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Abstract

Networks are rarely completely observed and prediction of unobserved edges is an important problem, especially in disease
spread modeling where networks are used to represent the pattern of contacts. We focus on a partially observed cattle
movement network in the U.S. and present a method for scaling up to a full network based on Bayesian inference, with the
aim of informing epidemic disease spread models in the United States. The observed network is a 10% state stratified
sample of Interstate Certificates of Veterinary Inspection that are required for interstate movement; describing
approximately 20,000 movements from 47 of the contiguous states, with origins and destinations aggregated at the
county level. We address how to scale up the 10% sample and predict unobserved intrastate movements based on
observed movement distances. Edge prediction based on a distance kernel is not straightforward because the probability of
movement does not always decline monotonically with distance due to underlying industry infrastructure. Hence, we
propose a spatially explicit model where the probability of movement depends on distance, number of premises per county
and historical imports of animals. Our model performs well in recapturing overall metrics of the observed network at the
node level (U.S. counties), including degree centrality and betweenness; and performs better compared to randomized
networks. Kernel generated movement networks also recapture observed global network metrics, including network size,
transitivity, reciprocity, and assortativity better than randomized networks. In addition, predicted movements are similar to
observed when aggregated at the state level (a broader geographic level relevant for policy) and are concentrated around
states where key infrastructures, such as feedlots, are common. We conclude that the method generally performs well in
predicting both coarse geographical patterns and network structure and is a promising method to generate full networks
that incorporate the uncertainty of sampled and unobserved contacts.
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Introduction

Network analysis is an important technique for extracting

epidemiologically relevant information from complex systems. For

livestock diseases, animal movement networks have received

particular attention because they may serve as a proxy for contact

networks for disease spread [1–5]). While different diseases have

different pathways of transmission, the movement of infected

animals between livestock premises is a major risk factor for the

introduction of diseases to uninfected herds. Long distance

movements are particularly important because they can transmit

pathogens great distances from the index herd speeding spread

and increasing epidemic size [6]. The use of detailed animal

movement data in response to the 2001 Foot and Mouth disease

outbreak in the United Kingdom (UK) has spurred considerable

advances in the use of contact networks to characterize and predict

livestock disease outbreaks in the UK [7,8,4]. However, while

network models are powerful tools for informing disease spread

prediction, data collection may be cumbersome and a complete

representation of the network is often impossible to obtain. In

situations where the complete network is of interest (e.g. disease

spread modeling), some method of scaling up a partially observed

network is required. While we focus here on livestock networks,

similar problems exist in characterizing wildlife and human

contact networks [9–10].
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In this study we focus on the network of cattle movements in the

United States. While considered an important mechanism for

disease transmission, the extent of cattle movements in the U.S. is

not well characterized, making any surveillance, prediction and

control for animal diseases extremely challenging [11]. However,

recent work has addressed this deficiency using a sample of

Interstate Certificates of Veterinary Inspection (ICVIs), which are

required for most non-slaughter movements crossing state lines in

the U.S., to develop network models of national cattle shipments

(i.e., edges) between counties. The sampling of this network is

unique in that we are sampling individual movements that make

up weighted edges in the network and do not sample, nor have

knowledge about, individual nodes. Also, the sampling is

incomplete in two ways. First, observations of movements are

based on a 10% sample of ICVIs. Naively scaling up by assuming

that each observed edge proportionally represents 10% of actual

movements overestimates the number of strong edges (i.e. many

sampled movements or strongly weighted edge) and underesti-

mates the connectedness owing to weak edges (i.e. few movements)

that are not sampled; both presenting consequences for prediction

of outbreak dynamics because we are interested in spatially explicit

predictions over the complete network. Second, ICVIs are only

required for interstate movements (excluding slaughter), hence

movements between counties within states (intrastate) are not

reported within this data set. If using the network for epidemi-

ological modeling, the lack of intrastate movements will generate a

national network with holes in the structure that will underesti-

mate short distance movements and local disease spread. Finally,

modeling cattle movement is not straightforward because the

probability of movement is not simply a function of distance. The

spatial distribution of infrastructure (e.g., calf producers, feedlots,

markets, slaughter facilities) in the U.S. cattle industry creates a

source-sink dynamic that also must be addressed.

In this paper we present a novel Bayesian kernel approach to

address all three issues: (i) 10% sampling, (ii) sampling only

interstate movements, and (iii) source-sink dynamics in the U.S.

cattle industry. Our aim is to parameterize a spatially explicit

probabilistic model for individual movements that may be used for

prediction of the whole network structure. Therefore, performance

of the model is evaluated by comparing a set of network statistics

to the observed network (as given by the ICVI reports) as well as

randomized networks. As such, we are fitting the model at a low

level (i.e. individual movements) and subsequently evaluating the

model performance at a higher level (node-level and global

network properties). This paper is structured such that we first

introduce the data used for the analysis. We then introduce the

kernel and present how parameters are estimated in a Bayesian

framework using Markov Chain Monte Carlo (MCMC) simula-

tion. Finally, the model performance is evaluated by comparing

networks generated from the posterior predictive distribution of

the fitted kernel model with the observed data as well as with

randomized networks (Figure 1).

Materials and Methods

2.1 Data
This analysis uses three different data sets. ICVIs provide data

on interstate animal movement. Data from the National Agricul-

tural Statistics Service (NASS) describes the current distribution of

cattle premises, and a separate NASS survey provides historical

measures of cattle flows at the state level.

