species used
in the parameter optimization and in most solids, but was
not the case in many of the pure crystalline elements. Two
factors, one common to all solids and one unique to pure
elements, combined to produce this nonsensical result. First,
instead of the diffuse p orbital interacting with only a small
number of other atoms, now there were a large number of
atoms in the vicinity of any given metal atom. This would
give rise to a large number of small one-electron energy
terms that, when summed, would be significant. This would
not necessarily present a problem in solid compounds be-
cause bond polarization would reduce the covalent charac-
ter, but a unique feature of pure elements introduces a
second factor. In most crystalline metal elements (manga-
nese being the most dramatic exception), all atoms are in the
same environment, so all chemical bonds are purely cova-
lent; that is, the ionic bond character found in almost all
other solids is absent. Atomic orbital overlap behaves like
the one-electron energy term: although each individual over-
lap would be small, in solids there are a large number of
such terms, and the sum would be significant. If atomic
orbital overlap had been taken into account, then the energy
term would (correctly) have been reduced in magnitude, but

because such overlap terms are ignored in NDDO theory,
the energy term is not reduced by the overlap, so the inter-
atomic one-electron energy term would be much too large.

If the energy of a p atomic orbital in an atom were
sufficiently high, the p population in all solids would nec-
essarily be small, but in those cases where its energy was
derived from experimental atomic energy level data
[11–13], the p orbitals are competitive with the s and d
orbitals for the available electrons. When the self-consistent
field (SCF) equations are solved for transition metals using
p orbital energies derived from atomic energy levels, some
systems became excessively stabilized, resulting in the com-
putational model becoming unrealistic.

Fortunately, the number of chemical systems that involve
atoms in which both p and d electrons are involved in a
chemical bond is vanishingly small. This fact suggests a
way out of the impasse: by artificially raising the energy of
the p orbitals in certain elements, thus removing them from
participating in bonding, the excessive stabilization just
described can be avoided. This effect could be readily
achieved by adding appropriate excited-state reference data
and by removing all experimentally derived atomic energy
level data that include p electrons. Other than introducing
some spectroscopic inaccuracies, no physical quantity
would be compromised by this action—if the p electron
population was artificially reduced to an insignificant value,
the result would be the same as removing the elements’ p
basis set.

Addition of dispersion and hydrogen bonds

When MNDO was first developed in 1977, it was rightly
hailed as a major advance over earlier semiempirical meth-
ods such as MINDO/3 [14]. Part of the design of MNDO
was that parameters were optimized to reproduce molecular
properties, and this contributed to a large increase in the
accuracy of prediction of heats of formation, geometries,
etc. Unfortunately, soon after MNDO was completed, a
severe error was found: an almost complete lack of inter-
molecular interactions such as van der Waals attractions and
hydrogen bonds. Over the next few decades, many attempts
were made to mimic these interactions by modifying the
core–core interactions. These attempts resulted in only mi-
nor improvements, and even in the most recent formulation,
PM6, the errors were still very large. Because of these fail-
ures, it is unlikely that any further efforts to modify the
NDDO formalism would result in a significant decrease in
this error.

With the advent of linear scaling techniques, semiempir-
ical methods have become useful for modeling large bio-
chemical systems such as DNA and proteins, particularly
enzymes. In all such systems, intermolecular interactions,
especially hydrogen bonding, play an essential role, so the
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failure of these methods to accurately reproduce intermolec-
ular interactions seriously limits their applicability and casts
doubt on the validity of any results obtained.

Recently, several post-SCF corrections have been pro-
posed in attempts to correct the errors in PM6. Thus, Hob-
za’s group has proposed adding Jurečka et al.’s dispersion
terms [15] and a hydrogen bond correction, as these are the
two most important intermolecular interaction terms.

Testing was done using Hobza’s benchmark database S22
set [16]. As the name suggests, this was a set of 22 systems,
each of which consisted of a two-molecule assembly in
which the geometry had been optimized using high-level
ab initio methods, and the energies obtained using CCSD
(T)/CBS [17]. The interaction energy was calculated by
subtracting the sum of the energies of the two components
—calculated separately, but using the geometry that each
component had in the assembly—from the energy of the
assembly. As the authors noted, the resulting quantity is
uniquely defined and would be useful when testing lower-
level methods and as reference data for parameterizing
semiempirical methods. Hobza’s databases thus have great
value when determining the accuracy of theoretical methods
and as a source of reference data. A minor point is that they
do not, however, have physical significance, in that the
geometries of the two components, calculated separately,
were not at their respective energy minima.

Hobza’s first method, PM6-DH [18], reduced the mean
unsigned error (MUE) in intermolecular interactions for the
S22 set for PM6 from 3.17 kcal/mol-1 to 0.54 kcal/mol-1.
The hydrogen bond term in PM6-DH was particularly sim-
ple, depending only on an interatomic distance, an angle,
and the partial charges on the hydrogen and acceptor atoms
involved. This dramatic improvement was followed quickly
by PM6-DH2 [19], in which the hydrogen bond energy term
was extended to include some torsion angles. This resulted
in the MUE decreasing further to 0.36 kcal/mol-1, a value
significantly less than the MUE of 0.7 kcal/mol-1 obtained
[19] when B3LYP with dispersion correction was used.

On the other hand, because the main objective of semi-
empirical methods is to model chemical systems, the value
of such methods depends only on how accurately they
reproduce the physical system involved. For these methods,
an essential step when calculating intermolecular interaction
energies is to optimize geometries, and this operation
requires that the forces acting on the atoms must be calcu-
lable. In semiempirical theory, the force or gradient calcula-
tion relies on the fact that when a self-consistent field exists,
the energy of the system is irreducibly low (a restatement of
the variational principle), and therefore the first derivative of
the electron distribution with respect to the geometry must
be exactly zero. Unfortunately, in both PM6-DH and PM6-
DH2, the hydrogen bond energy is a function of the atomic
partial charges on the hydrogen and acceptor atoms, which

in turn is a function of the electron distribution. The hydro-
gen bond correction in these methods is calculated using the
density distribution from the SCF calculation, and since the
hydrogen bond correction alters the energy of the system but
does not affect the electron distribution, the energy of the
system is no longer irreducibly low. Obviously, the energy
could be lowered by altering the electron distribution. When
either PM6-DH or PM6-DH2 is used, an unavoidable con-
sequence is that small errors are introduced into the calcu-
lation of the forces acting on the atoms. The effect is small
but finite, and has the practical effect of making geometry
optimization less efficient. More perniciously, the energy
and force minima do not coincide, leading to the result that
any resulting optimized geometry is ill-defined.

To ensure that the energy and force minima coincide, the
energy of the hydrogen bond interaction must be made
independent of the fractional atomic charge. This was in-
vestigated by Korth, who developed an elegant (i.e., simple)
method, PM6-DH+ [20], which depended only on the ge-
ometry of the system, not on partial charges, thus ensuring
compliance with the variational principle.

A problem with PM6-DH+ has recently been reported by
Řezáč and Hobza [21] when linear hydrogen bonds are in-
volved. This was reproduced during testing of PM6-DH+, in
that the geometry optimization procedure sometimes failed
when specific, very simple, hydrogen-bonded systems were
involved. Interestingly, errors of this type were not found
when more complicated systems were used. The cause of
the fault [21] was confirmed to be the existence of a cusp
(i.e., a discontinuous, albeit still single-valued, function) in the
treatment of the hydrogen bond.

The ideas explored in PM6-DH2, PM6-DH+, and PM6-
D3H4 [21] were used to construct an intermolecular inter-
action term for PM7. To prevent discontinuities, Korth’s
damping functions were used, and, following Řezáč and
Hobza’s warning, care was taken to avoid cusps. To ensure
compliance with the variational principle, partial charges
were not used. With these changes, all common hydrogen
bonds could be modeled, the only exceptions being some
very strong bonds of the type found in systems such as the
Zundel ion, H5O2

+, the dimer of formic acid, and in acid
salts, e.g., NaH(CH3COO)2. All such bonds are character-
ized by very short O–H–O distances. In all these cases, the
reduced O–O distance could be attributed to electronic
phenomena: in the case of the charged species, to the large
partial charges on the atoms, and in the case of neutral
dimeric species, to cooperative effects in the eight-membered
dicarboxylic acid ring. The requirements of the variational
principle preclude adding a corrective term based on the partial
charges; nevertheless, the extra stabilization that occurs in
these species was too large to be ignored. The unusually short
O–O distance, a feature obviously not present in ordinary (i.e.,
4–6 kcal/mol-1) hydrogen bonds, was used as a basis for
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constructing a post-SCF correction. After a few trials, the
form of the energy (E) correction adopted was that shown in
Eq. 2, where θ is the O–H–O angle and RAB is the O–O
distance in Å.

E ¼ �2:5 cos θð Þ4e�80 RAB�2:67ð Þ2 : ð2Þ

Another (less obvious) problem was encountered when
Jurečka et al.’s dispersion terms were used to model solids.
Dispersion interaction energy decreases as the sixth power
of the interatomic distance, and Jurečka’s dispersion scheme
is based on this behavior. No problems were encountered
when Jurečka’s dispersion method was used to model dis-
crete species, but the dispersion energy became unrealistically
large when it was applied to solids. The extra dispersion
energy was traced to the large number of small contributions
from diatomic interactions that involve atoms separated by
more than 4 Å, a situation that necessarily occurs in all
solids. Although each interaction amounts to less than
10−5kcal/mol-1, the large number of such interactions that
occur in solids amounted to about 33 % of the total dispersion
energy.

Classically, pairs of electrons correlate their instanta-
neous positions so as to minimize electron–electron repul-
sion, with electron pairs involving nearby atoms correlating
their positions to a greater degree than when more distant
atoms are involved (because the electron–electron interac-
tion strengthens at smaller distances). For solids, the specu-
lation can be made that the strong correlation arising from
the presence of nearby atoms (i.e., atoms separated by 4 Å
or less) has the effect of reducing the instantaneous correla-
tion energy arising from more distant atom pairs. The pos-
tulated reduction in long-range correlation effects, Edisp, in
solids resulting from strong short-range correlation was

implemented in PM7 by the addition of a damping function
for all atom pairs separated by up to 6.5 Å (see Eq. 3 and
Fig. 2); above 6.5 Å, all correlation terms were set to zero.

E
0
disp ¼ Edisp 1� e� R�6:5ð Þ2

� �
ð3Þ

Both PM6-DH2 and PM6-DH+ were developed as post-
SCF corrections to a PM6 calculation, and were designed to
improve the accuracy of prediction of intermolecular inter-
actions; they were not designed to improve the accuracy of
prediction of ΔHf. Indeed, since the corrections typically
amounted to several kilocalories per mole per hydrogen
bond, and since the average signed error in PM6 was very
small, the effect of adding in the dispersion and hydrogen
bonding correction would be to make the calculated ΔHf

more negative, with the result that average signed and
unsigned errors would both increased significantly. There-
fore, these post-SCF corrections, while resulting in a large
increase in the accuracy of prediction of intermolecular
interaction energy, were unsuitable for use in predicting heats
of formation. To avoid this, in the current work, the dispersion
and hydrogen bond corrections were incorporated into the
method before parameter optimization was performed, so
PM7 is designed to reproduce both intermolecular interaction
energies and heats of formation.

Reduction in the number of parameters

One consequence of the increase in computational power over
the past few decades has been the ability to use more and more
data in the training set and to allow more and more parameters
to be optimized, so that, while in MNDO (developed in 1977)
only a few tens of compounds were used in the training data
set, and only seven parameters were optimized per element, in

Ångstroms

Dispersion energy 
(10 -5 Kcal/mol)

Fig. 2 Effect of dampening
function on correlation energy
in solids
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the more recent PM6 method (2007), several thousand com-
pounds were used, and the number of parameters per element
was increased dramatically.

While an increase in the number of parameters allows for
increased flexibility, a potential problem arises in that the
minimum of the error function in parameter space could
become ill-defined (a well-defined minimum being one in
which any significant motion in parameter space in any
direction would be accompanied by a concomitant signifi-
cant increase in the value of the error function). The pres-
ence of an ill-defined minimum is undesirable for many
reasons, such as the inability to generate a unique set of
parameters for a given training set, the presence of compu-
tational artifacts on molecular potential energy surfaces, and
the violation of the rule known as Ockham’s razor, which
can be re-worded to say that—all other conditions being
equal—a simpler method is to be preferred over a more
complicated one.

Although the parameter space minimum in MNDO was
the most well defined of the NDDO methods, the MNDO
method itself had a severe limitation in that π-stacking and
hydrogen bonds were essentially nonexistent. To correct this
fault, core–core Gaussian functions were added to atoms in
PM3 and PM6 to mimic correlation or van der Waals effects.
The resulting models included a much improved description
of intermolecular interactions, but a direct and deleterious
result of this change was to make the minimum in parameter
space less well defined: a result which even a large increase
in the number of reference data was unable to correct.

In PM7, correlation effects of the type used in PM3 and
PM6 have been replaced by Jurečka’s dispersion term. This
has allowed all of the atomic core–core Gaussian functions
to be deleted with the exceptions of H, C, N, and O, as
sufficient high-quality reference data are available to allow
the Gaussian functions for these elements to be defined.

Modification to allow for UHF partial open shells

No further changes were made to the algebraic form of the
Hamiltonian, but one minor change was made to the treatment
of partial open-shell systems when unrestricted Hartree–Fock
(UHF) methods were used. In many solids containing transi-
tion metal complexes with partially filled d shells, Jahn–Teller
distortions are not observed due to rapid interconversion of the
different forms—the dynamic Jahn–Teller effect. This exper-
imentally observed phenomenon—solids having a higher
symmetry than that expected by the Jahn–Teller theorem—
can be reproduced in modeling by averaging the various
states. Half-electron methods for MNDO have been devel-
oped for use with restricted Hartree–Fock wavefunctions [22,
23], but the application of these methods to solids would
necessitate a solid-state configuration interaction (C.I.) calcula-
tion—a task that, at present, would be prohibitively expensive.

