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Magnetic nanoparticles are useful in many medical applications because they interact with biology

on a cellular level thus allowing microenvironmental investigation. An enhanced understanding of

the dynamics of magnetic particles may lead to advances in imaging directly in magnetic particle

imaging or through enhanced MRI contrast and is essential for nanoparticle sensing as in magnetic

spectroscopy of Brownian motion. Moreover, therapeutic techniques like hyperthermia require

information about particle dynamics for effective, safe, and reliable use in the clinic. To that end,

we have developed and validated a stochastic dynamical model of rotating Brownian nanoparticles

from a Langevin equation approach. With no field, the relaxation time toward equilibrium matches

Einstein’s model of Brownian motion. In a static field, the equilibrium magnetization agrees with

the Langevin function. For high frequency or low amplitude driving fields, behavior characteristic

of the linearized Debye approximation is reproduced. In a higher field regime where magnetic

saturation occurs, the magnetization and its harmonics compare well with the effective field model.

On another level, the model has been benchmarked against experimental results, successfully

demonstrating that harmonics of the magnetization carry enough information to infer

environmental parameters like viscosity and temperature. VC 2012 American Institute of Physics.

[http://dx.doi.org/10.1063/1.4770322]

I. INTRODUCTION TO BROWNIAN NANOPARTICLES

There is a wide range of possible uses for magnetic

nanoparticles (MNPs) in medical applications. Novel modal-

ities image particles themselves as in magnetic particle

imaging (MPI)1 and particles are also used as contrast agents

in conventional magnetic resonance imaging.2 Magnetic

spectroscopy of Brownian motion (MSB) uses particle dy-

namics to gather information about the microscopic environ-

ments the particles inhabit.3 A therapeutic method called

hyperthermia damages unwanted cells (e.g., in cancer treat-

ment) by depositing energy from particles that are unable to

rotate in time with oscillating fields due to viscous drag or

anisotropic energy barriers.4 In each of these techniques, it is

necessary to understand the rotational dynamics of the par-

ticles in magnetic fields. Furthermore, simulation studies can

be used by practitioners to choose ideal nanoparticle condi-

tions and satisfy their specific needs.2

In this work, we examine Brownian rotation where par-

ticles physically rotate and experience viscous drag when

placed in an oscillating field. The physics of Brownian rota-

tion is governed by the average time it takes a particle to

relax to an equilibrium value given its surroundings. The

Brownian time constant sB is based accordingly on the vis-

cosity g and temperature T of the suspending fluid, the

hydrodynamic particle volume V, and Boltzmann’s constant

kB
5,6

sB ¼
3gV

kBT
: (1)

Brownian rotation is the dominant physical process when the

particles are thermally blocked. This means that the energy

barrier for internal magnetic moment relaxation is greater

than the thermal energy of the system. If the particle is not

thermally blocked, the electronic spins within single mag-

netic domains can rotate in unison, switching the magnetiza-

tion of the particle. This spin rearrangement is referred to as

N�eel relaxation, and as described in Ref. 5 has a time con-

stant of sN ¼ s0expðKVc=kBTÞ where K is the magnetic ani-

sotropy constant, Vc the particle core volume, and s0 the

N�eel attempt time characteristic of the material. Therefore, if

a measurement is taken on a scale shorter than the relaxation

time, no N�eel spin flips are expected on average.

It is important to note also that both relaxation processes

occur without an applied field as the probabilities of random

relaxation increase with heightened thermal activity. In prac-

tice, because the particle volume is a defining element of the

blocking energy, the two regimes are often separated by the

size of the particles. Therefore, when we consider larger

100 nm diameter particles like those used in magnetic spec-

troscopy we are confident the dominant mechanism of relax-

ation is Brownian.

II. STOCHASTIC MODELING FROM A BALANCE OF
TORQUES

If we consider a dilute sample of MNPs, we can imagine

each as a separate isotropic dipole with a single magnetiza-

tion direction determined by an internal crystalline proper-

ties. In a vacuum, the magnetic torque on such a dipole is

expressed as the cross product between its magnetic moment

and the field, T ¼ m� B. The magnetic moment can be

found from the material saturation magnetization multiplied

by the magnetic core volume MsVcore. Nanoparticles are
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commonly dispersed in a fluid so we must account for vis-

cous drag during rotation. To first approximation, this torque

is proportional to the angular velocity of the particle with

magnitude given by the Stokes-Einstein relation for small

Reynold’s number particles.6 Written, the torque is

T ¼ �6gVX, with X the angular velocity, V the hydrody-

namic volume of the particle, and g the fluid’s viscosity.