2.1.1 Interstate Certificate of Veterinary Inspection

sampling. ICVIs are an official document required for most

interstate cattle movement with the exception of animals going

directly to slaughter. In general, ICVIs list the origin and

destination addresses for the cattle shipment, number of cattle in

the shipment, purpose of shipment, and breed of cattle in the

shipment. ICVIs are generally stored as paper documents at the

individual states. Characterizing cattle movements requires

digitizing a large number of paper documents and sampling is

necessary to make data collection feasible. We requested that all

states send a 10% sample of their calendar year 2009 cattle ICVIs

that originated in their state by taking a systematic sample of every

tenth cattle ICVI. We specifically requested origin ICVIs to avoid

duplication because copies of ICVIs are maintained by both the

sending and receiving states.

We obtained calendar year 2009 ICVIs from 48 states, with the

exceptions being New Jersey (did not participate) and Alaska (no

ICVIs to report). We excluded Hawaii from the analysis because

their contact pattern with other parts of the U.S. is expected to

depend on different underlying processes. In general, we

successfully obtained a 10% systematic sample of 2009 export

ICVIs, but approximations of this sampling design were imple-

mented in Kentucky, Missouri and Vermont to accommodate

time and budget constraints.

We created a database of the ICVIs including: origin and

destination address; dates the animals were inspected, shipped,

and the ICVI was received at the state veterinarian’s office; the

purpose of the shipment; whether the shipment was beef or dairy

cattle; the number of animals; and the breeds, age, and gender

distributions of the cattle in the shipment. In all, this database

contains 19,170 interstate shipment records from 2433 counties.

We classified shipments as beef or dairy using shipment purpose

data on the ICVI. If the production type was not present on the

ICVI a classification tree analysis was used to classify the shipment

as beef or dairy (Buhnerkempe, unpublished). We aggregated all

address information for the origin and destination to the county-

level and focus on networks with county as the node and edges as

movements between counties, using the county centroids to

calculate distances (Figure 1).

2.1.2 Cattle premises. Our model adjusted the probability

of movements between counties by the number of premises as

reported by the most recent (2007) NASS census of U.S.

agriculture. We used data reporting the number of beef and dairy

cattle premises per county and define premises as a general term

for any type of operation where cattle are traded as a commodity

according to the NASS definition: any establishment from which

$1,000 or more of agricultural products were sold or would

normally be sold during the year (NASS: http://www.nass.usda.

gov/About_NASS/History_of_Ag_Statistics/index.asp). We used

the 2007 census data to describe the U.S. cattle industry because it

is the closest NASS census to the 2009 ICVI data. The census is

available for download at http://www.agcensus.usda.gov/

Publications/2007/Full_Report/index.asp.

2.1.3 Historical inflow of cattle by state. We also used

historical summaries of the number of cattle moved into each U.S.

state from other states (inflow) to incorporate national-scale cattle

flow patterns. We obtained interstate inflow data from 1988–2009

NASS reports of the total number of cattle imported into each

state. The inflows have no information on the states of origin.

Historical summaries are available at http://quickstats.nass.usda.

gov/.

2.2 Kernel Properties and Bayesian Analysis
Here, we describe a novel method based on a Bayesian kernel

approach presented in [12,13]. This approach provides an

appropriate way to scale up the 10% sample and allows inference

to intrastate movement. It also relates distance information from

Partially Observed Cattle Network
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the ICVI data to source-sink information contained in the NASS

census data on number of cattle premises by county and state level

historic inflow data. Because the number of cattle premises is

reported by county in the NASS census and we aggregate the

movement data to county, the model is described at the spatial

scale of counties (Figure 1). At the scale of the U.S. there is not

comprehensive data available on all types of cattle industry

infrastructure within counties. The NASS census reports several

types of premises, but excludes important premises types such as

markets and slaughter facilities. Therefore, we make the simple

assumption that the count of any type of premises is directly

related to the probability of interstate movements (section 2.2.1,

equation 2).

2.2.1 Model description. We are interested in the joint

probability of the total number of movements (N, all interstate plus

intrastate) and width (V) and shape (K) parameters of the kernel.

This joint distribution is based on data which contains origin o,

and destination county, d, of all observed movements as well as

location of all counties and the number of premises per county.

We want to incorporate parameter uncertainty and rely on

Bayesian inference in estimation of parameters N, V and K. The

decay in probability of movements with distance is expected to

vary between different areas of the U.S. and we therefore estimate

different kernel parameters for each state. We assume that the

same underlying processes drive interstate and intrastate move-

ments, such that we use the Bayesian inference of the distance

dependence to estimate movements regardless of state borders.

The likelihood is specified as,

P os,dsDNs,Vs,Ksð Þ~ P
k

i~1
P oi,di DVs,Ksð Þ

� �
P kDNs,Vs,Ksð Þ ð1Þ

where os and ds are the k number of observed origin and

destination counties for movements from state s and Ns is the

corresponding (unobserved) total number of movements. Param-

eters Vs and Ks are the state specific kernel width and shape,

respectively, as further discussed below. The model assumes that

the probability of an origin county is proportional to the number

of premises within the county and the probability of a destination

depends on distance from origin county, the number of premises

within the destination county and historical inflow of animals to a

state, s. We therefore define the attraction of county i based on

past inflow to be, n̂ni~nics, where ni is the number of premises in

county i (located in state s) and cs is the mean number of animals

from the historical inflow into state, s, per premises. The historical

inflow is reported as total number of cattle and to obtain

production type estimates, we assume that this is divided between

dairy and beef in proportional to the number of premises of each

type in the state.