By using a UHF wavefunction, the C.I. calculation could be
avoided. In principle, UHF C.I. corrections could be made,
but, as the energies involved would be very small, they
can be ignored for the present purpose. The extension
of half-electron methods to fractionally occupied degenerate
manifolds of molecular orbitals in unrestricted Hartree–Fock
methods, although obvious, has apparently not been reported.
In part, this may have been due to the absence of any need to
model systems of artificially high symmetry, a need that is
pressing now that attempts are being made to model ambient
temperature high-symmetry solids involving certain open-
shell metal complexes.

Extension of the half-electron concept to UHF wave-
functions is straightforward. The only molecular orbitals
(MOs) that need be considered are those with fractional
orbital occupancy.

In these MOs, one spin—let it be beta for the sake of
convenience—is either totally occupied or totally unoccu-
pied. The alpha set of MOs, ya

i ¼P
l
califl , is given a

fractional occupancy, pi, in the range 0<p <1. The density
matrix, Pα, is then constructed as usual (Eq. 4), except that
instead of all MO occupancies being zero or one, some
would have fractional occupancy:

Pa
lσ ¼

X
i

pic
a
lic

a
σi: ð4Þ

When several metal ions are present, they would all be
treated similarly. For example, consider a complex in which
the large unit cell contained 16 TiIII ions, each with one
alpha electron in a degenerate t2g MO. Such a system would
be treated as if there were 16 alpha electrons in a 48-fold
degenerate set of MOs.

Specific parameterization to reproduce barrier heights

Methods such as AM1, PM3, and PM6 have low accuracy
in reproducing barrier heights for reactions. Various possible
causes for this can be suggested: the restricted basis set used
in semiempirical methods might preclude the development
of a method that could simultaneously model both ground
and transition states; subtle electronic phenomena might
occur in the region of the transition state because of the
lowered HOMO–LUMO gap; the almost complete absence
of transition state systems in the parameterization training
set might result in a lack of definition in that region of
parameter space. For whatever reason, the low accuracy of
these methods makes them unsuitable for modeling barrier
heights. In an attempt to improve the accuracy of prediction
of barrier heights, a specific parameterization has been
attempted. Rather than investigate which of the three causes
of error just described was responsible for the low accuracy,
the focus of this parameterization was restricted to predicting
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barrier heights. This approach, while not desirable because
it is not general, can be justified on pragmatic grounds:
a method for predicting barrier heights with increased
accuracy is likely to be useful when modeling chemical
reactions.

The only methodological change required by this param-
eterization was to freeze all geometries (reactants, transition
state, products) at their optimized PM7 structures.

Reference data

Nature and structure of reference data and the parameter
space

During various attempts to optimize parameters for semi-
empirical methods, i.e., MNDO (1977), AM1 (1985), PM3
(1989), PM6 (2007), and now PM7 (2012), the ideas of
the nature and structure of reference data and parameter
space have developed steadily. Over the same period,
the methodology used to optimize the values of param-
eters has also evolved to the point where it can now be
regarded as a stable and reliable process. It is therefore
appropriate to describe the concepts currently used when
considering issues involved in parameter optimization,
in the hope that these will be of use to other method
developers.

Before continuing, however, a semantic ambiguity must
be resolved. Semiempirical methods involve parameters
whose values are determined by minimizing an error func-
tion. When discussing parameter optimization, the two
terms “values of the parameters” and simply “parameters”
are used interchangeably. These terms are obviously different,
but to avoid becoming pedantic or repetitious, the term
“parameters” will be used below in place of “values of
the parameters” when the meaning is obvious from the
context.

Several types of reference data are used in parameter
optimization, with heats of formation, geometries, dipoles,
and ionization potentials being the most common. Be-
fore a reference datum can be used, it must first be
rendered dimensionless; this is done by multiplying its
value by an appropriate constant when the datum is fed
into the computer program; for all subsequent operations
that datum can be regarded as being a pure scalar
quantity.

Associated with each datum is a chemical structure or
chemical quantity. Examples of these would be a data set
specifying a benzene molecule or the interaction of two
water molecules.

The parameters can be regarded as forming a space of
dimension equal to the number of parameters, with each
point in parameter space being defined by the numerical
values of the parameters at that point. Within parameter

space, each datum can be characterized by an un-normalized
vector of first derivatives, diI, of the calculated value of the
datum i, with respect to each parameter I. That is, quantities
such as the structure of a benzene molecule or the energy of
a hydrogen bond can be expressed as a simple vector.
For the purposes of parameter optimization, this allows a
reference datum to be re-defined as a two-quantity entity:
a dimensionless scalar quantity representing the value of
the datum, ci, and a vector representing the chemical
nature of that reference datum, as shown in the following
equation:

Ri ¼ ci þ
X
I

diI : ð5Þ

Relationship between reference data Just as a chemical can
be characterized by properties such as reactivity, melting
point, toxicity, etc., each computational reference datum
can be regarded as having properties, admittedly completely
alien to those of chemicals, but nevertheless very meaning-
ful within the universe of parameter space. Some relation-
ships between pairs of reference data are obvious; for
instance, vectors for two reference data that have no ele-
ments in common, e.g., the bond length in hydrogen chlo-
ride and the ΔHf of molecular nitrogen, are orthogonal in
parameter space. The first vector would have nonzero deriv-
atives for all parameters involving hydrogen or chlorine and
zero derivatives for all other parameters, and the second
vector would have nonzero derivatives only for parameters
of nitrogen. Because they have no nonzero terms in com-
mon, the vectors are automatically orthogonal. The converse
also holds: when two reference data represent the same
property of two compounds that are similar (e.g., consecu-
tive members of a homologous series), the angle between
their vectors would be small. Intermediate between these
extremes is the case of two reference data representing
related but still different quantities, e.g., the ΔHf of benzene
and its C–C bond length, or the ΔHf of acetic acid and the
ΔHf of glycerol. In cases like this, although the two vectors
would not be orthogonal, they would still point in different
directions in parameter space.

The relationship between the reference data vectors pro-
vides a mechanism for deciding which candidate reference
data to use in parameter optimization. In order to allow the
structure of a region of parameter space to be defined, it is
both a necessary and a sufficient condition that there should
be sufficient vectors that motion in any direction in param-
eter space could be represented by some linear combination
of reference data vectors. A useful candidate datum, then,
would be one whose vector pointed in a direction orthogonal
or almost orthogonal to all existing vectors, as this would
help define the structure of parameter space. On the
other hand, a candidate datum whose vector could be
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constructed from a linear combination of existing vectors
could not contribute towards satisfying the condition,
and would therefore not be useful in defining parameter
space. This can be expressed in chemical terms as the require-
ment that the compounds “should of course be chosen to
cover as many different types of bonding situations as
possible” [4].

Expressing reference data in terms of their behavior in
parameter space results in a formalization of many of the
ideas and guidelines used when developing methods. For
example, it is obvious that if two different reference data
exist for one chemical property, say the ΔHf of water, they
should not both be used. This can be re-stated in terms of
vectors by saying that two identical vectors necessarily have
identical properties in parameter space, so it would be im-
possible to fit both reference data (assuming they were
different) using any conceivable set of parameters.

Properties of the minimum in parameter space The objec-
tive of parameter optimization is to move across the param-
eter space surface so as to minimize the value of the error
function S, the sum of squares of the errors in the predicted
values ci(calc) of the reference data ci(ref):

S ¼
X
i

ci refð Þ � ci calcð Þ
� �2

: ð6Þ

The direction of motion ΔP required to reduce the
error function can be calculated using the set of first
derivatives of the error function (Eq. 7 below), as
shown in Eq. 8:

gI ¼ @S

@I
ð7Þ

ΔPI ¼ 2
X
i

gIi ci refð Þ � ci calcð Þ
� �

: ð8Þ

At the parameter minimum, the local structure of param-
eter space (i.e., the rate of curvature in the various orthog-
onal directions) can be determined using the parameter
Hessian, H, the matrix of second derivatives of the error
function with respect to the parameters:

HIJ ¼ 2
X
i

gIigJ i ð9Þ

Diagonalization of the Hessian yields a set of eigenvalues
which represent the force constants of the error function and
their eigenvectors representing the corresponding normal
modes of motion in parameter space.

The parameter hypersurface is built from contributions to
the error function arising from all of the reference data used
in the training set. As such, its construction is without doubt

a complicated process. However, when viewed from a pure-
ly mathematical perspective, the parameter hypersurface is
simple: it is merely a multidimensional, single-valued—
albeit complicated—function. By regarding it as such, all
the subtleties of semiempirical quantum chemistry theory
can be ignored, and the behavior of the function as a purely
mathematical construct can be investigated.

For a minimum to exist, two conditions must be satisfied:
the gradient of the function with respect to all variables
(parameters) must be zero, and all its eigenvalues must be
either zero or positive. Note that it is not sufficient that all
second derivatives of the function with respect to the
variables are positive: indeed, from the fact that the
error function is a sum of squares, these derivatives are
obligate positive; it is the values of the eigenvalues
that are important.

Properties of the parameter Hessian Several properties of
the Hessian are of interest. Given a Hessian of size N, if
exactly one reference datum were used, there would be one
positive eigenvalue and N−1 exactly zero eigenvalues. The
eigenvector associated with the nonzero eigenvalue would
then be the vector of the reference datum, normalized to
unity. If more reference data were used, the number of
nonzero eigenvalues would increase. The eigenvectors of
the set of nonzero eigenvalues would then map out the
directions along which motion would result in an increase
in the error function. Motion in the direction of any eigen-
vector whose eigenvalue was precisely zero would not result
in an increase in the value of the error function; nor would
motion in any direction that could be represented by a linear
combination of such eigenvectors. At this point, the mathe-
matics is similar to that involved in solving a polynomial
with N terms and an increasing number of independent
equations. When there are N such independent equations,
an exact solution becomes possible.

As alluded to above, a necessary and sufficient condition
for the minimum on the parameter hypersurface to be a true
minimum is that all eigenvalues of the associated Hessian
must be positive. If any eigenvalue were to be exactly zero,
then motion in the direction of the associated eigenvector
would not result in an increase in the error function, and the
corresponding parameter set would therefore not be unique:
rather, it would be ill-defined. The presence of very small or
exactly zero eigenvalues in the parameter Hessian thus
violates Ockham’s razor in that it implies that there are more
parameters than necessary. Unfortunately, it is difficult to
identify and remove parameters responsible for zero eigen-
values, as the offending eigenvectors invariably involve
significant contributions from many parameters. An alterna-
tive is to add to the training set reference data that would
cause the zero eigenvalues to become positive. This might
appear to be a challenging task too, but in practice it is quite
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straightforward. If there are no restrictions on the amount of
reference data used to build the Hessian, it is sufficient to
simply include large amounts of a wide range of reference
data: if the data are sufficiently varied, positive contribu-
tions are made to all possible eigenvalues. Eigenvalues that
were zero would become positive, and eigenvalues that are
large would become even larger.

The objection might be made that if two parameters were
completely dependent on each other, an exactly zero eigen-
value would necessarily exist. Such a situation would occur if,
for example, all ionization potentials and all ionized states
were omitted from the training set. In that case, the addition of
a constant to all one-electron one-center integrals would have
no influence on any results (heats of formation, dipole
moments, and geometries would all be unaffected), but as
soon as ionized states are included, the previously zero eigen-
value would become positive, and the arbitrary constant
would be constrained by the optimization procedure. During
the development of AM1 and PM3, multiple Gaussian func-
tions were used in the construction of the core-core term. This
gave rise to parameter dependence, resulting in methodolog-
ical artifacts that were a source of frustration, as mentioned by
Dewar during the AM1 parameter optimization of phospho-
rus: “The parameter hypersurface … is complex, having nu-
merous local minima” [24–26]. At the time, this was attributed
[26] to the parameters being “trapped in a ‘wrong’ minimum
on the parameter hypersurface.”

To date, no general strategy has been developed to re-
move this dependence, although reducing the number of
parameters obviously reduces the likelihood of parameter
dependence. This is another re-statement of the well-known
generalization that the number of parameters should be as
small as possible.

From this description, it is obvious that an analysis of the
eigenvalues and eigenvectors of the parameter Hessian
provides a wealth of information on the nature of the
minimum. It indicates the relevance of the reference data
and its limitations, and provides a guide on how to improve
it. The significance of the parameters can also be deduced—
whether a parameter is redundant and therefore should
be removed, or whether it is essential to the theoretical
framework.

Not enough reference data to allow a wide range of chemistry

In earlier semiempirical methods, all entries in the training
and survey reference data sets were limited to experimental
or high-level ab initio quantities such as heats of formation,
bond lengths and angles, etc., of discrete molecular species.
Early data sets, such as those used when parameterizing and
surveying MNDO, were assembled directly from the origi-
nal published literature. Building these data sets was a time-
consuming process which placed severe limitations on the

types of parameter optimizations that could be done. Indeed,
in the early years, parameterizing single elements was con-
sidered a significant achievement that warranted reporting in
the form of a journal publication. Most elements had only a
small number of parameters, typically 7–16 for a main-
group element, and the available data were sufficient for
the resulting methods (MNDO, AM1, and PM3) to be of
useful accuracy and predictive power. With the advent of
compendia such as the NIST WebBook [27] and the Cam-
bridge Structural Database (CSD) [28], large amounts of
critically reviewed (i.e., accurate) reference data became
available. Constructing training sets became easier. In the
next NDDO method, PM6, diatomic parameters were re-
introduced. Diatomic parameters had been used in MINDO/
3, but were abandoned, in part because of the proliferation
of parameters that would occur as the number of elements
increased. All technical difficulties involved with using
diatomic parameters have now been overcome due to the
development of faster processors and less expensive mem-
ory. What has not been solved was the problem of assem-
bling enough reference data to allow all pairs of diatomic
parameters to be defined, and in PM6 one consequence of
this lack of definition was a method that has proven useful
when applied to species of the type used in the parameter-
ization but was essentially useless for all other systems. In
an attempt to increase the range of applicability of PM6,
over 9000 reference data were used in the training set, with
most data being obtained from compendia of the type al-
ready mentioned. Despite this large number of data—only
about 800 were used in the parameterization of PM3, and
less than 100 in the parameterization of MNDO—the vast
majority of possible diatomic interactions remained
undefined.

