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Background: Bile acid exposure causes pancreatic acinar cell injury through a sustained rise in cytosolic Ca2�.
Results: Pharmacologic and genetic inhibition of the Ca2�-activated phosphatase calcineurin dramatically reduces acinar cell
injury and in vivo pancreatitis resulting from bile acid exposure.
Conclusion: Acinar cell calcineurin mediates acinar cell injury and pancreatitis resulting from bile acid exposure.
Significance: Calcineurin inhibitors may provide an adjunctive therapy for biliary pancreatitis.

Biliary pancreatitis is the leading cause of acute pancreatitis in
both children and adults. A proposedmechanism is the reflux of
bile into the pancreatic duct. Bile acid exposure causes pancre-
atic acinar cell injury through a sustained rise in cytosolic Ca2�.
Thus, it would be clinically relevant to know the targets of this
aberrant Ca2� signal. We hypothesized that the Ca2�-activated
phosphatase calcineurin is such a Ca2� target. To examine cal-
cineurin activation, we infected primary acinar cells from mice
with an adenovirus expressing the promoter for a downstream
calcineurin effector, nuclear factor of activated T-cells (NFAT).
The bile acid taurolithocholic acid-3-sulfate (TLCS) was pri-
marily used to examine bile acid responses. TLCS caused cal-
cineurin activation only at concentrations that cause acinar cell
injury. The activation of calcineurin by TLCS was abolished by
chelating intracellular Ca2�. Pretreatment with 1,2-bis(o-
aminophenoxy)ethane-N,N,N�,N�-tetraacetic acid (acetoxym-
ethyl ester) (BAPTA-AM) or the three specific calcineurin
inhibitors FK506, cyclosporineA, or calcineurin inhibitory pep-
tide prevented bile acid-induced acinar cell injury as measured
by lactate dehydrogenase leakage and propidium iodide uptake.
The calcineurin inhibitors reduced the intra-acinar activationof
chymotrypsinogen within 30 min of TLCS administration, and
they alsopreventedNF-�Bactivation. In vivo,mice that received
FK506 or were deficient in the calcineurin isoform A� (CnA�)
subunit had reduced pancreatitis severity after infusion of TLCS
or taurocholic acid into the pancreatic duct. In summary, we

demonstrate that acinar cell calcineurin is activated in response
to Ca2� generated by bile acid exposure, bile acid-induced pan-
creatic injury is dependent on calcineurin activation, and cal-
cineurin inhibitorsmayprovide anadjunctive therapy for biliary
pancreatitis.

Acute pancreatitis is a painful, necro-inflammatory disorder
that is triggered by numerous insults (1). The most common
inciting factor in both children and adults accounting for
30–50% of cases (2–4) is the presence of gallstones or sludge
within the distal commonbile duct (5). A dominantmechanism
for this etiology of pancreatitis known as acute biliary pancre-
atitis is thought to be the reflux of bile into the pancreatic duct
(6, 7). The major component of bile is the amphipathic bile
acids (8, 9). The primary bile acids are cholic acid and cheno-
deoxycholic acid. Secondary bile acids are the more hydropho-
bic forms, which include the dehydroxylated lithocholic acid
and deoxycholic acid. Most bile acids are conjugated to either
taurine or glycine. Administration of submillimolar concentra-
tions of chenodeoxycholic acid (CDC)3 to the lumen of ex vivo
ducts elicits reactive mechanisms within the pancreatic duct
cell to stimulate bicarbonate secretion (10, 11). However,
higher concentrations of CDC induce acinar cell pathology,
leading to pancreatitis (12, 13).
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Bile acids cause acinar cell injury by inducing a host of cellu-
lar changes, including reduced mitochondrial membrane
potential (14), depletion of ATP levels (15), and increased pro-
duction of reactive oxygen species (16). However, the most
immediate effect of bile acids is their ability to elicit acinar cell
cytosolic Ca2� signals. The signals are observed at bile acid
concentrations below the critical micellar concentration (12,
17) and occur even in the absence of external Ca2� (18), albeit
with lower amplitude. Thus, bile acids appear to transduce the
Ca2� signals not by permeabilizing the plasma membrane but
by causing the opening of Ca2� channels. Although the mech-
anism by which bile acids transduce Ca2� signals is not clear,
recent work suggests that bile acids exert their effects through
an apically localized bile acid receptor, the G-protein-coupled
bile acid receptor Gpbar1 (17). High micromolar concentra-
tions of bile acids induce high amplitude, sustained Ca2� sig-
nals, which are necessary to initiate early events in pancreatitis
such as intra-acinar protease activation and NF-�B activation
(19–21). The immediate targets of this Ca2� signal in acinar
cells are not clear. In other cell types, the Ca2�-activated phos-
phatase calcineurin is activated in response to a sustained
increase in cytosolic Ca2� (22, 23). For this reason, we hypoth-
esized that bile acids induce acinar cell injury by activating cal-
cineurin. In this study, we demonstrate 1) that bile acids induce
calcineurin activation only at concentrations that cause acinar
cell injury; 2) that calcineurin activation is dependent upon
intracellular Ca2�; and 3) that pharmacologically or genetically
blocking calcineurin reduces acinar cell injury from bile acid
exposure in isolated acini and in vivo with retrograde bile acid
infusion.