Figure 1. Conceptual diagram of data, model, and validation.
doi:10.1371/journal.pone.0053432.g001
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We assume no biases in observing intrastate vs. interstate

movements and the probability of a movement from county v to

county d in our model is:

P v,dDVs,Ksð Þ~P vð ÞP dDVs,Ks,vð Þ

~
nvPE
l~1 nl

F Dv,d,Vs,Ksð Þn̂ndPC
j~1 F Dv,j ,Vs,Ks

� �
n̂nj

ð2Þ

where Dv,do is the distance between v and d based on county

centroids, F Dv,d,Vs,Ksð Þ, is the distance-dependent kernel model,

E is the number of counties in state, s, and C is the total number of

counties in the contiguous U.S. (excluding the origin county), i.e.

3108. Movements may also occur within the same county. This

has no effect on the network structure because it does not produce

a link between the nodes (counties). For epidemiological modeling

it may however be of interest and is included in the model, yet it

requires some special treatment and n̂nd is instead defined as

n̂nd~ nd{1ð Þcs (i.e. we are adjusting n̂nd to remove the possibility of

a movement having the same destination and origin premises

within the county) and Dv,v is defined as the mean distance

between randomly distributed points in a square of the area of

county v, which is approximately 0.52 times the square root of the

area.

To quantify the width and shape of the spatial kernel, we use

two-dimensional measures of variance and kurtosis, respectively,

as defined by [14,15]. We use a power exponential function to

describe the kernel as F Dv,d,Vs,Ksð Þ~e{ Dv,d=asð Þbs

where

parameters as and bs are given from Vs and Ks through [15],

Vs~a2
sC

4

bs

� ��
C

2

bs

� �

Ks~C
6

bs

� �
C

2

bs

� �,
C

4

bs

� �2
ð3Þ

in a continuous, two-dimensional system, the distribution is

normalized by 2pa2
s C 2=bsð Þ

�
bs. Here, we normalize by summa-

tion over all possible origin and destination counties as given by

the denominators in equation (2). In this implementation, Ks is of

less direct importance for both network properties [16] and

predictions for the rate of disease spread [17]. Yet we need to

include a kernel with a flexible shape due to possible interactions

in the estimation of the width. In this study, we are less interested

in the actual parameter values of Vs and Ks, but expressing the

model on these dimensions (rather than as and bs) facilitates prior

elicitation.

This distribution has some benefits in that it may take the form

of some well known distributions as special cases, such as the

normal distribution (bs = 2) negative exponential (bs = 1) and

uniform (bs??). Further, unlike some other commonly used

distributions such as the gamma or Weibull distribution, the power

exponential distribution (also sometimes denoted as the general-

ized normal distribution) does not approach either infinity or zero

as the distance approaches zero. The lower limit for kurtosis is 4/

3, which is the uniform distribution, and we also define

K̂Ks~Ks{4=3.

Through P v,dDVs,Ksð Þ we may assess the conditional proba-

bility of kDNs,Vs,Ksð Þ as

P kDNs,Vs,Ksð Þ~Binomia kDp̂p,Nsð Þ ð4Þ

for p̂p~pq, where q is the proportion of interstate movements

analyzed ( = 0.1 since we observed 10% of the interstate

movements) and

p~
XE

v~1

XC

d~1
zd,v,

for
zd,v~P d,vjVs,Ksð Þ if d is not in focal state

zd,v~0 if d is in focal state

( ð5Þ

i.e. we are summing up all the interstate probabilities. Further,

modeling of observed intrastate movements from state s is given by

P oi,di DVs,Ksð Þ~P d,vDVs,Ksð Þ=p: ð6Þ

In formulating a Bayesian model, we implement hierarchical

Bayesian modeling of V and K. This implementation improves the

parameter estimates for states with few movements by ‘‘borrowing

strength’’ [18] of kernel parameters from other states. The full

Bayesian model is written as

P N ,V,K Do,dð Þ!P o,d DN ,V ,Kð ÞP K DHKð Þ

P V DHVð ÞP HKð ÞP HVð ÞP Nð Þ
ð7Þ

P Nð Þ is the prior of N and P K DHKð Þ and P V DHVð Þ are

hierarchical priors with hyper parameters HK and HV , respec-

tively with hyper priors P HKð Þand P HVð Þ, respectively. Here we

use HV and HK to generally refer to the hierarchical prior

parameters in the model. In the next section we elaborate on the

choice of priors. Table 1 presents an overview of the main

parameters of the model.

2.2.2 Elicitation of Priors
In a Bayesian framework, we usually know something about the

system, and we incorporate this knowledge to construct a vague

prior. Because we implement a hierarchical Bayesian model for

the kernel parameters, we do not need to specify priors for

parameters of the different states separately. However, we need to

specify the hyperpriors.