The CSD contains over 600,000 small molecule crystal
structures, with about half of them being suitable for use as
reference data. This is an obvious source of geometric
reference data, particularly for species in which intermolec-
ular interactions are sufficiently small that crystal packing
forces do not cause any significant distortion. In such sys-
tems, the geometry of a molecule would be a good approx-
imation to the geometry of an isolated gas-phase molecule.
While useful for parameterizing atom pairs that normally
involve covalent bonds, such data are not suitable for atom
pairs that involve strong noncovalent bonds of the type that
exists between, say, sodium and oxygen in, say, Na2SO4.

Another large repository is the Inorganic Crystal Struc-
ture Database (ICSD) [29]. In contrast to the CSD, the ICSD
consists largely of species that involve strong noncovalent
interactions. That solids of the type found in the ICSD are
important can be easily illustrated by considering the alkali
metal ions. In molecular species, these are invariably mono-
dentate, normally forming a single strong bond that is par-
tially ionic and partially covalent; a simple example would
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be the isolated NaCl molecule. In biological systems, how-
ever, these ions are highly labile, with the covalent compo-
nent being essentially insignificant. This situation is
precisely reproduced in various crystal structures; thus, in
sodium hydrogen phosphate, Na2HPO4, each sodium ion
forms ionic bonds with several oxygen atoms, and each
[HPO4]

2− ion is subject to the electrostatic environment of
several sodium ions. Examination of the crystal structure
shows that there is no species that could be identified as a
discrete sodium hydrogen phosphate entity. Additionally, in
crystalline Na2HPO4, there are strong hydrogen bonds of the
type found in many biochemical systems: such bonds could
not be realistically modeled using isolated systems.

The main characteristic of crystal structures that is absent
from discrete species is the existence of long-range (2–4 Å)
interactions. At such distances, purely quantum mechanical
terms (i.e., covalent interactions) are decreasing rapidly with
increasing distance, and the dominant terms are the electro-
static and steric interactions. As the electrostatic terms are
well represented within the set of NDDO approximations,
the only term present in crystals for which there is no
equivalent in discrete species is the nonbonding steric inter-
action. This feature of crystal structures makes them a
source of valuable reference data for defining the values of
parameters. Unfortunately, it is impractical to use entire
crystals in the parameterization because of the computation-
al effort involved, and isolated species are de facto not good
models of the types of solids in the ICSD because of the
presence of strong electrostatic interactions.

Use of proxy functions to represent noncovalent interactions

Within current NDDO theory, the nonbonding steric
term is represented by Voityuk’s core–core interaction
approximation [30]:

En A;Bð Þ ¼ ZAZB sAsA sBsBjh i 1þ xABe
�aABRAB

� �
: ð10Þ

In this expression, ZA and ZB are the core charges on atoms
A and B, respectively, <sAsA|sBsB> is the two-center two-
electron repulsion integral involving s orbitals, RAB is the
interatomic distance, and xAB andαAB are parameters. Because
the steric repulsion is defined using two parameters per di-
atomic pair, this term has great flexibility, and methods that use
it are capable of improved accuracy, as illustrated by PM6.
However, when methods that were parameterized using mo-
lecular species were used to model crystal structures, the
results were often unsatisfactory. This was a direct conse-
quence of the absence of any reference data that specifically
represented interatomic interactions outside the covalent bond-
ing distance. That is, the flexibility of Voityuk’s diatomic
function, which was so beneficial when used to model mole-
cules, was deleterious when applied to solids.

The fact that reference data representing steric behavior
were not used in earlier methods obviously does not pre-
clude their use in later methods. Indeed, by adding a very
primitive reference function, specifically the steric term at a
given distance, the fault just described can be completely
corrected. The form of the reference datum is shown in the
following equation, where the steric contribution EAB at an
interatomic separation of RAB Å is set to c kcal/mol-1:

EAB RABð Þ ¼ c: ð11Þ
Such a term does not involve the wavefunction, and its

use can be restricted to optimizing the values of diatomic
parameters, without reference to any other quantity. The
value of RAB can be set to the value of the smallest non-
bonding interaction in a representative crystal, typically 2–4
Å, and the value of c would be set such that the correct
interatomic distance was reproduced when the geometry of
the crystal was modeled. Regrettably, at the present time,
this step appears to be more art than science. Because non-
covalent interatomic separations in crystal structures can be
specified using functions of the type EAB, these functions
could be regarded as proxy functions for crystals; functions
used in parameterization that represent geometric quantities
that are specific to solids.

The idea that a single reference datum of the type shown
in Eq. 11 can be used to define two core–core repulsion
parameters might superficially appear inadequate. However,
other reference data, specifically data representing interac-
tions at covalent distances, would also be available to the
parameter optimization process. This allows the proxy func-
tion to be used solely for the purpose of defining the poten-
tial in the nonbonding region. Consider, for example, the
noncovalent interactions in lithium borohydride, LiBH4. In
this ionic solid, the lithium–boron interatomic distance is
determined by two forces: the electrostatic attraction of the
lithium cation and the borohydride anion, and the steric
repulsion of the lithium by the boron and hydrogen atoms.
At the energy minimum, these two forces are exactly equal
and opposite in direction. If the calculated value of the Li–B
distance were too small, increasing the value of c for Li–H
or Li–B would increase the steric or repulsive force, with the
result that the interatomic separation would increase.

No simple molecular systems exist for many diatomic
pairs. When that happens, the two parameters in Eq. 10 can
be defined by using two reference data of the type shown in
Eq. 11: one at a relatively small distance, 1.5–2.5 Å, and one
at a larger distance, 2.5–3.5 Å.

For most solids, increasing the value of the steric term for
interactions outside the covalent bonding region would re-
sult in an increase in the interatomic separation. While this
result might appear to be obvious, there is one group of
solids for which an increase in steric repulsion in this region
results in a decrease in interatomic distance. This apparently
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paradoxical effect occurs in only a few solids, mainly the
pure elements, and only in those solids in which discrete
molecules are absent (i.e., most of the metals and a small
number of binary compounds). The difference between this
set and all other solids is the presence in such solids of non-
nearest neighbors at unusually small distances. If the steric
term for such 1–3 interactions were to be reduced from the
optimum value, then the 1–3 interaction energy would also
be reduced, and it might appear as if the energy of the
system would be reduced by decreasing the 1–3 interatomic
separation. However, in these systems, an inevitable conse-
quence of any reduction in the 1–3 steric energy is a con-
comitant increase in the gradient of the nearest-neighbor
interaction energy. As 1–2 interactions are obviously much
greater than 1–3, the increased gradient for the 1–2 interac-
tion results in a larger decrease in energy when the 1–2
separation is increased. The net effect is that, for those
elements in which covalent bonds form an infinite lattice,
the effect of changing the steric energy term for 1–3 inter-
actions is opposite to that seen in all other systems.

Reference data for PM7-TS

Reference data for barrier heights were obtained from col-
lections of high-level calculations only [31–36]. As an ob-
jective of this work is to improve the accuracy of prediction
of barrier heights in biochemical systems, specifically
enzyme-catalyzed reactions, the set of reactions was restrict-
ed to those involving simple organic bond-making–bond-
breaking, and electronic phenomena were restricted to the
singlet surface only. Because the number of reference data
was quite small (only data on 97 barrier heights were used),
reference data for simple ground-state compounds that were
predicted with good accuracy by PM7 were added to the
training set in an attempt to increase the definition of the
minimum in parameter space.

Additional constraints

For several elements there were insufficient reference data to
allow the minimum in parameter space to be defined, and
extra reference data were generated in an attempt to constrain
the parameters to “reasonable” values. The most common
type of constraint involved defining energies of isolated
high-energy atoms and ions, so that, for example, during the
parameterization of silver, in addition to the known excited
states (8Du,

8Pg, and
8Fu), the hypothetical state of Ag

3+ (with
the configuration 5s24d6) was used. Although such data have
no chemical significance, they were found to be essential for
defining the minimum in parameter space. The presence of
these data is obviously undesirable, and as soon as sufficient
data become available to allow the minimum to be defined,
these artificial constraints should be removed.

Parameter optimization

Parameter optimization was performed in a manner similar
to that used in the development of the PM6 method. Starting
with a training set of reference data consisting of systems
containing the core elements H, C, N, and O only, and using
the values of parameters from PM6, an initial set of opti-
mized parameters were obtained. These parameters were
then used as the starting point for parameter optimization
of the other organic elements: F, P, S, Cl, Br, and I.

All other elements were then optimized, one at a time,
while freezing the parameters for the organic elements.
After the parameters were optimized, a validation test was
done using solids containing the appropriate elements.
Depending on the results of the test, the values of the proxy
functions were changed, and the parameter optimization
re-run.

Each individual parameter optimization procedure was
relatively rapid, requiring only 1–2 CPU hours. However,
since the process had to be repeated many times, the whole
process of parameter optimization for the 70 elements took
several CPU years of effort.

Results

Average unsigned errors (AUEs) in the heats of formation
for various sets of compounds and solids are presented in
Tables 1 and 2, and the AUEs in geometries are shown in
Tables 3 and 4. For compounds, the entries in each set
contain all of the elements listed. For solids, each set con-
tains only the elements listed (e.g., all sets contain hydro-
carbons). Geometries of solids are expressed in arbitrary
units as a function of errors in bond lengths and of the
overall crystal structure.

From Table 1, it is clear that, for simple organic com-
pounds, PM7 is about 10 % more accurate than PM6 (which,
in turn, is significantly more accurate than earlier methods,
such as PM3 and AM1) in predicting heats of formation. For
the same set, the AUE for B3LYP using 6-31 G(d) is
5.14 kcal/mol-1, and for HF 6-31 G(d) it is 7.34 kcal/mol-1.
In both sets of ab initio calculations, contributions from zero-
point and internal energies were ignored, the assumption
being that these contributions would be accounted for in the
root-mean-square fit for atom additivity. Based on these
statistics, PM7 represents a significant improvement in
the prediction of heats of formation over earlier NDDO-type
methods, and is also significantly more accurate than
popular ab initio methods when applied to simple organic
species.

This improvement is not sustained when the set of all
compounds is used. Instead, there was a dramatic increase in
AUE in going from PM6 (8.4 kcal/mol-1) to PM7 (12.0 kcal/
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mol-1), strongly suggesting that PM7 would be less accurate
than PM6 when applied to general chemistry. When this
result was first observed, it was completely unexpected,
because both methods were parameterized using similar
procedures, and an investigation into its origin was imme-
diately started.

During the parameterization of PM7, when the increased
AUE in heats of formation first became apparent, an attempt
was made to reduce the AUE by removing the proxy func-
tions from the training set. While this did result in a reduc-
tion of the AUE for molecular species, it was also
accompanied by a large increase in AUE for both heats of
formation and geometries of solids. Interestingly, it quickly
became apparent that there was a clear pattern to the errors:
in the regions of chemistry where reference data were
scarce, the predictions of PM7 were unusually inaccurate
when proxy functions were present but of the normal accu-
racy when the proxy functions were absent. Given that these
functions were designed to allow solids to be predicted with
increased accuracy, and given that most reference data on
solids were of unquestioned accuracy (at least, unquestioned
compared to the errors in semiempirical methods), the

unavoidable conclusion was that much of the reference data
used in the parameterization of PM7 had to be inaccurate.
This same reference data had been used to parameterize
PM6, but as shown in Table 2, PM6 did not perform well
when applied to solids.

Possible sources of inaccuracy in reference data can be
identified. Where experimental data are scarce, the reason for
the scarcity might also be the reason for the inaccuracy: exper-
imental difficulties. Many theoretically predicted data, partic-
ularly for species involving very heavy elements, were
incompatible with experimentally determined properties of
solids. There is a high probability that the ab initio method
used (DFT PW91 6-31 G(d)) was simply unsuitable. What is
incontrovertible is that many of the reference data for discrete
species were incompatible with the known properties of solids.

One option considered was to delete all reference data that
was suspected to be faulty (i.e., all data that the embryonic
PM7 was unable to reproduce with good accuracy). This
option was rejected on the grounds that, if it were imple-
mented, it would then be impossible to determine the accuracy
of any resulting method. An unavoidable consequence of this
decision was the need to report that, forΔHf, the AUE of PM7

Table 1 Comparison of the average unsigned errors in ΔHf (in kcal/
mol-1) for sets of compounds calculated via PM6 and PM7

Compounds containing AUE PM6 AUE PM7 No. in set

H, C 4.75 4.13 307

H, C, N 3.66 3.30 210

H, C, O 4.26 3.62 370

H, C, N, O 4.61 4.47 231

H, C, P 5.16 3.98 9

H, C, O, P 6.74 8.71 24

H, C, S 3.56 2.45 59

H, C, F 3.91 4.66 32

H, C, Cl 2.46 2.36 43

H, C, Br 2.11 1.80 16

H, C, I 2.16 1.64 27

All simple organics 4.42 4.01 1366

All elements 8.38 12.03a 4369

a See text for explanation

Table 2 Comparison of the average unsigned errors in ΔHf (in kcal/
mol-1) for sets of solids calculated via PM6 and PM7

Solids containing AUE PM6 AUE PM7 No. in set

H, C, N, O 15.95 5.66 76

H, C, N, O, F,P,S, Cl, Br I 19.77 6.98 93

H, Li, C, N, O, Na,P, S, K, Rb, Cs 20.15 8.63 98

All elements 557.66a 14.86 676

a See text for explanation

Table 3 Comparison of the average unsigned errors in bond lengths
(in Å) for sets of compounds calculated via PM6 and PM7

Compounds containing AUE PM6 AUE PM7 No. in set

H, C 0.016 0.015 76

H, C, N 0.017 0.016 92

H, C, O 0.022 0.019 93

H, C, N, O 0.022 0.019 109

H, C, P 0.017 0.017 80

H, C, O, P 0.023 0.020 97

H, C, S 0.016 0.015 81

H, C, F 0.017 0.026 77

H, C, Cl 0.016 0.015 77

H, C, Br 0.017 0.016 77

H, C, I 0.017 0.015 77

All elements 0.098a 0.087 5035

a See text for explanation

Table 4 Comparison of the average unsigned errors in the geometries
of solids (in arbitrary units) calculated via PM6 and PM7

Solids containing AUE PM6 AUE PM7 No. in
set

H, C, N, O 16.80 13.66 209

H, C, N, O, F,P,S, Cl, Br I 18.71 14.78 311

H, Li, C, N, O, Na, P, S, K, Rb, Cs 19.13 15.17 299

All elements 34.02 22.43 2207
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for discrete species is considerably higher than that of PM6,
despite the fact that there are questions about the accuracy of
some reference data. This is obviously an unsatisfactory situ-
ation, and one that should be rectified as soon as possible.