At the nanoscale, we must also consider the powerful

influence of thermal effects caused by random collisions of

nanoparticles with the minute molecules of the fluid. If we

assume that the time between such interactions is much

shorter than the reaction time of the particles, we are free to

consider the statistical fluctuations Markovian—uncorrelated

spatially or temporally. Accordingly, we also implement a

white noise force N in our model.7 White noise is character-

ized theoretically by a flat power spectrum in frequency so

that in Fourier space the behavior is delta autocorrelated in

time and space with zero mean value. Explicitly,

hN ðtÞi ¼ 0; hN iðtÞN jðt0Þi ¼ 2Ddijdðt� t0Þ: (2)

Thus the expectation value of our random force at any

time is zero, and no previous force affects the subsequent

steps. The Einstein-Smoluchowski diffusion constant D for

spherical rotations depends on both the thermal energy as

well as the viscous drag D ¼ 6kBTgV. This may be deter-

mined from the fluctuation dissipation theorem or the associ-

ated Fokker-Planck equation for the dynamics.8 We now

have the complete balance of torques

T ¼ m� B� 6gVXþ
ffiffiffiffiffiffi
2D
p

N : (3)

The acceleration term proportional to the moment of

inertia can be ignored because we have already specified a

low Reynolds number for the MNPs. This means that the

frictional drag forces are sufficiently intense as to prevent in-

ertial rotation. With this assumption, we can simplify consid-

erably to a first order differential equation

X ¼ 1

6gV
ðm� Bþ

ffiffiffiffiffiffi
2D
p

NÞ: (4)

We can further clarify the expression by noting that the

magnetic moment vector will experience a tangential rate

change determined by the perpendicular component of the

angular velocity of the moment, viz., dm=dt ¼ X�m.9

Using this in Eq. (4), we obtain the full stochastic Langevin

equation governing rotational dynamics of a magnetic

Brownian particle suspended in fluid and placed in a mag-

netic field10,11

dm

dt
¼ 1

6gV
ðm� Bþ

ffiffiffiffiffiffi
2D
p

NÞ �m: (5)

We chose to make no further assumptions, instead

resorting to stochastic numerical analysis. The construction

of the stochastic model is described below. Once prepared,

we embarked on a series of simulations in order to bench-

mark against theories in various physically pertinent

regimes. This determines the strengths and weaknesses of

each analytical model, from the static Langevin function

derived from Boltzmann statistics,12 to the weak field Debye

model,13,14 and lastly the low frequency effective field

model.15

III. OTHER APPROACHES TO MODELING MNPS

Currently there is no closed form solution to the stochas-

tic Langevin equation, yet insight can often be teased from

the rotational diffusion equation, sometimes also referred to

as the Fokker-Planck equation. This approach introduces a

distribution function for nanoparticle magnetization that car-

ries all the associated probability moments. In contrast, the

stochastic method has a more transparent differential equa-

tion, but requires solving for all the moments separately

through repeated trials. As in Felderhof–Jones paper15 the

orientation of a nanoparticle is presumed to satisfy the

Einstein-Smoluchowski equation for the distribution func-

tion f ðm; tÞ, where the azimuthal symmetry of the dipole

potential energy U ¼ �m � B results in a simplified relation

that is only a function of the polar angle f ðh; tÞ

@f

@t
¼ D

1

sin h
@

@h
sin h

@f

@h
þ EðtÞsin2 hf

� �� �
: (6)

The diffusion constant D is the same as the stochastic

approach above. The variable EðtÞ ¼ mBsinðxtÞ=kBT is a ra-

tio of magnetic to thermal energy with a perfect sinusoidoial

field. Equation (6) could be used to examine the exact distri-

bution function over magnetic moment angles but has not

admitted an analytical solution.