We define the hierarchical prior for kurtosis P K DHKð Þ as a

normal distribution on the log scale of K̂K , with parameters mean

mlog K̂K and variance s2
log K̂K

. When electing the hyperprior for mlog K̂K ,

we first note that animal movement in the U.S. consists of both

local movements as well as long distance movements across the

country. Secondly, we note that animal movements in other

countries are typically highly leptokurtic [19] [12–13]. Hence, we

argue that there should be a low probability for generally

platykurtic distributions, i.e., mlog K̂Kv2 (the two-dimensional

Gaussian distribution has a kurtosis of two). Although we expect

a heavy tailed distribution, we further argue that the average

kurtosis is unlikely to be higher than 100 (as a comparison, the

exponential distribution has a kurtosis of 3.33). We want to include

some probability of values outside this range and specify the

hyperprior P mlog K̂K

� 	
as a normal distribution with approximately

95% of the probability density within this range. Because we are

describing the prior on the log scale of K̂K , P mlog K̂K

� 	
is defined by

its mean, Mlog K̂K~
log 100{4=3ð Þ{ log 2{4=3ð Þ

2
, and variance

S2
log K̂K

~
log 100{4=3ð Þ{ log 2{4=3ð Þ

4
(i.e., approximately 95%

Partially Observed Cattle Network
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of the central probability density of a normal distribution is found

within two standard deviations on either side of the mean.).

The conjugate prior for the variance of the normal distribution

is the scaled inverse chi square distribution. When specifying the

hyperprior of s2
log K̂K

we implement a routine suggested by [18]

where the parameters are given implicitly from our prior beliefs

about the most likely value (i.e. the mode, ms2

log K̂K

) and some upper

value, cs2

log K̂K

, below which we believe that 95% of the probability

density is located. To decide on our beliefs about the mode, we

start by addressing the range in which we expect to find 95% of

the kurtosis estimates of individual states. We argue that one order

of magnitude either way is reasonable. Hence, if x~emlog K̂K , we

expect to find 95% of K̂K within the range
x

10
vK̂Kiv10x. We are

expressing this hyperprior on the log scale of K̂K and specify the

mode of the hyperprior as ms2

log K̂K

~
log 10ð Þ

2

� �2

, again from the

notion that 95% of the central probability density lies within two

standard deviations on either side of the mean. We however want

to be vague about this prior belief and specify the upper limit cs2

log K̂K

by two orders of magnitude, i.e. cs2

log K̂K

~
log 100ð Þ

2

� �2

.

We express the hierarchical prior P V DHVð Þ as a normal

distribution on the log scale of V. Hence we have two

hyperparameters; mean (mlog V ) and variance (s2
log V ). We want a

generally vague prior and specify both P mlog V

� �
and P s2

log V

� 	
as

being proportional to one.

The prior for N, is chosen to be P Nið Þ!1= Niz1ð Þ, where we

use Niz1 because we include the possibility of zero movements.

This gives a lower bound for a large value. However, we give equal

probabilities in terms of order of magnitude. For example, the

prior probability of there being between 101 and 1000 movements

from one state is approximately the same as there being between

1001 and 10000. While this prior becomes somewhat unrealistic

for both very low and high values of Ni we argue that it is suitable

as a vague prior on the support of the parameters.

2.2.3 Markov Chain Monte Carlo Estimation
We analyzed beef and dairy movements separately using the

above framework. We separated the two due to the potentially

different movement drivers underlying the two production types.

Technically, the Bayesian analyses were performed with MCMC,

using Metropolis-Hastings updates for N, V and K and Gibbs

sampling for hyper parameters. We implemented joint updates of

each pair K̂Ki,Vi with Gaussian random walk proposals on the log

scale of the parameters (conveniently the same scale as the priors

are expressed on and we may disregard the determinant of the

transformation in the acceptance ratio). Because Ni is discrete, we

proposed candidate values from a Poisson distribution with mean

given by the current position. This is a non-symmetrical

distribution and we adjusted the acceptance ratio accordingly.

For each production type (beef and dairy), we ran ten replicates

of the MCMC simulation, each with 250000 iterations. For each

simulation, the first 50000 iterations were discarded, and the

chains were analyzed to ensure that they converged to the same

area of high posterior density. Our posterior was given by

combining the result of the ten chains. Inference based on MCMC

involves repeatedly drawing random numbers from the posterior

distribution. These are then used to parameterize the model when

generating networks. For further details on MCMC, see [20].

2.3 Posterior Predictive Distribution and Network
Analysis

There are several ways to validate models in a Bayesian

framework. Here, we employ a commonly used method where the

observed data and posterior predictive distribution are compared

by appropriate summary statistics [18]. Because our aim is to scale

up a partially observed network, we used relevant network

statistics for comparison between observed and predicted networks

as well as randomized networks (described in 2.4). We therefore

generated 1000 network replicates by parameterizing equation (7)

by random draws from the posterior distribution. Technically this

is done by a joint draw from the MCMC output. In order to

obtain comparable networks we took Ni=10 random draws of

interstate movements from each state. Our main interest lies in

comparison of the whole network structure and we therefore

combine the dairy and beef networks. We compared seven

network metrics: in degree, out degree, betweenness, diameter,

Table 1. Model parameters.

Description Source for estimation and comments

Estimated state level
parameters

Vs, Ks, Ns State (s) specific width (Vs) and shape (Ks) of spatial kernel
and total number of shipments (Ns).

Estimated jointly, conditional on all data as well as hierarchical
parameters for Vs and Ks and a fixed prior for Ns (see text). V, K and N
denotes parameters for all states.

Hierarchical parameters

s2
log K̂K

mlog V , s2
log V , mlog K̂K , Mean (mlog V , mlog K̂K ) and variance (s2

log V , s2
log K̂K

) for prior

distributions of V and K.

Estimated in the analysis and allows for borrowing strength between
state level parameters of Vs and Ks. Conditional on V and K as well as
hyper priors (see text).