Average unsigned errors in dipole moments increased in
going from PM6 (0.82 D) to PM7 (1.08 D), as did ionization
potentials (0.50 eV for PM6 rising to 0.55 for PM7). This
disappointing result was probably caused by the decreased
emphasis on electronic properties, but the possibility cannot
be dismissed that it was another indirect consequence of the
use of proxy functions.

Solids

Crystalline solids provide a good test of the ability of a
semiempirical method to model real chemical systems. Sev-
eral hundred experimentally determined heats of formation
exist for a wide range of solids, and many hundreds of
thousands of X-ray structures have been deposited in readily
accessible collections. This provides a wealth of reference
data with which to compare calculated results. Unlike most
gas-phase species studied by computational chemistry meth-
ods, solids represent real, tangible, chemicals of the type
used in an experimental laboratory. Also, unlike gas-phase
species, a very wide range of chemical environments are
found in solids. Several of these, such as hydrogen bonds,
π-stacking, and salt bridges, are found in biochemical mac-
romolecules, but any attempt to focus on modeling these
environments in macromolecules is made difficult by the
sheer size of these species. In comparison, solids are rela-
tively simple, and, because there are so many solids avail-
able, a solid that illustrates a particular biochemical structure
of interest can always be selected. Finally, solids are
excluded from being used in parameter optimization, as
the computational cost of including even one solid is still
prohibitive. Solids thus provide a wide range of chemical
environments for testing the accuracy and predictive power
of computational chemistry modeling methods.

A set of 2,194 solids were modeled using PM6 and PM7,
with each solid chosen in order to illustrate or examine some
facet of chemistry. A general comparison of the accuracy of
prediction of the properties of solids using PM6 and PM7 can
be obtained from graphs of calculated and experimental
densities (Figs. 3 and 4) and heats of formation (Figs. 5 and 6).
Geometries predicted by PM7 represent a significant improve-
ment over PM6, as reflected in the increased accuracy of density
prediction, with the AUE for PM7 being 0.396 g cm−3,
compared to 0.923 g cm−3 for PM6. A simple comparison of
the AUE for ΔHf between PM7 (14.8 kcal/mol-1) and PM6
(557.7 kcal/mol-1) would bemisleading in that a small number
of PM6 errors were extremely large. A better comparison
would be the median unsigned error; this is 10.77 kcal/mol-1

for PM7 and 29.71 kcal/mol-1 for PM6.

Organic compounds

Most crystalline organic compounds are composed of discrete
moieties. These range from simple structures (neopentane,
adamantane), where only weak van der Waals forces hold
the molecules together, through hydrogen and π-bonded sys-
tems (sucrose, anthracene, guanine), to ionic species (Na2CO3,
the amino acids, and complexes such as [(N(CH3)4)]2
[PtIVCl6]). This feature of organic compounds makes them
especially useful for testing methods, particularly regarding
how well they model intermolecular interactions.

Errors in the geometries of simple organic solids predicted
using PM7 were about 26 % smaller than those predicted
using PM6. A larger improvement was observed in the pre-
dicted heats of formation, with the AUE for PM7 being about
8.5 kcal/mol-1, and the AUE was 20.0 kcal/mol-1 for PM6.
Part of this could be attributed to the changes in the approx-
imations and to improved parameter optimization, but almost
certainly the most important contribution was the improved
representation of intermolecular interactions.

Dispersion and hydrogen bonds

Organic chemistry is dominated by the chemistry of mole-
cules, and the nature of the noncovalent interactions between
molecules is of great importance. Obtaining accurate reference
data from experiment is difficult, and for that reason recourse
has been made to the results of theoretical predictions. Two
benchmark databases, S22 [16] and S66 [37], have been
developed for testing computational methods. These data-
bases contain the results of very high-level ab initio methods,
and can be considered definitive: that is, the entries in the
databases can be used to construct reference data for use in
training sets and in surveys to determine the accuracy of
semiempirical methods. Both databases report intermolecular
interaction energies and geometries for pairs of simple organic
compounds. The S22 database consists of 22 examples of
typical noncovalent interactions that illustrate dispersion
effects, hydrogen bonding, and mixed interactions. The S66
database is similar, but with increased emphasis on interac-
tions of the type typically found in biochemistry. All of the
entries in the S22 database, and none of the S66 entries, were
used in the training sets. Errors in intermolecular interaction
energies for various methods for the S22 set are shown in
Table 5, and those for the S66 set are shown in Table 6.

A survey (see Table 7) of the AUEs for the complexes in
the S22 and S66 sets for various methods gave the unexpected
result that the errors in PM7 are greater than those of PM6-
DH2 and PM6-DH+. There is no obvious reason for this,
although one possibility is that the parameters used when
modeling intermolecular interactions in PM7 would also be
used to minimize errors elsewhere: in both PM6-DH2 and
PM6-DH+, the same parameters were only used to reproduce
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these interactions. Notwithstanding this result, it should be
noted that the three methods PM7, PM6-DH2, and PM6-DH+
all have AUEs less than half that of B3LYP.

After PM6 was released, a severe error was found in that
many noncovalent interactions involving the halogens Cl, Br,
and I were far too strong, and their interatomic separations
were far too short. Řezáč and Hobza rectified this error by
adding a post-SCF correction [38] to the PM6method. As with
S22 and S66 for PM6-DH2, they used the results of very high-
level methods as a source of reference data [38] to optimize the
parameters in the post-SCF correction. The same data were
also used during the development of PM7, which meant that
most of the errors in the halogens were corrected; the only
significant error is an underestimated Cl–Cl repulsion.

Ions involving hydrogen and oxygen

Several forms of protonated water complexes occur in crys-
tals, ranging from the simple hydroxonium ion, [H3O]

+, found
in systems such as HClO4.H2O and several 18-crown-6 com-
plexes, through the Zundel ion, [H5O2]

+, in, e.g., HCl.(H2O)2
and H2SO4.(H2O)4, to the Eigen ion, [H9O4]

+, in, e.g.,

HCl.(H2O)6. By contrast, the anion [OH]− almost always
occurs as the simple hydroxide ion; lattice systems involving
bridging hydrogen atoms of the type found in CsOH.(H2O)
are relatively rare.

In a survey of 28 solids containing ions involving hydrogen
and oxygen, 27 geometries were predicted with higher accu-
racy by PM7 than PM6; the single exception being hydroxo-
nium 10-crown-6 clathrate hexafluorotantalate, CSD entry
SINSEO, and even in this case, the local environment of the
hydroxonium was predicted more accurately by PM7.

The structures of all three protonated water complexes
were reproduced by PM7; in contrast, PM6 failed to reproduce
the more fragile Eigen ion in hydrogen chloride hexahydrate.

Hydrocarbons

Solid hydrocarbons are a good test of purely dispersive inter-
actions. In general, both PM6 and PM7 model gas-phase
hydrocarbons with good accuracy, so comparison of the pre-
dicted heats of formation of their solids with experiment
should give an estimate of the accuracy associated with the
modeling of dispersive interactions. Results for a set of solid

Fig. 3 Comparison of PM6-
predicted densities of 2,194
solids with their corresponding
experimental values (g cm−3).
Calculated densities that were
greater than 25 were reset to 25
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hydrocarbons are shown in Table 8. For this set, the AUE for
PM7 is 5.96 kcal/mol-1, and for PM6 it is 22.21 kcal/mol-1.
The increased accuracy of PM7 over PM6 can be attributed to
the dispersion terms developed by Jurečka et al. [15]. Exam-
ination of Table 8 shows no obvious pattern in the errors in
PM7; systems in which π-stacking might be considered im-
portant are reproduced with similar accuracy to those where
π-stacking is absent, such as adamantane. This is in agreement
with the recent recommendation [39] regarding “π-stacking”
and “π–π interactions” that “these terms are misleading and
should no longer be used.”

Other strong hydrogen bonds

An exceptionally strong hydrogen bond can form when a
proton bonds to two anions so that the three-moiety assem-
bly has a net negative charge. This type of system occurs in
acid salts and related systems. In some solids, such as
ammonium hydrogen benzoate and sodium hydrogen ace-
tate, the hydrogen atom is essentially bridging; in others,
such as potassium hydrogen acetate and potassium hydro-
gen sulfate, the hydrogen atom is asymmetrically disposed.
Whether a hydrogen atom is symmetrically or asymmetrically

disposed between the two oxygen atoms in the bond depends
on a delicate balance of energies, and therefore provides a
sensitive test of hydrogen bonding. For most systems of this
type, both PM6 and PM7 reproduce the observed structure,
but while PM6 and PM7 both correctly predict the symmetric
structure of sodium hydrogen acetate, only PM7 correctly
predicts the asymmetric structure of potassium hydrogen
acetate.

Still another type of strong hydrogen bond is found in 2-(2-
(3-carboxypyridyl))-4-isopropyl-4-methyl-5-oxo-imidazole
[40] (Fig. 7). In the solid state, this compound contains an
internal N…H…O hydrogen bond between the carboxylic
acid group and a nitrogen atom on the imidazole ring. If it is
viewed as a neutral species, then the exceptionally short
(2.465 Å) N–O distance would be difficult to explain, but if
viewed as a zwitterion containing a cationic imidazolium ion
and an anionic carboxylate group, then the close contact could
be rationalized in terms of electrostatics. The exceptionally
short bond is reproducedwhen the solid is modeled, with PM7
giving 2.508 Å and PM6 giving 2.517 Å. Interestingly, when
the gas-phase system is modeled, both PM6 and PM7 predict
the N–O distance to be nearer to that found in the more
common, neutral, hydrogen bonds, strongly suggesting that

Fig. 4 Comparison of PM7-
predicted densities of 2,194
solids with their corresponding
experimental values (g cm−3)
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the zwitterionic nature is only manifested when the coopera-
tive effect of the crystal environment is present.

Halogen bonds

Average unsigned errors for intermolecular interactions for 20
complexes involving Cl, Br, or I noncovalently bonded to O,
N, or a π-system were 2.46 kcal/mol-1 (PM6), 1.63 (PM7),
and 0.76 (PM6-DH2X). As also seen with the S22 and S66
datasets, the PM7AUE is greater than that of PM6-DH2X, but
now a definite reason for this can be given: the post-method
correction in PM6-DH2X was not made in PM7 because the
cause of the severe error in PM6 (an absence of reference data
involving Br–N and other interactions in the training set) was
largely corrected in PM7. Obviously, a further reduction in
error could be achieved by applying a specific correction of
the type used in PM6-DH2X.

Energies of sublimation

Benchmark databases such as S22 and S66 are a good source
of reference data for intermolecular interactions involving two
molecules. These data are useful both in training sets and in

calibration. Another measure of intermolecular interactions is
the experimentally determined energies of sublimation; that is,
the difference in energy of a chemical in the crystal and gas
phases. In its simplest form, this quantity represents the stabi-
lization energy arising from a molecule’s environment; how-
ever, other, more complicated phenomena are involved in
several species, such as the change from the zwitterionic form
of amino acids in the crystal phase to the neutral (i.e., union-
ized) form in the gas phase.

A comparison of calculated and experimentally deter-
mined heats of sublimation is presented in Table 9. Most
of the experimental data were abstracted from the Chickos
and Acree collection [41]. The error in the PM7 prediction
of the heat of sublimation of one solid, hexachlorobenzene,
was particularly large (27.5 kcal/mol-1); this was traced to an
insufficiently large Cl–Cl repulsion. An attempt to correct
this specific fault in PM7 failed, and at the present time
this should be regarded as a known, correctable, error in
PM7. Even with this single severe fault, the AUE for PM7
(5.0 kcal/mol-1) was still less than half that for PM6
(10.3 kcal/mol-1).

Earlier reports had suggested [10, 42] that PM6 predicted
zwitterions to be too stable. The results presented here for

Fig. 5 Comparison of PM6-
predicted heats of formation of
676 solids with their
corresponding experimental
values (kcal/mol-1). Several
solids, particularly elements,
have large negativeΔHf values,
giving rise to the artifact at
0.0 kcal/mol
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the heats of sublimation of simple amino acids suggest that
this error was not as serious as first thought.

Co-crystal energies

An estimate of the accuracy of prediction of relative intermo-
lecular interaction energies is provided by a comparison of the
calculated heats of formation of co-crystals and their precur-
sors (Table 10). In order for a co-crystal to exist it must be
more stable (i.e., it must have a lowerΔHf) than its precursors.
In a survey of 21 known co-crystals, PM7 predicted that all
but two were more stable than their precursors, whereas PM6
predicted that all but five were more stable.