EXPERIMENTAL PROCEDURES

Reagents and Animals—All reagents were purchased from
Sigma-Aldrich unless otherwise stated. Male Swiss Webster
mice weighing 20–25 g (Harlan Laboratories, Boston, MA)
were fed standard laboratory chow, given free access to water,
and randomly assigned to control or experimental groups.
NFAT-luciferase, constitutively active calcineurin (�CnA),
myocyte-enriched calcineurin-interacting protein (Mcip1),
and NF-�B-luciferase adenoviruses were constructed as
described previously (24).
Preparation of Pancreatic Acini—Groups of pancreatic aci-

nar cells were isolated as described previously (25) with minor
modifications. Briefly, the pancreas was removed and then
minced for 5 min in Dulbecco’s modified Eagle’s medium
(DMEM)/F12 1� buffer without phenol red (Invitrogen), plus
0.1% BSA and 2 mg/ml type 4 collagenase (Worthington). The
suspension was briefly incubated with for 5 min at 37 °C while
shaking at 90 rpm. The buffer was removed and replaced with
new collagenase buffer and then incubated for 35 min. The
suspension was filtered through a 300-�mmesh (Sefar Ameri-
can, Depew, NY) and then washed three times with collage-
nase-free buffer. Acinar cells were allowed to equilibrate for 5
min at 37 °C before use.
NFAT-Luciferase Activity Assay—Acinar cells were infected

withAd-NFAT-luciferase following a previously described pro-
cedure (26). The construct includes a luciferase gene placed
downstream of an IL-4 promoter that contains nine tandem

NFAT binding sites. The luciferase gene is expressed when
NFAT binds to the IL-4 promoter. Acinar cells were incu-
bated with the NFAT-driven luciferase adenovirus for 1.5 h
prior to stimulation. All of the stated inhibitors were added
for 30 min prior to a stimulation with TLCS (5–500 �M).
NFAT-luciferase was measured using the luciferase assay
system (see Fig. 1A). Briefly, cells were spun at 1,000 rpm for
5 min, washed with PBS, and lysed using reporter lysis 5�
buffer (catalog number E397A, Promega, Madison, WI).
Samples were vortexed and spun at 12,000 � g for 2 min.
Supernatant was plated, and luminescence was measured
using a Synergy H1 plate reader (BioTek, Winooski, VT) and
normalized to total protein.
Cell Injury Assays—Acinar cell injury was measured using a

cytotoxicity assay for lactate dehydrogenase (LDH) leakage
(Promega). Absorbance was measured at 490 nm, 15 min after
stopping the enzyme reaction. Results were expressed as the
percentage of LDH released into the media. For propidium
iodide (PI) uptake, acinar cells were incubated in a 48-well plate
with 50�g/ml PI (Sigma) for 30min prior to the addition of 500
�M TLCS. Fluorescence was measured at 536-nm excitation
and 617-nm emission wavelengths over time (0–6 h). To
ensure that the same amount of cells was placed in each well,
total fluorescencewasmeasured after cell lysis with 0.5%Triton
X-100.
Intraductal Bile Acid Infusion Model of Pancreatitis—Pan-