Fixed parameters

cs Mean number of animals/year received from interstate
into state s.

Given by NASS data.

Dv,d Distance between counties v and d. Given by NASS data.

ni Number of farm in county i. Given by NASS data.

n̂nd Inflow attraction of county i n̂nd~ndcsCalculated as

doi:10.1371/journal.pone.0053432.t001

Partially Observed Cattle Network
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reciprocity, transitivity, and degree assortativity. At the node level,

in degree is the total number of shipments that a county, i,

receives; out degree is the total number of shipments that a county,

i, sends; and betweenness is the number of shortest paths between

all pairs of connected counties that pass through a county, i. At the

network level, diameter is the maximum number of edges taken to

reach any two nodes by the shortest path, reciprocity is the

proportion of edges for which there is another edge in the opposite

direction (i.e., node i to j and node j to i), transitivity is the

probability that any two neighbors of a node (i.e., connected by an

edge) are connected themselves (also known as the clustering

coefficient), and degree assortativity is the correlation of the total

degree (in+out degree) of the nodes at the ends of every edge.

Because the validation necessarily compares samples of inter-

state county-county links (observed and generated) we cannot

make comparisons about the presence or weight of individual

county links. However, we can make direct comparison between

links aggregated to the state-to-state level to evaluate the precision

of our model at a large geographic scale. In addition, the summary

of cattle movements at the state scale has been previously reported

[21]. We determined the similarity of the number of directed links

between states by using a mantel matrix-correlation test between

the observed ICVI state-to-state adjacency matrix and each of

1000 Ni/10 samples of generated networks and 1000 Ni/10

samples of randomized networks (see 2.4). We determined

significance of the correlation (null hypothesis, r = 0) with 999

random permutations of the observed ICVI adjacency matrix.

2.4 Randomized Network Construction and Comparison
In order to compare observed and kernel model generated data

to an appropriate null, we also generated randomized networks for

comparison. For each state we generated the same number of

outgoing movements as the number of observed movements (as

given by the ICVI data) for that state. For each movement, the

origin county was picked randomly within the state and the

destination was picked randomly from all other counties.

Results

3.1 Posterior Distributions
Our main interest does not lie in the parameter estimates

themselves, but rather in how well the method performs in

predicting the network structure. Hence, we focus on a general

description of the estimates, and marginal posteriors of parameters

are presented in the supplementary material. The estimated

movement kernels were generally leptokurtic with 93.9% of the

estimated marginal densities of kurtosis higher than two (i.e. the

kurtosis of a normal distribution) and 87.3% larger than 3.33 (i.e.

the kurtosis of an exponential distribution). The result however

revealed very diverse kurtosis estimates. For dairy movements, the

lowest median kurtosis was estimated for Massachusetts at 1.42

[1.33, 34.1] (number in brackets indicate 95% central credibility

interval of estimated kurtosis) and the highest for Texas at

1.286105 [4.526103, 1.656106]. The corresponding values for

beef movements were found for Mississippi with 1.41 [1.39, 1.46]

and Iowa with 7.036106 [2.146106, 6.776108] (Figure S1).

The lowest kernel variance for dairy movements was estimated

for Massachusetts with median 5.816104 [4.066104, 4.696105]

km2 and the highest for Texas with 1.646109 [1.07 6108,

3.9061010] km2. The corresponding values for beef movements

were found for Connecticut with 1.136104 [2.546103, 4.506105]

km2 and Kansas with 2.4061010 [1.546109, 1.8861011] km2

(Figure S2).

While the main focus of this study is not to compare the dairy

and beef industry, modeling the production types separately

illustrated heterogeneity in the shipment characteristics among

beef and dairy production. Using 95% probability as a level where

we consider having strong support for differences, five states

(Connecticut, Michigan, Minnesota, New Mexico and New York)

showed strong support that more dairy than beef movements

originated in that state, while 32 states showed strong support that

more beef than dairy movements originated in that state (Figure

S3). In terms of width and shape of the kernels, ten and four states

showed strong support for larger Vi and Ki, respectively, for dairy

movements whereas 12 and 14 states showed strong support for

larger Vi and Ki, respectively, for beef movements (Figure S1, S2).

The results for the total number of movements per state, N, are

more transparently presented by the ratio N/(10k), i.e. the ratio

between the total number of predicted intra-state movements and

the observed interstate movements multiplied by ten (because we

only observe 10% of interstate). Hence, a high value is interpreted

as a state having a large proportion of total movements stay within

the state. The lowest value for dairy movements was estimated for

Rhode Island at median 0.90 [0.26, 2.37] and the highest for

Minnesota 7.24 [5.73, 9.15]. The corresponding values for beef

movements were estimated for Mississippi with 1.00 [0.87, 1.12]

and Texas with 5.93[5.17, 6.77] (Figure S4).

3.2 Model Validation
3.2.1 Validation at network level. To validate the Bayesian

kernel model prediction against the data using network properties

we generated a comparable 10% sample of interstate movements

from full kernel generated networks (section 2.3). Overall,

generated networks from the Bayesian kernel model have network

statistics that are similar to the observed data and different from

randomized networks (Table 2). The sampling of the kernel

generated networks resulted in approximately equal numbers of

edges (mean [+/22 Std. Dev.] = 18596.4 [18326.9, 18865.9]) as

found in the observed 10% sample (18590), as well as similar

numbers of active nodes (counties) (mean [+/22 Std.