Elements

Solid elements have been a long-standing challenge for semi-
empirical methods. This has been due, in part, to several
properties that are unique to the pure elements. With very
few exceptions, such as manganese and boron, all atoms in a
solid element are in the same environment, and therefore ionic

terms do not contribute to the bonding. By implication, all
bonding must necessarily be due to purely covalent interac-
tions between pairs of atoms of the same type. Also, in
contrast to mainstream chemistry, most elements exist as
metallic solids, implying the existence of a Fermi surface,
which in turn makes solving the SCF equations more difficult.
Finally, restricted Hartree–Fock methods are normally unsuit-
able for modeling metallic behavior, and recourse has to be
made to using unrestricted Hartree–Fock methods.

When the elements were modeled using PM6, several
elements collapsed to form very dense solids, with metallic
cobalt being the most extreme (PM6 predicted its density to
be 73.5 g/cc). Such nonsensical results were accompanied
by an equally absurd predicted ΔHf; several elements had
values that were more negative than −1,000 kcal/mol-1.

All these severe faults in PM6 were addressed during the
development of PM7, resulting in some improvement, so that
the largest error in the ΔHf value predicted for an element
using PM7 was +83.1 kcal/mol-1, for metallic barium. Most
metallic structures were reproduced, the most important
exceptions being the elements Fe, Ag, Sn, Ta, and Ba.

Fig. 6 Comparison of PM7-
predicted heats of formation of
676 solids with their
corresponding experimental
values (kcal/mol-1)
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Charges on ions

As expected, almost all compounds containing metal atoms
from groups IA and IIA are more or less ionic, with the charge
on the metal atom being large and positive. That the charge is
less than the formal oxidation state can be regarded as a
measure of the covalent character of the bonds between the
metal atom and its neighbors. Of greater interest are the partial
charges on polyatomic anions and cations such as sulfate and
tetramethylammonium. For most of these species, the un-
charged species is either not known, or, as in the case of
low-temperature ammonium amalgam, only stable under ex-
otic conditions. However, like the elements of groups IA and
IIA, these ions are stable in solids and thus are amenable for
study. An estimate of the electropositive nature of these ions
can be made by comparing the partial charges on the ions with
those of the alkali and alkaline earth metal ions; for the
ammonium ions, these range from +0.915 to +0.999, making
them extremely electropositive ions (see Table 11).

A similar situation occurs with electronegative species—
typically, polyatomic anions are more ionic than their mon-
atomic counterparts (Table 12). A comparison of the entries
in these two tables reveals that the partial charge on even an
extremely electronegative ion such as F− is determined

mainly by the nature of its counterion, so ammonium is
more electropositive than cesium.

Minerals

Minerals can be regarded as naturally occurring chemicals that
share an important characteristic—with few exceptions, min-
erals represent the most stable assembly of elements compris-
ing that mineral. A good example is provided by the evaporite
trona, Na3(CO3)(HCO3)(H2O)2. This mineral is formed natu-
rally during the evaporation of saline water, and represents the
lowest-energy structure for the particular mix of ions present
in the liquor. Very few minerals are not in the lowest-energy
state, the most famous example being diamond, but such
minerals are rare and the energy of such systems is usually
only slightly above the absolute minimum. Because their
structures represent low-energy configurations, minerals pro-
vide a good test of a modeling method, in that if the method
predicts a significantly different structure, the method is def-
initely in error. In contrast, if a synthesized (i.e., non-naturally
occurring) solid is modeled, and the calculated structure is
different from that observed, the possibility cannot be dis-
missed that it might represent a valid polymorph, possibly
one that has not yet been characterized.

Table 5 Intermolecular interac-
tions for the S22 set (kcal/mol-1) System Ref. Errors in

CCSD(T)/CBS PM7 PM6 PM6-DH+ PM6-DH2 B3LYP

01. Ammonia dimer −3.17 −1.18 0.87 0.01 −0.03 −1.40

02. Water dimer −5.02 0.11 1.08 −1.45 0.12 −2.30

03. Formic acid dimer −18.61 0.65 7.47 0.87 −0.04 −2.81

04. Formamide dimer −15.96 −0.67 3.41 −1.89 0.10 −2.60

05. Uracil HB −20.47 1.45 7.15 1.11 −0.73 −1.10

06. Pyridoxine aminopyridine −16.71 −0.46 6.73 −0.07 0.36 −1.22

07. Adenine thymine WC −16.37 0.66 7.31 0.50 −0.08 −0.96

08. Methane dimer −0.53 0.17 0.47 0.08 0.08 0.74

09. Ethylene dimer −1.51 0.44 1.11 0.45 0.45 1.05

10. Benzene methane −1.50 −0.29 1.03 0.11 0.11 1.70

11. Benzene dimer stack −2.73 −1.46 2.86 −0.84 −0.84 5.07

12. Pyrazine dimer −4.42 −1.25 2.61 −0.92 −0.92 5.25

13. Uracil dimer stack −9.88 1.30 5.42 0.47 0.44 5.94

14. Indole benzene stack −5.22 −0.73 5.29 0.17 0.17 8.14

15. Adenine thymine stack −12.23 0.92 7.29 0.57 0.54 10.03

16. Ethene ethyne −1.53 0.54 0.98 0.58 0.58 −0.12

17. Benzene water −3.28 0.51 1.00 0.10 0.10 0.62

18. Benzene ammonia −2.35 −0.54 0.82 −0.19 −0.19 1.27

19. Benzene HCN −4.46 1.41 2.48 1.47 1.47 1.38

20. Benzene dimer T −2.74 −0.56 1.99 0.15 0.15 2.74

21. Indole benzene T −5.73 −0.25 3.33 0.80 0.80 3.25

22. Phenol dimer −7.05 0.79 3.67 −0.01 −0.01 0.92
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Table 6 Intermolecular interactions for the S66 set (kcal/mol-1)

System CCSD(T)/CBS value Errors in

PM7 PM6 PM6-DH2 PM6-DH+ B3LYP

01. Water–water −4.92 0.04 1.01 0.04 −1.55 −2.21

02. Water–methanol −5.59 0.56 1.36 −1.23 −1.36 −1.50

03. Water–MeNH2 −6.91 0.10 2.86 0.62 −0.21 −1.48

04. Water–peptide −8.10 0.46 1.82 0.08 −1.02 −1.06

05. MeOH–MeOH −5.76 1.13 2.27 −0.51 −0.71 −1.44

06. MeOH–MeNH2 −7.55 1.51 4.46 1.83 0.91 −1.20

07. MeOH–peptide −8.23 1.44 3.31 1.28 0.30 −1.65

08. MeOH–water −5.01 0.72 1.82 0.75 −0.89 −2.16

09. MeNH2–MeOH −3.06 −1.52 0.77 −0.92 −2.09 −0.57

10. MeNH2–MeNH2 −4.16 −1.22 2.32 0.85 −0.12 −0.02

11. MeNH2–peptide −5.42 −0.77 1.57 0.07 −0.23 0.14

12. MeNH2–water −7.27 0.79 3.42 1.29 0.73 −1.22

13. Peptide–MeOH −6.19 −0.29 1.97 −0.20 0.16 −0.49

14. Peptide–MeNH2 −7.45 −1.91 3.28 0.58 −0.05 −0.41

15. Peptide–peptide −8.63 −0.83 2.72 0.20 −0.68 0.25

16. Peptide–water −5.12 −0.99 1.28 0.31 −0.24 −1.54

17. Uracil–uracil (BP) −17.18 1.12 5.84 −1.72 −0.21 −1.29

18. Water–pyridine −6.86 0.73 3.73 2.34 0.47 −0.51

19. MeOH–pyridine −7.41 1.87 5.23 3.53 1.53 −0.37

20. AcOH–AcOH −19.09 1.02 7.99 −0.19 1.34 −2.79

21. AnNH2–AcNH2 −16.27 −0.41 3.89 0.18 −1.58 −2.23

22. AcOH–uracil −19.49 1.58 7.46 −0.50 1.26 −1.97

23. AcNH2–uracil −19.19 0.31 5.14 −0.29 −0.64 −1.68

24. Benzene–benzene (π–π) −2.82 −1.55 2.86 −0.65 −0.65 4.44

25. Pyridine–pyridine (π–π) −3.90 −1.36 2.87 −0.72 −0.72 4.62

26. Uracil–uracil (π–π) −9.83 1.35 5.46 0.45 0.48 6.11

27. Benzene–pyridine (π–π) −3.44 −1.42 2.88 −0.68 −0.68 4.54

28. Benzene–uracil (π–π) −5.71 0.20 4.08 −0.28 −0.28 5.85

29. Pyridine–uracil (π–π) −6.82 −0.03 3.58 −0.68 −0.68 5.76

30. Benzene–ethylene −1.43 −0.69 1.55 −0.45 −0.45 2.57

31. Uracil–ethylene −3.38 0.65 2.34 0.14 0.14 2.85

32. Uracil–ethyne −3.74 1.40 2.66 0.85 0.85 2.59

33. Pyridine–ethylene −1.87 −0.43 1.63 −0.34 −0.34 2.57

34. Pentane–pentane −3.78 −0.28 3.14 0.72 0.72 5.10

35. Neopentane–pentane −2.61 −0.85 1.92 0.13 0.13 3.32

36. Neopentane–neopentane −1.78 −0.99 1.23 −0.21 −0.21 2.06

37. Cyclopentane–neopentane −2.40 −0.93 1.71 0.03 0.03 3.11

38. Cyclopentane–cyclopentane −3.00 −0.43 2.61 0.67 0.67 3.59

39. Benzene–cyclopentane −3.58 −0.62 3.04 0.56 0.56 3.96

40. Benzene–neopentane −2.90 −0.99 2.19 0.19 0.19 3.11

41. Uracil–pentane −4.85 −0.24 3.06 −0.11 −0.11 4.83

42. Uracil–cyclopentane −4.14 −0.33 2.90 0.05 0.05 4.40

43. Uracil–neopentane −3.71 0.13 2.66 0.30 0.30 3.52

44. Ethylene–pentane −2.01 −0.13 1.55 0.28 0.28 2.44

45. Ethyne–pentane −1.75 0.07 1.46 0.27 0.27 1.57

46. Peptide–pentane −4.26 0.49 3.00 0.60 0.60 3.94

47. Benzene–benzene (TS) −2.88 −0.33 2.07 0.22 0.22 2.74
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Several hundred minerals were surveyed, with the majority
of the reference structures being obtained from the American
Mineralogist Crystal Structure Database [43, 44]. Most struc-
tures could be used directly; among those that needed to be
modified before they could be used, the most common change
was the addition of hydrogen atoms (these atomswere present
in the formula, but their positions were not located in the X-
ray structure). The addition of hydrogen atoms was a straight-
forward procedure. Likely positions of putative hydrogen
atoms were identified, hydrogen atoms were added as needed,
and the positions of the hydrogen atoms were then optimized
while holding the rest of the crystal fixed at the X-ray struc-
ture. The resulting structure was then used as the reference
geometry. In every mineral that required hydrogen atoms to be
added, there was no ambiguity in the likely positions of the
hydrogen atoms, and, after their positions had been optimized,
the modified crystal looked chemically sensible.

The ability of PM7 to model minerals of different me-
chanical hardness was estimated by surveying Moh’s scale.

Moh’s scale provides a good test in that the range of interatomic
interactions is very wide, from purely covalent (diamond)
through mixed covalent and ionic (apatite) to extremely
weak (between layers in talc). Of the ten entries, eight were
predicted with good accuracy, calcite and fluoride being the
exceptions.

Several hundred different chemical environments were
represented in the minerals surveyed, and most were correctly
modeled by PM7. In general, PM7 was more successful in
modelingmechanically hard minerals than the softer minerals.
This could be attributed to a feature of the parameter optimi-
zation process: most reference data represent systems with
strong covalent bonds as opposed to weak noncovalent bonds;
therefore, it is not surprising that hard minerals (i.e., minerals
where covalent bonds dominate) are modeled with increased
accuracy. On the other hand, when the integrity of the mineral
depends on weak noncovalent bonds, small errors in energies
could result in large errors in geometries. Examples of this
type include gibbsite (Al(OH)3), where the layers are held
together by hydrogen bonds, and talc (Mg3Si4O10(OH)2),
where the layers are held together by dispersive and weak
electrostatic interactions.

Proteins

An objective when developing PM7 was to improve the
accuracy of prediction of barrier heights in enzyme reactions,

Table 6 (continued)

System CCSD(T)/CBS value Errors in

PM7 PM6 PM6-DH2 PM6-DH+ B3LYP

48. Pyridine–pyridine (TS) −3.54 0.20 2.31 0.53 0.53 2.53

49. Benzene–pyridine (TS) −3.33 −0.17 2.17 0.32 0.32 2.69

50. Benzene–ethyne (CH–π) −2.87 0.79 1.86 0.86 0.86 1.47

51. Ethyne–ethyne (TS) −1.52 0.71 1.06 0.73 0.73 −0.16

52. Benzene–AcOH (OH–π) −4.36 0.91 3.11 0.99 0.99 3.91

53. Benzene–AcNH2 (NH–π) −3.28 −0.41 2.76 0.64 0.64 3.56

54. Benzene–water (OH–π) −4.19 1.38 0.90 −0.47 −0.47 −0.35

55. Benzene–MeOH (OH–π) −4.71 1.37 1.87 0.96 0.96 1.55

56. Benzene–MeNH2 (NH–π) −3.23 −0.34 1.81 0.09 0.09 2.28

57. Benzene–peptide (NH–π) −5.28 −0.09 3.00 0.56 0.56 3.17

58. Pyridine–pyridine (CH–N) −4.15 0.55 1.64 0.71 0.71 0.79

59. Ethyne–water −2.85 1.39 1.09 0.91 0.91 −1.14

60. Ethyne–AcOH (OH–π) −4.87 2.56 3.04 2.47 2.47 −0.77

61. Pentane–AcOH −2.91 0.15 1.59 −0.23 −0.23 2.28

62. Pentane–AcNH2 −3.53 0.08 1.99 −0.01 −0.01 2.27

63. Benzene–AcOH −3.80 −0.15 1.23 −0.30 −0.30 0.60

64. Peptide–ethylene −3.00 0.63 1.74 0.47 0.47 1.25

65. Pyridine–ethyne −3.99 2.22 2.74 2.24 2.24 −0.49

66. MeNH2–pyridine −3.97 −0.33 2.68 1.12 1.00 1.80

Table 7 Average unsigned errors for the S22 and S66 datasets
(kcal/mol-1)

Set PM7 PM6-DH2 PM6-DH+ PM6 B3LYP

S22 0.74 0.38 0.58 3.38 2.75

S66 0.78 0.66 0.64 2.68 2.29
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so evaluating the ability of PM7 to accurately model proteins
is of paramount importance. As proteins are macromolecules,
their structures are complicated, and, in the case of enzymes,
their reactions involve the interplay of several competing,
subtle, phenomena, so that the energy difference between
reactant and product is often very small. All of these features
make the realistic modeling of proteins and their properties
extraordinarily difficult.