creatitis was induced by retrograde infusion of the bile acid
TLCS (3 mM) or taurocholate (TC) (37 mM) dissolved in saline
into the distal common bile duct and pancreatic duct, as
recently described (27). Briefly, mice between 8 and 12 weeks
(20–25 g) were anesthetized with a ketamine (120 mg/kg)/xy-
lazine (12 mg/kg) mixture (Butler Schein, Chicago, IL). A ven-
tral incision was made to reveal the abdominal cavity. The
duodenum was flipped to reveal its distal side and held in
place by ligatures. The bile duct was identified, and a
30-gauge needle was inserted through the antimesenteric
aspect of the duodenum to cannulate the biliopancreatic
duct. TLCS was infused at 10 �l/min for 5 min using a P33
perfusion pump (Harvard Apparatus, Holliston, MA). The
exterior wound was closed using 7-mm wound clips, and a
single injection of buprenorphine (0.075 mg/kg) was given
immediately after the surgery. Normal saline-infused ani-
mals served as shams. Animals were allowed to recover on a
heating pad for 90 min after the procedure. Mice were eutha-
nized 6 or 24 h after induction.
NF-�B-Luciferase Activity Assay—Acinar cells were infected

with Ad-NF-�B-luciferase 24 h prior to stimulation using a
previously described procedure (28). Following a wash with
DMEM/F12 media, acinar cells were evenly distributed in a
48-well plate and incubated for 30 min at 37 °C. Acinar cells
were stimulated for 6 h with TLCS (500 �M) in the presence or
absence of inhibitors. NF-�B-luciferase was assayed using the
same method described for NFAT-luciferase.
Tissue Preparation and Histological Grading—Pancreas,

duodenum, and spleen were fixed at room temperature for 24 h
in 10% formalin solution and transferred to 70% ethanol. Par-
affin-embedded sections were stained with hematoxylin and
eosin and graded using a 20� objective over 6–10 separate
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fields in a blinded fashion. Only pancreas tissue adjacent to the
duodenum (i.e. pancreatic head) was graded. The grading scale
was adapted from Wildi et al. (29), in which pancreas was
assessed for edema, acinar cell vacuole formation, inflamma-
tory infiltrate, andnecrosis on a scale of 0–4. The scores of each
slide were totaled to calculate an overall severity score. Analysis
was also conducted for each scoring parameter.
Statistical Analysis—Data were expressed as mean � S.E.

unless otherwise stated. Statistical analysis was performed
using a Student’s t test or two-way analysis of variance for a
comparison of multiple groups. Statistical significance was
defined as a p value � 0.05.

RESULTS
TLCS Activates Acinar Cell Calcineurin—Calcineurin acti-

vates several substrates, notably a family of transcription fac-
tors known as nuclear factor of activated T-cells (NFATc1-c4)
that have been best characterized in the immune system (30,
31). We used a reporter system to evaluate calcineurin activa-
tion by infecting acinar cells with an adenovirus containing an
NFAT-driven luciferase gene (24). Activation of the calcineurin
phosphatase induces NFAT dephosphorylation, which then
causesNFAT to translocate to the nucleus. NFATbinding to its
promoter sequences drives the expression of luciferase, which
serves as a sensitive measure of calcineurin activation. To test

FIGURE 1. TLCS causes acinar cell calcineurin activation. A, schema for the transfection of primary mouse pancreatic acinar cells with adenoviral vectors. luc,
luciferase. B, expression of �CnA resulted in acinar cell NFAT-luciferase activity, confirming that the assay can be used to detect calcineurin activation. RLU,
relative luciferase units; Ctl, control. C, administration of TLCS (500 �M) induced NFAT-luciferase activity. D, time course demonstrating accumulation of
luminescence with TLCS (500 �M) given over a 6-h period. E and F, TLCS-induced NFAT-luciferase activity was prevented by pretreatment with the pharma-
cologic calcineurin inhibitors (E) or by overexpression of the endogenous calcineurin inhibitor Mcip1 (Ad-Mcip1) (F). n � 3. *, #, p � 0.05, relative to the control
or TLCS alone, respectively.
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this hypothesis, we co-infected cells with an adenoviral con-
struct that expresses �CnA. In addition to our reporter con-
struct, we demonstrate that NFAT-luciferase activity directly
correlates with calcineurin activation (Fig. 1B). Recent studies
that have examined the effects of bile acids on acinar cell Ca2�

signaling have used TLCS (12, 16–18). TLCS represents one of
the most hydrophobic of the naturally occurring bile acids and

induces Ca2� signals at submillimolar concentrations that are
below the critical micellar concentration (32). We found that
TLCS induced substantial increases in NFAT-luciferase activ-
ity over the course of a 6-h period. This increase is only
observed at a concentration (500�M; Fig. 1,C andD) that is also
associated with acinar cell injury. To confirm that activation is
mediated by calcineurin, we utilized specific calcineurin inhib-

FIGURE 2. TLCS-induced calcineurin activation is Ca2�-dependent. A and B, both Ca2� ionophores (A) A23187 (2 �M) and (B) ionomycin (1 �M) induced
NFAT-luciferase activity. RLU, relative luciferase units; Ctl, control. C, pretreatment with BAPTA-AM prevented the increase. n � 3– 4. *, #, p � 0.05, relative to the
control or TLCS alone, respectively.

FIGURE 3. The other naturally occurring bile acids cause acinar cell calcineurin activation. A–D, TC (A), TCDC (B), taurodeoxycholic acid (TDC) (C), and a bile
acid mixture (BAM) (D) from Bovinea Bos taurus each induced NFAT-luciferase activity. n � 3– 4. *, p � 0.05, relative to control. RLU, relative luciferase units.
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itors, FK506, cyclosporine A (CsA), and calcineurin inhibitory
peptide (CiP) (Fig. 1E). Each of the inhibitors reduced the acti-
vation of our reporter system driven by the NFAT promoter,
suggesting that TLCS injury is mediated by calcineurin. Fur-
ther, infecting cells with an adenovirus that overexpresses an
endogenous inhibitor of calcineurin,Mcip1, also known as reg-
ulator of calcineurin 1 (Rcan1) (33), showed similar results (Fig.
1F). We demonstrate that TLCS promotes transcriptional acti-
vation via a calcineurin-specific pathway. Thus, the NFAT-lu-
ciferase construct can be used to assay calcineurin activation,
and a pathological concentration of TLCS induces calcineurin
activation.
To determine whether higher levels of calcineurin activation

due to bile acids resulted from increased calcineurin expres-
sion, we performed Western blot analysis from pancreatic aci-
nar cell lysates of calcineurin expression. Stimulation with
TLCS (500 �M) over the course of 6 h did not affect calcineurin
expression (data not shown).
TLCS-inducedCalcineurinActivation Is Dependent on Intra-

cellular Ca2�—Calcineurin is typically activated through bind-
ing of Ca2� to the regulatory subunit of calcineurin (34). To
examine whether calcineurin activation is dependent on Ca2�

levels in pancreatic acinar cells, we used an ionophore (A23187
or ionomycin) and showedNFAT activity increased above con-
trols by 10- and 6-fold, respectively (Fig. 2, A and B). This sug-
gests that increases in intracellular Ca2� levels stimulate cal-
cineurin-induced activation of NFAT. Next, to examine
whether TLCS-induced calcineurin activation is Ca2�-
dependent, acinar cells were treated with the intracellular
Ca2� chelator 1,2-bis(o-aminophenoxy)ethane-N,N,N�,N�-tet-
raacetic acid (BAPTA) 30 min prior to TLCS exposure.
BAPTA prevented calcineurin activation in our model system
(Fig. 2C). These data suggest that Ca2� activates acinar cell cal-
cineurin and that calcineurin activation due to TLCS is
Ca2�-dependent.
We used TLCS primarily because it is the most potent natu-

rally occurring bile acid (32). In further studies, however, we
assessed the ability of the other naturally occurring bile acids to
activate calcineurin. TC, taurochenodeoxycholic acid (TCDC),
and a bile acid mixture could each activate NFAT-luciferase
(Fig. 3).
TLCS-induced Acinar Cell Injury Is Dependent on Ca2� and