Dev.] = 2718.4 [2692.8, 2744.1] compared to the observed

number of active counties, 2407). The method to create

randomized networks fixed the number of edges equal to the

observed data and generated more active counties compared to

the observed and kernel generated networks (Table 2). Hence, the

overall size of the observed and kernel generated networks were

similar with 13% more active nodes in the kernel generated

networks (Table 2).The qualitative performance of the kernel

generated networks visually matched the observed interstate edges

(Figure 2). Quantitatively, the observed in- and out- degree

distribution fell within the generated degree-distributions over

much of the range with slight deviation between the observed and

generated distributions at the lowest and highest degree values

(Figure 3). Our kernel generated in-degree distribution overesti-

mated the probability of nodes with no observed in-edges

(Figure 3A; these are necessarily nodes with at least one out-edge)

and underestimated the large in-degrees at the tail of the

distribution (observed max. In degree = 396, mean generated

max in degree [+/22 Std. Dev.] = 185 [165.5, 204.4]). Converse-

ly, the kernel generated distributions underestimated the proba-

bility of nodes with no observed out-edges (Figure 3B; these are

necessarily nodes with at least one in-edge) and also underesti-

mated the large out-degrees (observed max. Out degree = 242,

mean generated max out degree [+/22 Std. Dev.] = 75.7 [62.8,

88.6]). The observed distribution of betweenness also matched the

generated betweenness distribution over most of the range, with

some underestimation of the upper tail (observed maximum
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betweenness = 673608, mean generated max. between-

ness = 320256 [152401, 488112], Figure 4). Kernel generated

and observed networks had very low transitivity and reciprocity

(Table 2). Finally, the mean diameter of the kernel generated

networks was 38% larger compared to the observed diameter,

although the observed diameter was only slightly below (0.3) the

lower bound of the 95% credible interval of the kernel generated

network (Table 2).

The kernel generated networks generally performed better than

their randomized counterparts. The in-degree and betweenness

distributions (Figures 3A and 4, respectively) of the kernel

estimates matched the observed distribution much better than

the randomized networks, and the match of the out-degree

distribution was marginally better (Figure 3B). All but one of our

kernel derived network statistics were closer to the observed

estimates (Table 2), with diameter as the only exception. The

difference in diameter is, however, of small magnitude and is likely

due to the randomized networks being based on exactly the same

number of movements as the observed, whereas this varies in the

kernel generated networks.

3.2.2 Validation at state level. The kernel generated

movements continued to match the ICVI data much better than

its randomized counterpart when comparing movements aggre-

gated to the state level. The kernel generated state-to-state level

movements had a high correlation with observed data (r range:

0.76–0.81) and consistently higher correlation than the random-

ized networks (r range: 0.28–0.31, Figure 5).

Discussion

Modeling processes that are influenced by livestock movement,

such as disease spread, requires confident estimates of how animal

shipment patterns connect the players in the system. Under-

sampling and incompletely observed data are common problems

facing data-driven efforts, even in the most well-characterized

systems, such as the United Kingdom [22]. Here, we presented a

Bayesian method that recreated the observed data (10% sample of

ICVIs) within a reasonable amount of uncertainty. The method

estimates the probability of movements and is a tool both to scale-

Figure 2. Visual comparison for three example states shows
that cattle movement networks generated from the Bayesian
distance kernel model (right panels) and cattle movements
observed from 2009 Interstate Certificates of Veterinary
Inspection (ICVI; left panels) are similar. The observed movements
are from a systematic 10% sample of ICVIs from each state and the
generated movements are 10% of interstate movements sampled from
a single realization out of 1000 kernel generated networks. Darker
shading represents the number of cattle premises per county.
doi:10.1371/journal.pone.0053432.g002

Figure 3. Comparison of the in-degree (A) and out-degree (B)
distributions of the cattle shipment networks generated from
the 1000 realizations of the Bayesian distance kernel model
(black lines), 1000 realizations of randomized networks (gray
lines), and cattle shipments observed from 2009 Interstate
Certificate of Veterinary Inspection records (red line).
doi:10.1371/journal.pone.0053432.g003
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up a partial dataset of network connections and to fill in regions

where no data are available. In this specific case we have used the

method to predict movements at the county level, addressing both

the lack of within state movements in the data and that only 10%

of between state movements were sampled. Filling in these two

types of data gaps for cattle movements in the United States are

the foundation for generating a U.S. national cattle movement

network. This generated network is novel in the method used to

create it and it is the first cattle movement network over such a

large region as the U.S., with nodes as specific as individual

counties. The method models individual movements, hence we

considered the data at a fine granularity, and performance of the

method was evaluated at a coarser granularity by analyzing

network properties (Figure 1).

4.1 Kernel Estimation of Inter-state Movements
Our sample of 10% of cattle shipments that crossed state lines

represents the best characterization of cattle movement across the

diverse industry and geographic extent of the U.S. cattle industry

to date. In order to scale up to the complete network, we

Figure 4. Comparison of the betweenness centrality scores of
the cattle shipment networks generated from the 1000
realizations of the Bayesian distance kernel model (black
lines), 1000 realizations of randomized networks (gray lines),
and cattle shipments observed from 2009 Interstate Certificate
of Veterinary Inspection records (red line). The betweenness
score is a count of the number of shortest paths between any two
nodes in a network (i,j), that pass through a node (k).
doi:10.1371/journal.pone.0053432.g004

Table 2. Observed global properties and summary node statistics of the Interstate Certificate of Veterinary Inspection network
compared to the mean of a 10% sample of inter-state movements from 1000 kernel generated networks and 1000 randomizations
of the observed data.