Normally, in order for semiempirical methods to work,
the chemical system being modeled must be as realistic as
possible. Even one extra or one missing atom in a system of
several thousand atoms can invalidate any results obtained

from the resulting model, so extreme care must be exercised
during data preparation if the results are intended to be used
to gain insight into biochemical processes. Fortunately, this
is not the case here, where the sole objective is to determine
how accurately PM7 can reproduce known protein struc-
tures. The assumption is that if existing structures can be
modeled with good accuracy, then perturbed structures of
the type found in biochemical processes would also be
modeled with good accuracy, and vice versa.

PM7 was used to model the structures of about 70 pro-
teins in the Protein Data Bank (PDB). Because PDB files
normally lack hydrogen atoms and have structural and po-
sitional disorder, some preconditioning was necessary be-
fore they could be used in modeling. For each protein, only
the minimum change necessary was made in order to gen-
erate a realistic starting structure; that is, all disorder was
resolved, hydrogen atoms were added so as to satisfy va-
lence requirements, and their positions were optimized in a
preliminary calculation. The resulting preconditioned geom-
etry will be referred to as the “PDB structure.”

Changes in ΔHf and RMS geometry for six representa-
tive proteins from this set are presented in Table 13.

Using the starting structures, a complete PM7 uncon-
strained optimization was performed, resulting in an opti-
mized structure (called “Opt”). If the starting PDB geometry
was completely accurate and if PM7 could accurately model
the chemical system, the PDB and Opt geometries would be
identical. This implies that the difference between the PDB
and Opt structures is a measure of error. Unfortunately, a

Table 8 PM7 and PM6 errors in
the heats of formation of solid
hydrocarbons

Hydrocarbon Ref. PM7 PM7 error PM6 PM6 error

Naphthalene (NAPHTA32) 18.8 24.0 5.2 35.9 17.1

Adamantane (ADAMAN08) −46.0 −45.7 0.3 −35.8 10.2

Biphenyl (BIPHEN04) 23.5 26.5 3.0 43.2 19.7

Hexamethylbenzene (HMBENZ04) −38.8 −48.5 −9.7 −28.2 10.6

Fluorene (FLUREN02) 21.6 22.7 1.1 42.3 20.7

Anthracene (ANTCEN14) 30.0 34.5 4.5 52.8 22.8

Phenanthrene (PHENAN08) 26.2 30.0 3.8 48.3 22.1

9,10-Dihydroanthracene (DITBOX) 15.9 13.0 −2.9 30.4 14.5

Trans-stilbene (TSTILB03) 31.8 24.2 −7.6 54.6 22.8

Diadamantane (CONGRS) −57.8 −52.5 5.3 −43.0 14.8

Cyclotetradecane (CYTDEC) −88.9 −95.1 −6.2 −68.0 20.9

Fluoranthene (FLUANT02) 45.5 41.4 −4.1 71.5 26.0

Pyrene (PYRENE02) 29.9 32.8 2.9 56.2 26.3

Benzo[c]phenanthrene (BZPHAN01) 44.1 32.5 −11.6 69.6 25.5

Chrysene (CRYSEN01) 34.7 34.1 −0.6 62.8 28.1

Tetracene (TETCEN01) 49.4 36.1 −13.3 72.7 23.3

Triphenylene (TRIPHE12) 35.9 28.6 −7.3 63.7 27.8

Dibenzanthracene (SANQII) 42.7 38.6 −4.1 80.1 37.4

Coronene (CORONE) 36.4 33.7 −2.7 77.3 40.9

Dibenzo(g,p)chrysene (TEBNAP) 90.6 67.6 −23.0 103.2 12.6

Fig. 7 2-(2-(3-Carboxypyridyl))-4-isopropyl-4-methyl-5-oxo-
imidazole
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comparison of the two structures cannot differentiate be-
tween errors in the PDB structures arising from experimen-
tal limitations and errors caused by faults in the PM7
theoretical method. In an attempt to assign the errors to
experiment or theory, two constrained optimizations were
run. An energy penalty function of 10 kcal/mol-1/Å2 was
applied to each atom in the system. This had the effect of
adding an energy penalty to the system as the atoms moved
away from their starting position, thus effectively biasing

the optimized geometry (called “Opt-10”) in favor of the
starting PDB structure. Another optimization was carried
out where the penalty function was 3 kcal/mol-1/Å2; here,
the resulting geometry (called “Opt-3”) was biased towards
the PDB structure, but to a lesser extent.

When a penalty of 10 kcal/mol-1/Å2 is used, errors in PM7
arising from inaccurate modeling of long-range effects of the
type that shape tertiary structure are effectively eliminated,
and only errors due to nearest and next-nearest neighbor
distances are important. Having already shown that PM7
errors in bond lengths are on the order of 0.02 Å (see Table 3),
a reasonable conclusion would be that PM7would have errors
of a similar magnitude when applied to proteins. The
RMS distortion in the Opt-10 systems is on the order of
0.05–0.10 Å, a value significantly larger than that expected
for PM7, which suggests that the positions of the atoms
in the starting PDB structure are in error by about that
amount.

Upon shifting to a penalty of 3 kcal/mol-1/Å2, the RMS
error increased, as expected. When the penalty function was
removed entirely, the RMS distortion increased dramatical-
ly, rising to about 1 Å. This error is considerably larger than
any reasonable error in the PDB geometry, so it must be
caused by either faults in PM7 or by the model used to
represent the PDB geometry. Protein crystals normally con-
tain large amounts of water, particularly in the interprotein
interstices, but by convention the positions of these water
molecules are not reported. Structures in the PDB should
therefore be regarded as representing the hydrated species.
Comparing the results of the optimization of gas-phase and
condensed-phase (solvated) crambin with the PDB structure
shows that the change in ΔHf upon going from the
PDB to the fully optimized structure drops from 605 to
280 kcal/mol-1 (i.e., by more than half). This confirms
that the PDB structure is better represented by the solvated
form than by the gas-phase form (i.e., that the solvated form is
more realistic).

Barrier heights

Enzymes catalyze many types of reaction, ranging from
simple bond-making–bond-breaking reactions that occur
only on the singlet or doublet electronic surface to subtle
ion pumps and reactions involving excited electronic states.
In this work, the range of reactions surveyed was restricted
to only the simplest type. Several high-level theory bench-
mark databases of barrier heights for simple reactions
[31–36] were used in the construction of reference data for
97 transition states. Because barrier heights are differences
in energies, each reaction was represented by two data, one
for the optimized PM7 structure of the precursors and one
for the refined PM7 transition state. Reference data could
then be expressed as the difference in energy between the

Table 9 Comparison of PM6 and PM7 with reference heats of
sublimation

Chemical Ref. PM7 PM7 PM6 PM6
ΔHs ΔHs Error ΔHs Error

Iodine 14.9 13.8 −1.1 48.7 33.8

Water 11.9 20.9 9.0 10.3 −1.6

Carbon dioxide 6.2 4.5 −1.7 1.9 −4.3

Iodoform 16.7 18.1 1.4 34.3 17.6

Methane 2.3 3.1 0.8 0.6 −1.7

Urea 21.7 29.2 7.5 17.5 −4.2

Oxalic acid 23.1 31.0 7.9 19.5 −3.6

Glycine 32.6 36.9 4.3 29.7 −2.9

Alanine 31.8 34.7 2.9 32.6 0.8

Propane 6.8 8.9 2.1 2.2 −4.6

Maleic anhydride 16.7 18.5 1.8 10.5 −6.2

Uracil 31.3 35.4 4.1 19.6 −11.7

2-Aminopyridine 18.3 26.9 8.6 9.2 −9.1

3-Aminopyridine 19.3 21.9 2.6 9.5 −9.8

4-Aminopyridine 20.8 26.3 5.5 10.4 −10.4

Thymine 32.0 37.9 5.9 17.9 −14.1

Methionine 39.2 42.0 2.8 28.2 −11.0

n-Pentane 10.0 13.5 3.5 1.9 −8.1

Hexachlorobenzene 21.6 49.1 27.5 2.5 −19.1

Hexafluorobenzene 11.9 16.9 5.0 0.3 −11.6

2,4,6 Tribromoaniline 24.1 35.3 11.2 52.5 28.4

Benzene 10.8 7.8 −3.0 3.2 −7.6

4-Nitroaniline 24.1 29.9 5.8 16.4 −7.7

2-Aminophenol 23.2 18.9 −4.3 17.6 −5.6

3-Aminophenol 24.4 27.3 2.9 10.7 −13.7

4-Aminophenol 24.8 32.6 7.8 19.3 −5.5

Cyclohexane 5.2 11.2 6.0 2.1 −3.1

4-Fluorobenzoic acid 21.8 25.7 3.9 12.0 −9.8

4-Chlorobenzoic acid 24.6 32.7 8.1 13.7 −10.9

Benzoic acid 21.9 26.2 4.3 10.0 −11.9

Tyrosine 52.3 52.2 −0.1 33.9 −18.4

Naphthalene 17.3 15.7 −1.6 4.2 −13.1

Ferrocene 17.5 16.0 −1.5 15.3 −2.2

Adamantane 14.1 17.1 3.0 2.6 −11.5

Hexamethylbenzene 20.3 23.9 3.6 4.3 −16.0

Pyrene 24.0 29.7 5.7 5.2 −18.8
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transition state and its precursor. Because only a small
number of reference data were available, the training set
was augmented with reference data on related well-behaved
ground-state systems. Parameter optimization proceeded
without any complications, taking just a few minutes of
CPU time. The resulting method (that is, the theoretical frame-
work of PM7 and the parameters optimized to reproduce
activation barriers) was called PM7-TS.

Analysis of the results showed that the average unsigned
error in barrier heights calculated using PM7-TS was
3.8 kcal/mol-1, as compared with the AUEs for PM7 of
11.0 kcal/mol-1 and for PM6 of 12.2 kcal/mol-1.

Discussion

Use of semiempirical methods to model enzyme reactions

Both PM6 and PM7 were designed to improve the accuracy
of the modeling of biochemical macromolecules. PM6 was a
significant improvement over the earlier PM3, in that the
prediction of geometries and heats of formation was much
improved. In turn, PM6 had a severe limitation in that the

accuracy of prediction of intermolecular interaction energies
—quantities of great importance in biochemistry—was low.
Using three proposed modifications to the PM6 method,
PM6-DH+, PM6-DH2, and PM6-D3H4, as a guide, a
post-SCF correction to address this deficiency was added
to PM7; this resulted in a reduction in the error in the
intermolecular interaction energies of more than 70 %.

Currently, there are no satisfactory criteria for determin-
ing the suitability of a method for modeling proteins. A
possible criterion would be the RMS error between the
calculated and X-ray structures. This criterion is, however,
very sensitive to errors in long-range weak interactions, so
even minor changes in energy could result in relatively large
changes in the orientation of a protein chain. In addition,
minor crystal packing forces could, at least in principle,
result in significant changes in the protein chain orientation.

An alternative to using proteins directly would be to
examine the applicability of a method used to model organic
crystals. Individual solids could be selected that illustrate the
types of interaction that occur in proteins. Provided all the
types of interaction that occur in proteins were represented
in the solids, the ability of a method to model those solids
would then be a measure of that method’s ability to model

Table 10 Energies of co-crystals

Co-crystal PM7 ΔHf

of co-crystal
PM7 ΔHf

of precursors
PM7 energy
of co-crystal

PM6 ΔHf

of co-crystal
PM6 ΔHf

of precursors
PM6 energy
of co-crystal

4,4′-Biphenol bis(caprolactam) (KEWZUI) −273.2 −253.1 −20.1 −207.7 −207.2 −0.5

Bis(pyridinium) oxalate oxalic acid (DEFCUM) −376.5 −364.2 −12.3 −326.7 −294.2 −32.5

Cinnamic acid 3-nitrobenzamide (OPUSOI) −152.9 −134.9 −18.0 −106.3 −102.7 −3.6

Carbamazepine isonicotinamide (LOFKIB01) −61.8 −61.2 −0.6 −7.6 −8.7 1.1

Resorcinol bis(caprolactam) (QQQGHM01) −269.2 −261.4 −7.8 −231.2 −230.6 −0.6

4-(Dimethylamino)pyridinium hydrogen phthalate
(GUKVOY)

−189.7 −186.7 −3.0 −150.3 −141.8 −8.5

Oxalic acid dihydrate (OXACDH26) −350.1 −354.7 4.6 −318.3 −305.0 −13.3

Bis(4-(dimethylamino)pyridinium) fumarate fumaric
acid (GUKWIT)

−391.0 −388.4 −2.6 −332.5 −307.6 −24.9

Bis(4-(dimethylamino)pyridinium) terephthalate
(GUKWAL)

−186.2 −187.3 1.1 −138.7 −123.1 −15.6

Dipyridinium bis(hydrogen oxalate) oxalic acid
(DUVLUB)

−570.9 −561.5 −9.4 −506.7 −470.0 −36.7

Succinic acid bis(urea) (VEJXAJ) −404.1 −385.2 −18.9 −347.0 −343.1 −3.9

4-(Dimethylamino)pyridinium hydrogen maleate
(GUKVUE)

−190.3 −182.3 −8.0 −165.0 −148.7 −16.3

Tris(4,4′-biphenol) bis(2-aminopyridine) (KEXBAR) −265.0 −260.5 −4.5 −124.1 −124.6 0.5

Bis(pyridine) fumaric acid (GUKWOZ) −167.2 −165.9 −1.3 −124.8 −119.3 −5.5

Malonic acid bis(isonicotinamide) (ULAWEJ) −301.3 −297.8 −3.5 −252.0 −244.1 −7.9

Aspirin carbamazepine (TAZRAO) −205.7 −205.6 −0.1 −151.1 −152.0 0.9

Isonicotinamide 3-hydroxybenzoic acid (LUNMEM) −193.3 −181.4 −11.9 −145.6 −147.8 2.2

Cyanuric acid–melamine (QACSUI) −199.3 −180.8 −18.5 −130.9 −123.9 −7.0

4-Aminobenzoic acid 4-nitroaniline (RILJEB) −125.5 −120.2 −5.3 −86.6 −86.7 0.1

4-Hydroxybenzoic acid isonicotinamide (VAKTOR) −192.7 −190.1 −2.6 −149.1 −147.8 −1.3

Bis(urea) oxalic acid (UROXAL01) −376.4 −357.9 −18.5 −313.8 −307.2 −6.6
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proteins. When PM7 was used to model simple organic
solids, AUE inΔHf decreased by more than 60 % and errors
in geometries decreased by ∼20 % relative to PM6. If the
assumption is made that the ability to model solids translates
into the ability to model proteins, then the conclusion fol-
lows that PM7 represents a significant improvement.