Calcineurin—To examine whether Ca2� and calcineurin are
necessary for mediating acinar cell injury, we assayed LDH
leakage from and PI uptake into acinar cells. Pretreatment of
acini with BAPTA prior to TLCS caused a significant reduction
in bothmeasures of injury (Fig. 4). These data are in agreement
with that of Booth et al. (16), in which similar effects of Ca2�

chelation with BAPTA on TLCS-induced acinar cell necrosis
were observed. In addition, adenoviral overexpression of the
endogenous calcineurin inhibitor Mcip1 reduced acinar cell
injury with TLCS (Fig. 5A). Furthermore, the calcineurin inhib-
itors reduced injury induced by TLCS (Fig. 5, B–D). Impor-
tantly the effect of the calcineurin inhibitors was seen with pre-
treatment, cotreatment, and even 30–60 min after TLCS
application. The data demonstrate that acinar cell injury are
dependent on Ca2� as well as calcineurin activation and that
calcineurin-mediated injury can be reduced after bile acid

exposure.We also demonstrate that injury induced by the other
bile acids was significantly reduced by BAPTA and the cal-
cineurin inhibitors (Fig. 6).
TLCS-induced NF-�B and Chymotrypsin Activation Are

Dependent on Calcineurin—Among several injurious path-
ways, aberrant acinar cell Ca2� signals are reported to activate
two independent processes: the translocation of NF-�B to the
nucleus (35–37) and also the intra-acinar activation of pancre-
atic proenzymes or zymogens (20, 38, 39). We examined
whether bile acids induced these two aspects through calcineu-
rin. We demonstrate using adenoviral infection of a NF-�B-
luciferase construct that TLCS induced NF-�B activation in a
Ca2�- and calcineurin-dependent manner (Fig. 7A).
To examine whether calcineurin activation is an important

mediator of pathologic zymogen activation due to bile acids,
acini were pretreated with calcineurin inhibitors prior to TLCS
administration. We demonstrate that chymotrypsin is acti-
vated in the presence of TLCS and that this activation is abro-
gated in a calcineurin-dependent manner. Calcineurin inhibi-

FIGURE 4. TLCS-induced acinar cell injury is Ca2�-dependent. A and B, time
course for LDH leakage (A) and PI uptake (B) with or without BAPTA-AM pre-
treatment. n � 4. *, #, p � 0.05, relative to control and TLCS alone, respec-
tively. RFU, relative fluorescence units; Ctrl, control.

Calcineurin Mediates Bile Acid-induced Pancreatitis

574 JOURNAL OF BIOLOGICAL CHEMISTRY VOLUME 288 • NUMBER 1 • JANUARY 4, 2013



tors (FK506, CsA, and CiP) reduced activation of chymotrypsin
by 52, 87, and 61% down to the controls, respectively (Fig. 7B).
Previous studies have shown that, as in the case of the bile

acids, calcineurin inhibitors reduce intra-acinar zymogen acti-
vation that is induced by supramaximal concentrations of
caerulein and carbachol (40, 41). To confirm whether our find-
ings, that calcineurin mediates bile acid-induced injury and
NF-�B activation, are generalizable to the secretagogue hyper-

stimulation conditions, we demonstrate that pretreatmentwith
BAPTA-AM or FK506 reduced caerulein- and carbachol-in-
duced LDH leakage, propidium iodide uptake, and NF-�B acti-
vation (supplemental Fig. 1).
Pharmacologic or Genetic Inhibition of Calcineurin Attenu-

ates Bile Acid-induced Pancreatitis in Vivo—To examine the
clinical relevance of calcineurin activation in the intact animal,
we employed an in vivo model of bile acid infusion in which

FIGURE 5. TLCS-induced acinar cell injury is dependent upon calcineurin activation. A, acinar cells were infected with Ad-Mcip1 24 h prior to TLCS (500 �M)
administration. RFU, relative fluorescence units; Ctl, control. B–D, FK506 (10 �M) (B), CsA (1 �M) (C), or CiP (10 �M) (D) was administered at the stated time points
relative to the start of a 2-h TLCS (500 �M) treatment. LDH leakage (left) and PI uptake (right) were measured to assess cell injury. n � 3– 4. *, #, p � 0.05, relative
to control and TLCS alone, respectively.
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anesthetized mice received brief retrograde duct infusion of
either TLCS or TC. FK506 (1 mg/kg) was given 1 h prior to
TLCS infusion as well as at three time points after TLCS, thus
providing a cumulative dose of 4 mg/kg over a 24-h period (42)
(Fig. 8). FK506 reduced TLCS- and TC-induced histological
severity by 66 and 93%, respectively. To complement this phar-
macologic approach, we obtained mice deficient in the pre-
dominant calcineurin isoform A� (CnA��/�). We demon-
strate these mice also have reduced outcomes after bile acid
infusion pancreatitis using either TLCS or TC (Fig. 9). The in
vivo studies provide evidence for a clinically important role for
calcineurin in bile infusion pancreatitis.