Statistic Observed value Kernel Mean Standard deviation Randomized Mean Standard deviation

Number of active nodes (counties) 2407 2718.44 12.8 3108 0.655

Diameter 12 16.56 1.79 11.22 0.704

Reciprocity 0.029 0.028 0.001 0.001 0.0002

Transitivity 0.049 0.035 0.001 0.005 0.0002

Mean In/Out Degree 7.72 6.84 0.06 6.19 0.001

Max In Degree 396 184.97 9.73 16.79 1.20

Max Out Degree 242 75.67 6.46 40.88 2.66

Mean Betweenness 5539 6185 226 10914 75.9

Max Betweenness 673608 320257 83928 98022 12406

Assortativity 0.204 0.190 0.016 20.294 0.016

doi:10.1371/journal.pone.0053432.t002

Figure 5. The state level observed Interstate Certificate of
Veterinary Inspection data and the Ni/10 sample of interstate
movements from 1000 kernel generated networks were highly
correlated and consistently more correlated to the observed
data than randomized networks. The heavy line in the boxplots
represents the median value, the box area represents the 25th and 75th

percentile of the data and the whiskers represent the maximum and
minimum values.
doi:10.1371/journal.pone.0053432.g005
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developed a Bayesian kernel model based on some simple

assumptions about the underlying process and fitted the model

to this incomplete data. The model was structured so that the

kernel parameters (width, Vs, and shape, Ks) varied for each state, s,

as well as for beef and dairy shipments. The fitted parameters

varied over states and production type (see supplement for

estimates of individual states), illustrating the importance of

specifying flexible state specific kernels that could model move-

ments in both major production types (i.e. beef and dairy) and over

the geographic extent of the U.S. cattle industry.

The kernel model generated a network of movements that was

comparable to the observed data. Notably, the kernel model was

fit to characteristics of individual cattle movements and county

characteristics and predicted both node-centric and global

network properties. Within the Bayesian framework, this also

allowed us to evaluate the accuracy and quantify the error in the

kernel model’s performance. Node level network centrality

distributions were comparable over most of the range of the

centrality values (in-degree & out-degree; Figure 3A–3B). The

observed degree centrality was highly aggregated with few

extremely high values and neither the kernel model nor the

randomized networks captured the level of observed aggregation

(Table 2). The kernel model’s ability to predict in-degree was

superior to randomized networks (Figure 3A) and matched the

observed consistently better, but with a smaller magnitude, when

predicting out-degree (Figure 3B). We believe the deviation at the

extreme centrality values reflect a process of preferential attach-

ment that is not captured in our model and hypothesize that such

an underlying process exists for parts of the U.S. cattle network.

This may cause a more aggregated distribution of shipment origins

and destinations; such that only a few counties attract or send

many shipments and most counties send or receive relatively few

shipments.

We postulate that we could not capture this process in our

model because it is structured by unobserved characteristics that

occur at a scale smaller than our nodal unit (county). For example,

the kernel model does not include any information about the types

of premises in a county and the presence of certain types of cattle

premises, such as livestock auctions or feedlots, may predispose a

county to attract more incoming edges or generate more outgoing

edges than expected based on a count of premises alone. A kernel

generated shipment will have a probability of terminating in a

county, i, at distance, d, following the kernel parameter estimation

and, because we are using a spatially explicit model, the

probability of the kernel model predicted shipment terminating

in neighboring counties to i (with comparable number of premises)

will be very similar. Hence, a county that receives many shipments

may have an under estimated in-degree because many nearby

counties receive shipments that, in the observed network, are

attracted to the single preferred county.

Comparing global properties of the kernel generated networks

of interstate movement also produced a similarly close match to

the observed network and out-performed randomized networks in

most cases. The kernel generated networks had low reciprocity

that closely matched the observed value (Table 2). Although the

kernel generated networks slightly under-estimated the transitivity,

the value is so low that the difference in the number of connected

triads from the generated networks would have very little influence

on processes such as disease spread [23]. We think that the smaller

observed diameter and greater network size (number of counties)

may also be a result of the lack of a preferential attachment

process, with low degree nodes connecting to each other rather

than to highly central nodes. This deviation also highlights the

potential importance of a few very important locations in the

network. Even though the kernel generated networks matched

most of the distribution of observed betweenness centrality values,

the observed network has a few much larger extreme values. We

hypothesize that the network diameter is increased by not

including such high-betweenness nodes from the kernel model;

effectively allowing more nodes to develop with intermediate

centralities instead of few nodes with very high centralities.

Investigating the mechanisms that predict high-centrality at the

node level, such as the presence and number of specific premises

types, will be key to improving methods that fill in unobserved and

under-sampled networks, as well as yield key insights into the

economic and agricultural processes that drive the movement of

cattle.

The deviation between the kernel generated and observed

networks found at low degrees (i.e. counties that send and do not

receive or vice versa) is unlikely to have much impact if the kernel

generated networks are used for disease transmission modeling

because these nodes are peripheral to the network. Both the kernel

generated and observed networks had neutral to positive degree

assortativity, meaning that the high degree centrality nodes are

also the high-betweenness nodes [24]. The kernel generated

networks captured most of the betweenness centrality distribution

well (Figure 3), excluding the few extreme highly central nodes

(Table 2). This suggests that the distribution of the most important

network characteristics at the node level were maintained by the

kernel model.