With the development of PM7-TS, activation barrier
heights in simple organic reactions can now be modeled
with useful accuracy, a feature not available in related meth-
ods such as PM6 and PM7. At the present time, a deficiency
exists in that the predictive power of PM7-TS is unknown,
but as more and more benchmark transition state barriers
become available the accuracy of PM7-TS predictions can
be determined, and this deficiency will eventually be cor-
rected. In the event that surveys show that PM7-TS is not

useful as a predictive tool, the same reference data could be
used to re-parameterize PM7-TS in order to obtain a newmethod
that would be more predictive (parameter re-optimization
being extremely simple and requiring only minutes of CPU
time).

Assuming that the PM7-TS method does have useful
predictive powers, it should now be possible to use purely
semiempirical methods to model putative mechanisms in
enzyme-catalyzed reactions, including predicting activation
barriers as well as heats of formation of reactants and
products. Without doubt, this is a formidable task, but when
represented as a set of individual steps, and provided care is
taken to ensure that each step is performed correctly, the
process can be carried out with confidence. Although all of
the steps have already been published (either here or in other
articles), it might be convenient for users to have a summary
of the process involved in modeling an enzyme-catalyzed
reaction. That will now be presented.

Summary of steps performed to calculate barrier heights

1. An obvious first step is to generate a proposed reaction
mechanism. This can be a new putative step or the result
of modeling a generally accepted step in a metabolic
cycle. Whatever the reason, three stages of the step are
needed: a reactant, a transition state, and a product.

2. A starting structure is obtained, with the PDB [45]
being an obvious source. An appropriate enzyme with
an inhibitor in the active site is particularly useful, as
the inhibitor could be used as a guide to the transition
state structure.

3. Extensive preconditioning is then done. This would
involve adding hydrogen atoms as needed in order to
satisfy valence requirements, and then optimizing their
positions. As conventional matrix algebra methods are
inefficient, this and all subsequent operations should
be done using the linear scaling MOZYME technique
[46]. During this process, some protons might migrate
to nearby functional groups to form salt bridges (i.e.,
ions might spontaneously form). If the ionization is not
correct, then individual protons should be added or
deleted as necessary.

4. The entire system would then be allowed to relax. If
solvation is considered desirable, the relaxation could
be performed in an aqueous environment simulated by
Klamt’s COSMO technique [47].

5. At this stage, the inhibitor is now no longer needed,
and it should be replaced by the appropriate substrate.
The fact that the inhibitor mimicked the transition state
can be used as a guide to the geometry of the substrate.
Once the substitution is complete, the entire system
should be relaxed again. The result corresponds to
either the reactant or the product geometry.

Table 11 Partial charges on the cations in various solids

Solid Charge

Sodium chloride 0.807

Ammonium benzoate 0.915

Cesium fluoride 0.934

Ammonium sulfate 0.943

Bis(pyridinium) oxalate oxalic acid 0.952

Ammonium iodide 0.965

Trans-difluoro-bis(ethylenediamine)-chromium(III) chloride 0.971

Tetramethylammonium benzoate monohydrate (ISIHIB) 0.980

Tetramethylammonium nickel(ii) trichloride 0.982

Bis(tetramethylammonium) hexachloro-platinum(IV) 0.984

Ammonium fluoride 0.988

Bis(pyridinium) hexachloro-rhenium(IV) 0.990

Tetramethylammonium diaqua-tetrafluoro-manganese(III) 0.996

Ammonium hexafluorosilicate 0.999

Copper(II) hexaquo dinitrate 1.713

Tris(ethylenediamine)-cobalt(III) trichloride trihydrate 2.881

Table 12 Partial charges on the anions in various solids

Solid Charge

Nitric acid hydrate −0.755

(Diphenylmethanide)-(18-crown-6)-rubidium −0.930

(Cyclopentadienyl)-(18-crown-6)-rubidium
dimethoxyethane solvate

−0.935

Ammonium perchlorate −0.940

18-Crown-6 oxonium hexachloro-tantalum(V) −1.000

18-Crown-6 oxonium clathrate aqua-pentachloro-titanium(IV) −1.060

Bis(pyridinium) oxalate oxalic acid −1.640

Ammonium sulfate −1.886

Ammonium chromate −1.978

Bis(pyridinium) hexachloro rhenium(IV) −1.980

Ammonium hexafluorosilicate −1.998
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6. Based on the result of the previous step, the inhibitor
would again be replaced by the substrate, but now the
parts of the substrate are moved in such a way that
when the system is relaxed again, the resulting geom-
etry corresponds to the other end of the reaction.

7. With both the reactant and product geometries now
available, the process of ascending the reaction barrier
can be started. This would be carried out in a
stepwise manner, using the GEO_REF option [48]
in MOPAC2012. At each stage in this process, the
geometry (either stressed reactant or stressed product)
with the lower energy is optimized, subject to a penalty
function based on the difference between the current
geometry and that of the higher-energy geometry.
Provided the reactant and product geometries were cor-
rectly prepared, this process is straightforward, and
results in a structure that is a good approximation to
the transition state.

8. Transition state refinement is then done. This consists
of a repeated two-step process [42]. In the first step, a
gradient minimization is carried out. Only those atoms
in the immediate vicinity of the reaction site are
allowed to move, with all other atoms held frozen.
The second step involves energy minimization. In this
step, all atoms that were allowed to move in the first
step are now frozen, and all atoms that were frozen in
the first step are now allowed to move. This two-step
process is repeated until the change in results is ac-
ceptably small; typically three cycles are needed.

9. Once a stationary point has been located, the vibra-
tional frequencies of the transition state need to be
calculated, in order to verify that one and only one
imaginary frequency exists. Only the Hessian for the
atoms that were involved in the gradient minimization
is needed for this step. This has two advantages: first,
the computational effort required is reduced—if the
gradient minimization used 20 atoms, and the enzyme
contained 4,000 atoms, then the computational effort
required to construct the Hessian would be reduced to
0.5 %; second, by only generating normal modes for

vibrations in the active site, all spurious imaginary
frequencies that arise from structures (such as rotating
methyl groups) are avoided.

10. At this point, all three geometries are now available:
the reactant, the transition state for the putative reac-
tion, and the product. An improved estimate of the
barrier height could then be obtained by calculating
ΔHf for each of the three geometries using PM7-TS.

11. To complete the analysis, the intrinsic reaction coordi-
nate should be calculated. One half would be started
using the transition state displaced slightly along the
vector of the transition state coordinate; the other half
would be started using the transition state displaced
slightly along the vector of the transition state coordi-
nate but with the opposite sign.

Why are semiempirical methods so accurate?

By their nature, semiempirical methods are much simpler
than ab initio methods, with most of the time-consuming
mathematical operations of ab initio methods being replaced
by relatively simple approximations. A result of this simpli-
fication is that when chemical systems are modeled using
semiempirical instead of ab initio methods, considerably
less CPU time is needed. It might be assumed that another
consequence of the use of approximations is that the accu-
racy of prediction would suffer, as semiempirical methods
are less complete than their more sophisticated theoretical
analogs. Given the results presented here, particularly the
fact that the AUEs in predicted heats of formation for well-
behaved organic compounds are significantly smaller when
PM7 is used than when the much more expensive B3LYP
method is used, this assumption is clearly invalid. Even the
older PM6 method was of sufficient accuracy to allow many
faults in the NIST WebBook to be detected [49]; faults
which, once identified, were quickly corrected. The obvious
question, then, is: why are modern semiempirical methods
so accurate?

Semiempirical methods combine a theoretical framework
with empirically determined reference data, or with high-

Table 13 Changes in ΔHf and RMS distortion upon going from PDB to PM7 structures for proteins

Protein Change in ΔHf (kcal/mol) RMS distortion (Å)

PDB Opt-10 Opt-3 Opt PDB Opt-10 Opt-3 Opt

Chymotrypsin 1AFQ 2105.7 1083.8 898.2 0.0 0.000 0.055 0.109 1.264

Crambin 1CBN 605.4 402.7 343.6 0.0 0.000 0.115 0.172 0.985

Crambin (solvated) 1CBN 280.4 105.7 83.3 0.0 0.000 0.109 0.139 0.728

Green fluorescent protein 1EMA 2709.5 1121.8 969.4 0.0 0.000 0.067 0.126 0.966

Importin 1QGK 8944.2 4396.5 3011.1 0.0 0.000 0.060 0.116 1.300

Potassium channel 1JVM 3279.4 1507.4 1147.3 0.0 0.000 0.060 0.131 1.130
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accuracy theoretically generated data. Reference data derived
from experimental results are—by definition—accurate, and
include all possible theoretical considerations, such as zero-
point energy, internal energy, one- and two-electron phenom-
ena, instantaneous correlation, relativistic effects, etc., and any
other effects that are as yet unknown. Accurately computing
theoretical effects ab initio is obviously very difficult, but by
looking to nature as a source of reference data, all the hard
work can be avoided: the value of a reference datum obtained
from an experimental observation obviously encapsulates all
of the phenomena represented by that datum.

By optimizing parameters in semiempirical methods to
reproduce reference data, all the complexity of ab initio theory
is avoided. If this is done correctly, then because semiempir-
ical methods are optimized to reproduce nature (i.e., the
known properties of chemical systems), semiempirical meth-
ods should intrinsically be highly accurate. In other words,
semiempirical methods are designed to reproduce what is
already known, and that they can do so with good accuracy
should not be regarded as surprising. A reasonable hope is that
such methods should also be predictive.

In contrast, if the objective is to predict chemical properties
de novo or ab initio, all possible phenomena involved must be
taken into account. For moieties involving only light ele-
ments, this implies (at a minimum) CCSD(T)/CBS with cor-
rections made for internal and zero point energies, and
relativistic effects and other phenomena also need to be taken
into account if heavier elements are involved. This is, in
principle, very different from semiempirical methods: ab initio
methods, by definition, do not use reference data, so every
component of every phenomenon must be accurately calcu-
lated if such methods are to be predictive. An error at any
stage in an ab initio calculation could invalidate a result. This
can be illustrated by a calculation of two isomers of C14H28

using B3LYP with the default 6-31 G(d) basis set and with
internal and zero-point energy corrections. The results predict
that the difference in the heats of formation of the isomers n-
tetradecane and octamethylhexane is 45.5 kcal/mol-1, whereas
the experimental value is known to be 20.0 kcal/mol-1: a
discrepancy of 25.5 kcal/mol-1. Grimme has reported convinc-
ing evidence [50], obtained using isomers of C8H18, that
errors in the energy order of alkane isomers (branching should
be lower in energy than linear) predicted using DFT methods
can be attributed to the neglect of electron correlation; when a
dispersion correction is added, the correct order is obtained
[51]. This type of error should not occur in modern semiem-
pirical methods, and indeed, for this particular isomerization,
PM7 gives 21.3 kcal/mol-1.

Speculation regarding future improvements

Semiempirical methods have improved steadily over the past
few decades, with three main improvements dominating: the

methods have becomemore accurate; the range of application,
in terms of both the number of elements and the types of
phenomena that can be modeled, has increased; and the pre-
dictive power has also increased.

In principle, if three types of error could be eliminated,
semiempirical methods would be completely accurate.
First, the theoretical framework has to be sufficiently
realistic and flexible that the resulting semiempirical
model is a good reflection of reality; second, the minimum
in parameter space must be located with sufficient accuracy
that no modification of the values of the parameters could
result in a significant decrease in the error function; and
third, the set of reference data must be large enough
and versatile enough to allow the minimum in parameter
space to be defined (i.e., to ensure that all eigenvalues
of the associated parameter Hessian are significantly
nonzero).

An estimate of the degree to which each of these objec-
tives has been achieved can be obtained by examining the
distribution of errors in heats of formation and in geome-
tries. As large amounts of reference data are available for
both of these properties, they are particularly suitable for the
following analysis.

Errors in the theoretical framework

As mentioned above, the average unsigned error in heats of
formation obtained when semiempirical methods are applied
to well-behaved compounds has decreased steadily, so that,
for PM7, the AUE is 4.0 kcal/mol-1. For some other
compounds that involve uncommon bonding, errors are
sometimes quite large. Thus, in diphenyl disulfone, in which the
structure –SO2–SO2– occurs, the PM7 error is +35.6 kcal/mol-1;
in cubane, where the C–C–C angle is 90°, the error is
−23.1 kcal/mol-1; and even in a compound as simple as
molecular nitrogen, the PM7 error is +33.0 kcal/mol-1.
There is no obvious reason to question the accuracy of
the reference data for the first two systems, and as the
ΔHf of molecular nitrogen is, by definition, zero, the
large values of these errors, combined with the unusual
bonding, suggest that there are faults in the theoretical
framework.