In 1929, Debye developed a first order approximation

for small driving fields that neglects non-linear behavior, and

for our purposes is particularly limited to cases with no mag-

netic saturation.13 Linear response theory as used in Debye’s

method leads to a susceptibility that is a combination of real

(in phase) and complex (out of phase) components

v ¼ v0 þ iv00 (7)

so that the magnetization parallel to the driving field can be

expressed in terms of the Brownian relaxation time (Eq. (1)),

an approximation in and of itself combining multiple relaxa-

tion mechanisms into one time constant. The Debye magnet-

ization along the direction of the applied field is thus

expressed

MðtÞ ¼ M0

1þ ðxsBÞ2
ðcos xtþ xsB sin xtÞ: (8)

Both perturbative methods16 and a series expansion in

Legendre polynomials17 have been used to develop a more

complete solution to Eq. (6). A particularly useful result, the

so called effective field model, assumes that the frequency of

oscillation is low enough so that the equilibrium distribution

remains Maxwellian feq / expð�U=kBTÞ. In low frequency

regimes, the quasi-static formulation does produce accurate

nonlinear dynamics for the MNP magnetization
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dMðtÞ
dt
¼ � 2MðtÞ

sB
1� EðtÞ

aeðtÞ

� �
; (9)

where again sB is the Brownian relaxation time (Eq. (1)),

and at any moment in time, aeðtÞ ¼ mB=kBT is the argument

in the Langevin function

LðaÞ ¼ coth a� 1

a
; (10)

changing in time but not necessarily equal to the perfectly si-

nusoidal variation E(t) from Eq. (6). This slight difference

encodes the non-linearity into the magnetization to first

approximation. In practice, the model is used to find the mag-

netization in the direction of the applied field by iterating the

differential equation (9) while at each time step inverting the

Langevin function to find the proper effective field ae.

Aside from the two dynamical models we have seen, the

Langevin function itself provides a benchmark for the mag-

netization Meq ¼ M0 LðaÞ in the static field case, provided

the system is allowed to reach equilibrium. The three models

presented will be compared to our stochastic model later in

the work and the strengths and weaknesses of each will be

discussed.

IV. NUMERICAL METHODS

To simulate the particle dynamics, we developed a

Monte-Carlo scheme for MNPs in various fields and environ-

mental conditions. To do so, the numerical recipe below (Eq.

(11)) was implemented to solve the stochastic differential

equation (5) iteratively. Because at root we must admit that

we are approximating some colored noise process as a white

noise process, we take recourse to the Stratanovich interpre-

tation of stochastic integration. The transformation also has

practical benefits because the Stratanovich calculus preserves

the rules of ordinary differential calculus (i.e., the chain

rule).18 A fictitious drift term arises during the transforma-

tion from the It�o calculus and hence we can employ a sto-

chastic numerical integration scheme which is transparently

analogous to common methods. The simplest option in the

stochastic realm, the Euler-Marayuma scheme (see, for

example, Ref. 19, Chap. 7) is sufficient because the slightly

increased accuracy achieved through higher order methods is

outweighed by longer computation times. We interpret the

white noise force accordingly as a Wiener process dW, the

derivative of a Markov process and also uncorrelated in

varying space or time. It can be approximated numerically as

a Gaussian distribution scaled by
ffiffiffiffiffi
Dt
p

.19 This results in the

numerical algorithm

mþ Dm ¼ m

6gV
ðm� B�m� 2kBTmÞDt

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kBT

6gV
Dt

s
W�m; (11)

where m is the magnetic moment magnitude and W is a vec-

tor of random numbers with zero mean and unit standard

deviation in each Cartesian direction. At this level of analy-

sis, single particle trajectories are practically meaningless.

The quantities of interest are instead statistical moments, of-

ten requiring thousands to millions of samples. To examine

equilibrium magnetization, simulation lengths were multi-

ples of theoretical time constants. For simulations using

oscillating fields, equilibrium dynamics were determined by

converging similarity between periods. The standard devia-

tion between a cycle and its predecessor divided by the am-

plitude of oscillation was used a metric for convergence.

Cycles were repeated until this value was less than the

threshold of 1%. The constant numerical parameters were

chosen and varied around those typical of MSB experiments.

The mass magnetization was taken from a nanoparticle sup-

plier (Micromod) data sheet as 76 emu/g for 100 nm diameter

particles. The particles are actually made up of many crystal

domains, but are treated as though the bulk properties mimic

the component properties and density is assumed constant so

that the total magnetic moment can be written in its more

common units of joule/tesla. The viscosity of the solution is

assumed to be �1cP, near that of water at room temperature

(293 K). We pick realistic properties in order to see the cor-

rect physics in each regime of interest and this aids in the

transition to quantitative comparison with experiments.