DISCUSSION

The key findings of the present study are that bile acid expo-
sure causes a Ca2�-dependent activation of calcineurin and
that calcineurin inhibition using either pharmacologic cal-
cineurin inhibitors or overexpression of an endogenous cal-
cineurin inhibitor attenuates bile acid-induced acinar cell
injury and bile acid infusion pancreatitis. Calcineurin, or PP2B,
is a unique serine/threonine phosphatase among the family of
type 2 protein phosphatases because it is activated by Ca2� (31,
43). The enzyme complex consists of two subunits (CnA and
CnB) that form a heterodimer. CnA is the large catalytic sub-
unit that also contains the calmodulin binding domain and an
autoinhibitory domain, which is mimicked by the calcineurin
inhibitor CiP. CnB is the smaller regulatory subunit that con-

tains four Ca2� binding EF handmotifs. Thus, Ca2� appears to
activate calcineurin both by direct binding to CnB and indi-
rectly through calmodulin (34). However, the role of calmodu-
lin in propagating calcineurin-mediated injury signals in the
acinar cell is unclear because calmodulin may actually protect
against ethanol-induced intra-acinar protease activation (44).
There is also a study implicating an indirect mode of Ca2�-de-
pendent calcineurin activation through the proteolytic activa-
tion of calcineurin by the Ca2�-dependent proteases the cal-
pains (45).
Our findings that blockade of intracellular Ca2� reduced cal-

cineurin activation are in general agreement with previous
reports that sustained Ca2� signals are required to activate cal-
cineurin (22, 23). The sustained Ca2� signals observed with
pathological concentrations of Ca2�-activating agonists result
from Ca2� release (12, 25, 46), Ca2� store depletion, and the
subsequent opening of store operated Ca2� entry (SOCE)
channels (47–49).
In this study, we examined two Ca2�-dependent pathways

within the acinar cell that lead to acinar cell injury and pancre-
atitis: 1) intra-acinar protease activation (20, 39, 41, 50, 51)
AND 2) NF-�B nuclear translocation (21, 52). The two appear
to be independent of one another (21, 28), but we found that
calcineurin is a mediator of both of these pathways. Under-
standing themechanisms bywhich calcineurin targets protease
activation andNF-�B translocationwill form the basis of future

FIGURE 6. The other naturally occurring bile acids cause acinar cell injury through a Ca2� rise and calcineurin activation. A and B, pancreatic acinar cells
were stimulated with TC (10 mM), TCDC (1 mM), taurodeoxycholic acid (TDC) (1 mM), or bile acid mixture (BAM) (0.5 mg/ml) for 2 h with or without BAPTA-AM
(20 �M) (A) or the calcineurin inhibitors FK506 (10 �M), CsA (1 �M), or CiP (10 �M) (B). LDH leakage (left) and PI uptake (right) were measured to assess cell injury.
n � 4. *, #, p � 0.05, relative to control and bile acid alone, respectively. RFU, relative fluorescence units; Ctl, control.
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work. Another important consideration is whether localized
subcellular Ca2� elevations and subsequent calcineurin activa-
tionmediate these downstreameffects. An example in neuronal
cells is that calcineurin is anchored in a complex by protein
kinase A anchor protein 79 (AKAP79) to a target substrate, the
Ca(V)1.2 channel; compartmentalizedCa2� signals cause these
channels to become inactivated by calcineurin-mediated
dephosphorylation (53). Recently, a multitude of calcineurin
effectors, both transcriptional and nontranscriptional, have
been identified. These include not only proteins that target the
nucleus as transcriptional regulators (54) but also factors that
affect a host of functions including ribosomal biogenesis (55),
apoptotic (56), andmitochondrial pathways (57–59). The latter
is of particular interest because previous studies in both acinar
(14, 15) and ductal cells (60) suggest that bile acids impairmito-
chondrial function.
A recent publication by Awla et al. (61) has examined the