Errors in theory can only be corrected by making changes
to the algebraic form of the approximations. Designing such
changes is difficult, but converting the changes into soft-
ware is straightforward. In this work, very little effort has
been expended to correct faults of this type, because the
number of large errors in predicted heats of formation
that are attributable to errors in theory is very small, and
the types of compound that are badly predicted are well
known.

Some quantities need to be modeled with increased ac-
curacy. An error that might be tolerable in a ΔHf value
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might be completely unacceptable if it occurred in an inter-
molecular interaction. Errors in intermolecular interaction
energies averaged about 3.0 kcal/mol-1 in PM6, severely
limiting its suitability for modeling such phenomena. Sev-
eral attempts were made to rectify this fault by applying
post-SCF corrections, with each attempt involving the
addition of a relatively simple molecular mechanics
correction; that is, a simple algebraic function with a
small number of parameters. Each of these corrections
appeared to be simple and obvious; however, the effort
required to implement them was nontrivial, with the
bulk of the effort being unrelated to the actual logic
of the modification. This pattern—the effort involved in
investigating the effect of a modification being domi-
nated by considerations of quantities other than the
modification itself—has existed from the dawn of semi-
empirical methods. Fortunately, with the development of
computational tools and utilities to assist in manipulating data
sets and results, and with the increasing availability of
reference data, the ease with which ideas can be tested is
increasing, so that, in the near future, it will be possible to
quickly test the value of suggestions for changes to the theo-
retical framework.

Incomplete parameter optimization

During the development of the earlier NDDO methods
[1, 2], the large computational effort required for pa-
rameter optimization prevented the minimum in param-
eter space from being reached. Despite this limitation,
as each new method was developed, the average error
dropped significantly. With modern hardware, and
advances in the techniques of function minimization,
parameter optimization can now be performed much
more easily and with greater reliability; indeed, the
original MNDO optimization, which took several CPU
years of effort when it was first performed, can now be
run in less than a minute.

Other features of parameter optimization have also
improved. When an element was first parameterized,
there were problems with selecting the initial values
for the parameters to be optimized, and in at least one
case (sulfur) the resulting minimum [52] in parameter
space was not the global minimum [53]. With the de-
velopment of optimized values of parameters for all the
chemical elements, this problem can be considered solved.
Now, when a modification of an existing method is
made, there are obvious choices for the starting values
of parameters. Of course, there is still the possibility
that for one or more elements the current parameters
represent a local and not the global minimum, but as the range
of chemistry to be modeled increases, the probability of a
false minimum staying undetected steadily decreases. If

evidence was discovered that indicated that a given
minimum was not the global minimum, that same evi-
dence could then be used as a guide to the true (i.e., the
global) minimum.

Limitations and errors in reference data

A very large amount of reference data is available for mo-
lecular geometries. Among the most important collections
are the CSD [28] (over 570,000 entries) and the ICSD [29]
(over 150,000 entries); together, these databases cover a
very wide range of types of chemical interactions. For
thermochemistry, readily available collections of heats of
formation for both gas and condensed phases include
the JANAF [54], Lange’s handbook [55], CRC [56],
and the NIST online WebBook [57]. Several reference
data collections [16, 17, 37, 58] of high-quality calculated
intermolecular interaction energies have been created in recent
years, as have important and even more exotic quantities
such as the heights of reaction barriers [32, 35]—again, as the
result of high-quality calculations.

All this suggests that there is sufficient reference
data to allow semiempirical methods to be parameter-
ized and to allow the accuracy of the resulting method
to be determined. In practice, this is unfortunately not
the case: there are severe limitations in both the types
and quantity of reference data, limitations that are most
easily understood by reference to the types of data that
are needed for the development of a semiempirical
method.

Parameters in a method such as PM7 can be divided
into two groups: monatomic and diatomic. For each
element, the minimum in parameter space for monatom-
ic parameters can be readily defined by using conven-
tional reference data for compounds and ions involving
that element. This was the situation when MNDO was
developed. Using only a few tens of compounds, the
values of monatomic parameters for H, C, N, and O
were optimized, and the resulting minimum in parameter
space was well defined.

For diatomic parameters, the situation is completely
different. As was demonstrated in PM6, the use of
diatomic parameters resulted in a dramatic increase in
the accuracy of prediction of the heats of formation and
geometries used in the training and survey sets. This
increase in accuracy was offset by an equally dramatic
decrease in predictive power. In order for the minimum
in parameter space for diatomic parameters for even
one atom pair to be defined, there had to be a mini-
mum of two reference data that involve the relevant
atoms in a bonding or near-bonding environment. This
condition is readily satisfied in simple organic chemis-
try where there are large amounts of data involving
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every possible diatomic combination. Much of these
data involve gas-phase species, and are ideal for use
as reference data.

Several problems arise when the range of chemistry
is increased. Frequently there is a lack of data, and,
even when the data exist, they are often in a form that
is not suitable for reference data; that is, they cannot be
converted into a discrete gas-phase chemical species.
Thus, although the ΔHf of the mineral magnesite,
MgCO3, is known (−265.7 kcal/mol-1 [56]), this datum
is unsuitable for use as a reference datum because it is
not possible to relate the observed ΔHf to an isolated
gas-phase system.

Given the large number of possible atom pairs (there are
3403 atom pairs for the 82 stable elements), it is not sur-
prising that most are not represented in any current database.
Most combinations, such as Sc–Ag or Ti–Ne, are of little
importance, but whole sets of combinations, for instance F–
X and O–X (X: most elements), are of interest. For the
purposes of developing and validating semiempirical meth-
ods, it is useful to change the perspective from considering
what data are available to considering what reference data
are needed, and then examining methods of generating such
reference data.

One obvious source would be to use modern highly
accurate theoretical methods to generate the needed
reference data. Thus far, these methods have been used
for only limited applications, such as modeling known
species (e.g., known small gas phase systems) or spe-
cies of specific interest (e.g., gas-phase bimolecular
complexes for determining intermolecular energies).
For the purposes of method development, other spe-
cies—ones that have no equivalent in nature—would
be needed. Examples of such systems would be CrIIIAl
(OH)6 (a model for the Cr–Al interaction in ruby) and [Al
(H2O)6]

3+ (a model for one of the ions in the alums).
Such a collection would be completely novel and of

great use for developing new semiempirical methods.
PM7 is now the most accurate of the NDDO-type
semiempirical methods, but even within PM7, the ac-
curacy of prediction of thermochemical and geometric
properties varies widely from element to element. For
“popular” elements, such as those involved in simple
organic compounds, the accuracy is relatively high. For
“unpopular” elements, that is, elements whose proper-
ties are not often measured, either because the element
is rare (such as Sc) or because they are simply not easy
to work with (such as Ag), the accuracy is low. Con-
sider silver: because it forms few gas-phase compounds,
there are few thermochemical reference data; as a re-
sult, the various types of diatomic parameter minima
are not well defined. A consequence is that the accura-
cy of PM7 when predicting the properties of silver-

containing solids is very low. This result—that the accuracy
of the prediction of the properties of compounds of popular
elements is high, and that of unpopular elements is low—
can be generalized to the strong statement that the
accuracy of semiempirical methods is mainly determined
by the quality of the reference data. A corollary to this would
be that a large increase in accuracy and predictive power could
be achieved if there were a source of appropriate reference
data.

An alternative: avoiding the use of diatomic parameters

That the use of diatomic parameters has resulted in a
dramatic increase in accuracy is incontrovertible; equally
incontrovertible are the facts that it has resulted in an
enormous increase in the number of parameters, and
that there is increased difficulty in obtaining suitable
reference data. If a recipe or formula could be devel-
oped that would reproduce the values of the diatomic
parameters, the current requirement that each core–core
parameter must be independently optimized could be
avoided. Not only would this remove the need for
reference data for each diatomic pair—a desirable ob-
jective in its own right—but the range of chemistry
potentially accessible would be dramatically increased:
every possible diatomic interaction would instantly be-
come accessible for modeling.

Examining the values of the diatomic parameters
reveals interesting trends. For atoms with small atomic
numbers, the diatomic parameters give rise to functions
that fall off rapidly as the distance increases, as shown
in Fig. 8 for the Na–O interaction, where the function
has a value of about 0.1 eV at a Na–O separation of
2.5 Å. For atoms with large atomic numbers, the func-
tions drop off less rapidly, so that for the W–O inter-
action, the function does not drop below 0.1 eV until
the distance increases to 3.3 Å. This behavior suggests
that Voityuk’s functions could be identified with atomic
size: light atoms are smaller than heavy atoms.

At the present time, there has been no indication of
any attempt to develop a formula relating atom pairs to
the Voityuk parameters. This inactivity could be attrib-
uted to the vagueness or poor definition of the require-
ments for such an expression. However, with the
development of PM6, and now with PM7, there is a
guide to the values of such a formula, specifically the
collection of values for the various diatomic parameters
in these methods. The problem of developing an appro-
priate equation to reproduce the various core–core inter-
actions would thus devolve to one of fitting two sets of
diatomic constants. Presumably such a function would
have monatomic parameters and would also depend on
atomic number and any number of other quantities.
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However, regardless of how complicated the function
becomes, it is unlikely to have even a significant frac-
tion of the number of terms in the present diatomic
interactions.

Determining accuracies of methods

As each new semiempirical method is completed, an
attempt is made to determine its accuracy relative to
similar methods. Of course, if the set of species used to
determine accuracy is small, and the new method was
optimized to maximize accuracy for that set, then it can
always be made to appear to be more accurate than the
other methods. If an unbiased measure of accuracy
were to be developed then spuriously high accuracies
resulting from the use of selected subsets could be
avoided.

Somewhat surprisingly, although chemistry is a large
field of science, the number of separate data on chem-
ical properties in the various collections is still quite
small. Admittedly, for crystals, the present collections of
structures are large—in the hundreds of thousands—and
are of good quality, but until now, no attempt had been
made to determine the accuracy of a theoretical method
when it is used to predict the geometries of a large
number of solids. For one of the most important prop-
erties, ΔHf of gas-phase species, there are only a few
tens of thousands of experimental data, and for relative

energies, such as bimolecular intermolecular interaction
energies, experimental data are very limited. In re-
sponse, the resulting void is now being filled with the
results of accurate high-level theoretical calculations.

Because the number of available thermochemical data
is quite small, one approach that can be used to prevent
the appearance of bias when presenting statistics on the
accuracy of semiempirical methods would be to use all
available reference data on thermochemistry. With mod-
ern hardware, running a survey of even a few tens of
thousands of species is not a daunting task, and the
resulting statistics would be more credible than those
generated using smaller survey sets, where the possibil-
ity of biasing the survey set in favor of the method de
jour could not be discounted.

During the testing of PM7, an attempt was made to
include as many thermochemical data as was practical, for
both gas-phase species and for solids. This attempt was
limited in that only a fraction of the available data from
databases was used, and although strong evidence was
found that some of the data were inaccurate, no method that
was proven to be free from bias was developed to allow
faulty data to be excluded. Despite these limitations, the
statistical results presented here are believed (at least, by
the author) to be more reliable than those of any earlier
semiempirical method.

Many of these problems could be eliminated if a
single database of thermochemical data of unchallenged

Fig. 8 Comparison of
potentials arising from W—Na
and O—Na unpolarizable core-
core terms. Note: nearest inter-
atomic distances in Na2WO4:
Na–O: 2.38 Å, Na–W: 3.79 Å,
W–O: 1.82 Å

30 J Mol Model (2013) 19:1–32



accuracy were available as a source of reference data for
training sets and for validating the resulting methods.
Ideally, such a database would contain experimental
results augmented by very high level theoretical results,
particularly for properties (such as intermolecular interaction
energies) that would be difficult to obtain by any experimental
method.

Conclusions

The use of semiempirical methods as a practical tool for
modeling chemical systems has been extended to a wider range
of species. A significant increase in accuracy was achieved
after relatively minor changes were made to the approxima-
tions and after proxy reference data functions representing
noncovalent interactions were introduced. The result was that
the AUE in the heats of formation of organic solids calculated
using PM7 decreased by more than 50 % relative to that for
PM6, previously the most accurate of the NDDO methods. At
the same time, errors in PM7 geometries have been reduced by
over one-third relative to those of PM6. Barrier heights for
simple reactions of the type catalyzed by enzymes were repro-
duced with an AUE that was less than one-third that of PM6.

An examination of the causes of the remaining sources of
error suggests that further increases in accuracy could be
achieved mainly by improving the training and survey ref-
erence data sets. Currently, there is a severe shortage of
reference data, resulting in large sections of parameter space
that are undefined, or, in chemical terms, causing any result-
ing method to be severely limited in its range of applicabil-
ity. There is strong evidence that many existing reference
data are also of questionable accuracy, so that a significant
fraction of the error in methods can be attributed to sources
other than the method itself.

Incomplete parameter optimization, one of the other two
possible sources of error in semiempirical methods, can now
be eliminated as a significant source of error; this operation has
become as reliable and uncomplicated as optimizing a molecu-
lar structure in conventional computational chemistrymodeling.

The only other source of error lies in the theoretical
framework or set of approximations used. With minor
exceptions, the current set of approximations has proven to
be remarkably robust, allowing a wide range of types of
system to be modeled. Future changes in approximations are
likely to focus on correcting errors in existing approxima-
tions, and not on radically new features. Thus, in recent
years, several different approaches to modeling intermolec-
ular interactions have been proposed. The strengths and
weaknesses of these ideas have been explored and exam-
ined, and this field can be considered to be evolving rapidly
in a very healthy way. The specific approximation for inter-
molecular interactions used in PM7 should be regarded as

merely one of a number of competing models, and will
almost certainly be replaced by a better model in the future.
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