V. MODEL BENCHMARKING

In this section, we verify that the model predicts well

known physical results including (a) the static field Langevin

function, (b) the high-frequency, low-amplitude Debye

model, and (c) the effective field model. The first benchmark

is that with no applied field, the relaxation to equilibrium is

on a time scale determined by Einstein’s formulation of

Brownian motion (Eq. (1)). If a sample of particles is pre-

pared to align in some direction but experience no external

force, their average magnetization quickly decays to zero.

By fitting to the normalized data an exponential decay of the

form M ¼ e�t=s, we obtain the relaxation time. Increasing

the viscosity intuitively increases the time constant. Fig. 1

FIG. 1. Two relaxation curves with associated relaxation times found from

exponential fits of the stochastic data. The expected relaxation times are

given by Einstein’s equation for Brownian relaxation to be 379.42 ls and

569.13 ls, respectively, within nanoseconds of the simulated data. The simu-

lations used Eq. (11) at two viscosities. 106 particles were averaged begin-

ning all in the z-direction, with no magnetic field.
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shows that the stochastic model agrees with Einstein’s theory

with nanosecond precision. It should be noted however that

as the viscosity is decreased, and particularly at the limit

where g! 0, Einstein’s model becomes unphysical and the

stochastic model predicts longer relaxation times.

To test the model’s behavior in a static field, we begin

with a sample of particles initially in the x-direction, and

employ a static field in the z-direction. The magnetization is

allowed to evolve, and the value after five time constants is

recorded. This gives a good estimate of the equilibrium mag-

netization and agrees with Langevin’s theory as expected.

Raising the viscosity does not change the outcome of the

magnetization value, only delaying or expediting equilib-

rium. Increasing the temperature allows for more thermal

motion, and therefore lessens the total alignment with the

field effectively decreasing the final magnetization value.

The data are depicted in Fig. 2.

Many models of MNPs benchmark against the equilib-

rium and static case, but we have extended ours to oscillating

fields in order to corroborate analytic approximations.

Here, we begin by considering an oscillating field of the

form B ¼ B0sin xt applied with high frequency (x=2p
¼ 20 kHz). In this case, the magnetization does not saturate

and follows the behavior of the Debye model (see Fig. 3).

However, in a regime where particles come closer to sat-

uration, the magnetization obeys different dynamics, includ-

ing much more severe hysteretic effects, so that a simple

linearization method like Debye’s can no longer be applied.

Described previously, the effective field model (Eq. (9)) uses

an adaptive method to solve for the effective thermal field

from the inverse Langevin function and includes relaxation

effects. Simulations demonstrate equivalence (Fig. 4) to the

effective field model. Yet, the stochastic model extends past

the range of the effective field model, which is only valid for

low frequencies. Furthermore, our model replicates the cor-

rect behavior of solely odd harmonics from symmetric dis-

tortion. This is an important result because magnetization

harmonics are used exclusively in practical imaging and

sensing.20,21

FIG. 2. The stochastic model (Eq. (11), data points) is compared to the Lan-

gevin function (Eq. (10), solid lines) at various temperatures. The particles

are initially aligned in the x-direction and the field points in the z-direction.

104 particles were averaged, few enough to demonstrate that as temperature

increases, the disorder in the system becomes much more prevalent.

FIG. 3. In the low-field, high-frequency regime, the stochastic model

(Eq. (11)) agrees with the Debye model (Eq. (8)). Shown is the 20th cycle

using 105 particles in a 20 mT, 2 MHz field. In this simulation, the driving

field is a cosine so the phase lag can be seen. The almost complete out of

phase nature of the curve can be understood by examining the Debye model.

Given a relaxation time of hundreds of microseconds and a frequency of

20 kHz, the out of phase component is an order of magnitude larger than the

in phase signal.