At coarse spatial scales, geographic patterns generated by the

kernel model were more similar to the ICVI sample than those

generated by randomization (Figure 5). Approximately 80% of the

links, aggregated at the state-to-state level, generated by the kernel

method were identical to the observed ICVI links, with this

similarity representing a conservative estimate due to differences in

sampling interstate movements for weakly connected states.

Importantly, the kernel appears to capture the mass of movements

primarily to central states (Figure 3), as is expected from the

centralized feedlot infrastructure in the U.S. Thus, the spatially

explicit kernel model performed well when predicting destinations

at a coarse geographical scale.

4.2 Uncertainties, Limitations and the Benefits of the
Kernel Approach

The aim of the kernel model is to describe a complex process by

a set of parameters that captures essential aspects of the observed

contact structure. By doing this within a Bayesian framework, we

acknowledge the importance of uncertainty in these parameters

and include this when predicting from the model. Future contact

patterns may then be predicted based on the assumptions of

similar underlying processes. However, as with any data-driven

modeling, there are several limitations imposed by the data.

Foremost, the data represents a one-year snapshot of a large and

fluid industry. We are confident in our ability to explain patterns

from 2009, but if there are large scale differences in the contact

pattern between years, we might do less well in predicting cattle

movement in other (future) years. However, we are encouraged

because a comparison of the observed 2009 ICVI data to a coarse

grain analysis of interstate cattle movement from 2001 showed

that the 2009 ICVI network captured similar patterns of coarse

nation-wide animal flow [21]. An additional caveat associated with

a single snapshot of data is that it averages over within-year

variation. A next step in improving this model is to incorporate

information about the seasonality of cattle movement patterns

and, by using a Bayesian approach, the network reconstruction

can be easily improved with additional data.
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An additional assumption is that cattle movements are not

influenced by state boundaries, such that the total number of

movements (hence, including intrastate movements) may be

estimated jointly with the width and shape of the kernel

parameterized by interstate movements. This is a difficult

assumption to evaluate because a comprehensive measure of

cattle movements within states is challenging to obtain. We

therefore have to consider that this assumption cannot currently

be verified. To address this issue in modeling the spread of

infectious disease, any disease-spread model should include

sensitivity analysis to address the uncertainty in predicted

intrastate movements.

While the estimated network statistics are generally similar to

the observed, we have highlighted some potentially important

deviations and assumptions that can be used to guide future

developments of the kernel approach. The most apparent

differences relate to the very high aggregation in network

centrality, represented by a few very highly connected nodes that

the kernel model fails to reproduce. This is likely to be a result of

more complex production structures, where premises of some

types have particularly high probability of contact. This may be an

important feature for more realistic modeling [25] and we suggest

that further developments of the model should include additional

factors that are correlated with aggregating cattle movements. We

believe that this should ideally be done by identifying node

characteristics such as the presence of markets and other

infrastructure that play key, but unquantified, roles in aggregating

the cattle industry. Future versions of the kernel approach should

seek to explicitly model movements to and from such premises.

4.3 Impacts for Disease Modeling
The ultimate goal in developing a model that can address

under-sampled and missing data is to use the model predictions of

cattle movement as a basis for disease-spread models. Our

technique extends previous approaches to address sampling of

network data by taking a unique focus on a characteristic of

sampled edges, without having to sample how node characteristics

are involved in the network. Previous approaches to evaluate the

effect of sampling network data has relied on knowledge of the

characteristics of nodes to fill-in missing edges [26] or evaluate bias

based on node sampling. Because our model is based on a

characteristic of individual edges (distance of transports), our

spatially explicit approach avoided issues that arise from biased

sampling of nodes [26] and was able to tractably predict edge

weights when the missing data was structurally heterogeneous (i.e.

using interstate transports to predict intrastate transports). Also, by

using a Bayesian approach to predict movements for disease

simulations, a range of likely outcomes can be evaluated because

the kernel is a probabilistic description of the system. Further, one

may include the uncertainty in the parameters which are

preserved and also address the possible range of networks that

the data infer.

4.4 Conclusions
The ultimate goal in developing a model that can address

under-sampled and missing data is to use the model predictions of

cattle movement as a basis for disease-spread models. Previous

techniques have been concerned with under sampling and are

therefore conservative with regard to the network structure [26].

Such approach may be suitable for networks without systematic

bias in the pattern of missing links or strong spatial component.

Yet, for this system, a spatially explicit approach is required. We

also argue that the Bayesian approach is particularly suitable for

prediction because it is straight forward to incorporate uncertainly

in the sampling.

Supporting Information

Figure S1 Marginal posterior estimates of K (measur-
ing kernel shape) by state and production type. Circles

indicate median values and errorbars indicate upper and lower

bounds of 95% central credibility interval.

(TIFF)

Figure S2 Marginal posterior estimates of V (measuring
kernel width) by state and production type. Circles

indicate median values and errorbars indicate upper and lower

bounds of 95% central credibility interval.

(TIFF)

Figure S3 Marginal posterior estimates of N (total
number of movements) by state and production type.
Circles indicate median values and errorbars indicate upper and

lower bounds of 95% central credibility interval.

(TIFF)

Figure S4 Marginal posterior estimates of N (total
number of movements) divided by 10k (i.e. number of
movements in the 10% sample multiplied by ten) by
state and production type. Circles indicate median values and

errorbars indicate upper and lower bounds of 95% central

credibility interval.

(TIFF)
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