calcineurin target NFAT in pancreatitis. The authors demon-
strate using NFAT-luciferase-expressing transgenic mice that
acinar cells exhibit calcineurin activation. In our study, we pro-
vide functional data that acinar cell calcineurin mediates bile
acid-induced intra-acinar protease activation, NF-�B activa-
tion, and cell injury.

Awla et al. (61) examine late intrapancreatic protease activa-
tion, whereas our study examines early intra-acinar protease
activation. The two phenomena appear to be independent and
mediated by different factors (62–64). Awla et al. (61) use the
pharmacologic inhibitorCsA to demonstrate the importance of
calcineurin pathways. Here we use FK506, which, unlike CsA,
does not target cyclophilinD or themitochondrial permeability
transition pore. These off-target effects of CsA are also impli-
cated in pancreatitis (65).
The finding that FK506 markedly attenuates in vivo retro-

grade duct infusion pancreatitis with bile acids has important
clinical implications. It would be of interest to know whether
Ca2� modulators such as the already clinically available cal-
cineurin inhibitors could reduce the risk of developing pancre-
atitis in patients admitted with common bile duct stones, or
choledocholithiasis. Secondly, the intervention for a persistent
common bile duct stone is extraction by endoscopic retrograde
cholangiopancreatography (ERCP), which carries a 5–7% risk
of causing pancreatitis (66). Thus, these preclinical animal
models could be designed to examinewhether calcineurin inhi-
bition might reduce post-ERCP pancreatitis in the setting of

FIGURE 7. TLCS-induced NF-�B and chymotrypsinogen activation is
dependent upon calcineurin. A, pretreatment with BAPTA-AM or the cal-
cineurin inhibitors prevented NF-�B-luciferase activity. Phorbol 12-myristate
13-acetate (PMA) served as a positive control. RLU, relative luciferase units; Ctl,
control. B, acinar cells were pretreated with FK506 (10 �M), CsA (1 �M), or CiP
(10 �M) for 30 min prior to TLCS (500 �M) administration. Chymotrypsin activ-
ity was normalized to total amylase content. n � 3. *, #, p � 0.05, relative to
control and TLCS alone, respectively. RFU, relative fluorescence units.

FIGURE 8. Calcineurin inhibition attenuates intraductal bile acid infusion
pancreatitis. A, schema for in vivo calcineurin inhibition with FK506 (1
mg/kg) and pancreatitis induction using an intraductal infusion of TLCS (3
mM) or TC (37 mM). B, representative H&E sections from the pancreatic head. C
and D, overall severity score (left) and subscores (right). n � 6 animals per
group. *, #, p � 0.05 when compared with the sham and TLCS or TC alone,
respectively.
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choledocholithiasis, which is the most common indication for
ERCP.
Notably, FK506 alone induced a mild degree of pancreatic

injury. This trend, although not significant, was also observed
in the CnA��/� mice when compared with wild type mice. An
explanation for this is that calcineurin inhibition or deficiency
at base linemay prevent the homeostatic mechanisms that pre-
serve the normal architecture of the pancreatic parenchyma.
There are a few case reports suggesting a clinical association of
FK506 use with pancreatitis (67–71). However, there is consid-
erable disparity in the experimental literature. Some demon-
strate improvement of pancreatitis with FK506 (36, 72, 73),
whereas others show worsening of pancreatitis (74, 75) or no
effect (76). Thus, understanding the appropriate type, duration,
and dosing of calcineurin inhibitors in a preclinical setting will
be crucial in determining whether these drugs are helpful in
treating or preventing the onset of pancreatitis.
In summary, we demonstrate that bile acids caused a Ca2�-de-

pendent activation of acinar cell calcineurin and that calcineurin
inhibition attenuates acinar cell injury and in vivo pancreatitis due
to bile acids. The findings suggest that calcineurin inhibitors may
be an effective adjunctive therapy for biliary pancreatitis.
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