FIG. 4. The Monte-Carlo code (Eq. (11)) matches the effective field model

magnetization (Eq. (9)) and harmonic structure with a 20 mT applied field of

frequency 1 kHz. The temperature is 300 K and 105 averages are used for a

smooth curve. Note that the applied field is sinusoidal and the phase-lag is

evident.
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VI. EXPERIMENTAL COMPARISON AND VALIDATION

Magnetic particle spectroscopy can be used to discover

information about the environment surrounding nanopar-

ticles. One of the first experiments to do this employed

MNPs as microscopic thermometers.22 To do so, a scaling

relationship between the temperature and the magnetic field

in the argument of the Langevin function was exploited. The

method makes use of the low frequency, adiabatic limit

assumption—that the system is assumed to always be in

equilibrium and thus governed by the Langevin function.

Then if a control curve is developed for a known tempera-

ture, the scaling factor necessary to map subsequent curves

onto the control can be used to quantify temperature. Note

that ratios of higher harmonics are used for experimental rea-

sons to avoid dependence on particle number or systematic

receive coil errors. Because the simulations have validated

the Langevin function explicitly, we should not be too sur-

prised to find that the scaling of field and temperature in the

Langevin argument is consistent when attempted at low

frequencies. Yet, that it works for the harmonic ratios (see

Fig. 5) is an important confirmation. In the simulations, we

have neglected any temperature dependence on viscosity or

magnetic moment, and the adiabatic approximation fails

above a few hundred cycles per second, at which point the

harmonics do not carry enough information to distinguish

between temperatures.

Results also agree with experiments that determine

nanoparticle relaxation time due to viscosity shifts.23 Taking

ratios of harmonics at various frequencies, there is a charac-

teristic shift in time which compensates for the increasing

relaxation time from an increased viscosity. By scaling the

frequency range by the appropriate amount, the data can be

shifted back onto a control curve. Then by measuring the

relaxation time through the scaling value, obtained with a

least-squares regression, the nanoparticles can be used as vis-

cometer. The simulations are able to repeat the experimental

method (Fig. 6). When scaled by viscosity, the curves align.

Furthermore, by changing the specific values of the nanopar-

ticles size and magnetic moment slightly from the values

given by the manufacturer, the actual experimental data from

Rauwerdink’s paper can be reproduced.

VII. CONCLUSIONS

A Langevin-type stochastic differential equation for the

magnetization of non-interacting isotropic MNPs was devel-

oped and a numerical integration scheme was applied to

model the particle dynamics in various types of magnetic

fields. The simulations successfully modeled the approach to

equilibrium (through the classical Einstein relaxation time)

and the eventual state of thermal equilibrium was validated

by the Langevin function at various temperatures. In oscillat-

ing fields, our approach agreed with other standard analytical

approximations, surpassing the ability of both by achieving

accuracy through a wide frequency range. The agreement

included the magnetization shape as well as its harmonic

content in a distorted regime. Finally, it was shown that the

model reproduces two experimental results from previous

work on MSB sensing: That the relaxation time shift due to

viscosity changes can be compensated for by a scaling in fre-

quency so that nanoparticle solution viscosity can be meas-

ured, and that a similar method can be used in the adiabatic

limit to measure temperature by scaling field strength. One

of the large benefits of using stochastic analysis is the trans-

parency of the differential equation. In the future, we hope to

FIG. 5. A scaling argument can be made for temperature estimation of nano-

particles as in Ref. 22. By sweeping through field strengths and calculating

the harmonic ratio for different temperatures, we show that multiplying the

magnetic field values by the ratio of the control to new temperature scales the

data back onto the control curve. Thus for an unknown temperature curve, a

least squares fit can determine the scaling constant and the temperature can be

recovered. In this figure, a field of 200 Hz was applied at typical experimental

values of 7.5-15 mT. The two curves used 104 particles at known temperatures

of 293 K and 303 K, respectively, so in this case the scaling factor is 0.96.

FIG. 6. A depiction of three frequency sweeps taking the harmonic ratio of

the fifth to third harmonic as in Ref. 23. The higher viscosity appears lower

than the original, but can be scaled horizontally (in frequency) to align with

the old curve. This compensates for viscous effects that are characterized by

the relaxation time. The 1.5 cP curve is shown explicitly before and after

shift, while the 2 cP is only showed postscaling, to justify that the three

curves all do align. The simulations used a 20 mT, 1 kHz field, 300 K, and

four runs of 104 particles each.
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use this to investigate further physics including the potential

of decoupling temperature and viscosity effects into separate

relaxation times.
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