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Neurobiology of Disease

Apolipoprotein E, Not Fibrillar 3-Amyloid, Reduces Cerebral
Glucose Metabolism in Normal Aging

William J. Jagust'> and Susan M. Landau,' For the Alzheimer’s Disease Neuroimaging Initiative
"Helen Wills Neuroscience Institute, University of California at Berkeley, Berkeley, California 94720, and 2Life Sciences Division, Lawrence Berkeley
National Laboratory, Berkeley California 94720

The &4 allele of the polymorphic apolipoprotein E gene is associated with increased risk of Alzheimer’s disease (AD), deposition of
B-amyloid (AB), and reduction in cerebral glucose metabolism in asymptomatic people. Although ApoE4 may exert an effect on AD risk
through amyloidogenic pathways, whether its effect on glucose metabolism is related to A is unknown. To answer this question, we
examined data from 175 cognitively normal older people (mean age, 77; 87 men, 88 women) in the Alzheimer’s disease neuroimaging
initiative studied concurrently with [ **F]flurodeoxyglucose (FDG) positron emission tomography measures of glucose metabolism and
the radiotracer ['*F]florbetapir, an imaging agent which labels fibrillar AB in vivo. Based on a threshold value of florbetapir uptake
determined in separate samples, subjects were categorized as florbetapir+ or florbetapir—. Glucose metabolism was measured as a
continuous variable in a group of regions of interest (ROIs) selected a priori based on their involvement in AD, and also by using a
whole-brain voxelwise approach. Among this sample, 29% of subjects were florbetapir + and 23% were ApoE4 carriers. As expected, there
was a significant association between ApoE4 genotype and florbetapir positivity. Florbetapir status, however, was not significantly
associated with glucose metabolism, but the ApoE4 genotype was associated with lower metabolism in both voxelwise and ROI ap-
proaches. These results show that ApoE genotype, and not aggregated fibrillar forms of A3, contributes to reduced glucose metabolism

in aging and adds to a growing list of neural consequences of ApoE that do not appear to be related to AS3.

Introduction

The €4 allele of the polymorphic apolipoprotein E gene (ApoE4)
is a major risk factor for Alzheimer’s disease (AD) (Corder et al.,
1993; Schellenberg, 1995). This polymorphism affects clearance
of the B-amyloid (AB) protein that is proposed to play a major
role in AD pathogenesis (Castellano et al., 2011). The ApoE4
allele is also associated with increased aggregation of AP into
toxic oligomeric forms (Ma et al., 1994; Nislund et al., 1995) and
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greater deposition of AB in amyloid plaques seen at autopsy in
human brains (Rebeck et al., 1993; Schmechel et al., 1993). These
postmortem results have been extended by in vivo human studies
that used positron emission tomography (PET) with radiolabeled
ligands that bind to fibrillar AB to demonstrate increased A3
deposition in cognitively normal older people carrying the
ApoE4 allele (Reiman et al., 2009; Morris et al., 2010; Fleisher et
al,, 2011).

AD is also associated with reductions in cerebral glucose me-
tabolism that can be measured with [ '®F]flurodeoxyglucose PET
(FDG-PET) and appear primarily in lateral and medial parietal
and lateral temporal cortex (Silverman et al,, 2001). Older
asymptomatic ApoE4 carriers also show reductions in glucose
metabolism that spatially overlap with those seen AD patients
(Small et al., 1995; Reiman et al., 1996). These reports appear
consistent with the ApoE effects on AB, suggesting that genetic
effects may be mediated by deposition of AB that then results in
synaptic dysfunction (Lacor et al., 2007), reducing cortical me-
tabolism. However, the ApoE4 allele is also associated with sim-
ilar metabolic reductions in individuals at the young ages of
20-39 (Reiman et al., 2004), when A plaque deposition is rare
(Braak and Braak, 1997; Kok et al., 2009). This raises the question
as to whether metabolic alterations seen in older ApoE4 carriers
are due to A deposition or another process.

The ApoE gene, in fact, has a multiplicity of neural effects that
are not necessarily related to its role in association with A (Kim
etal., 2009). This includes effects on synaptic plasticity and repair
(Slezak and Pfrieger, 2003) and on synaptic development (Jietal.,
2003; Levi et al., 2003; Dumanis et al., 2009). Functional MRI
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(fMRI) studies of neural activity in young adults with the ApoE4
allele have largely, although not invariably, showed increases in
brain activation during cognitive tasks (Trachtenberg et al., 2012)
that are also suggestive of possible synaptic alterations at ages
when AB deposition is unlikely. In cognitively normal older
adults, both increases and decreases in brain activation during
cognition have been reported with ApoE4 (Bookheimer et al.,
2000; Lind et al., 2006); until recently, such results have been
difficult to interpret due to the possibility of concomitant un-
measured AfB. In the present report, we studied a group of cog-
nitively normal older people who were part of the Alzheimer’s
disease neuroimaging initiative (ADNI) and who had been exam-
ined with both FDG-PET and PET amyloid imaging to differen-
tiate the contributions of AB and ApoE genotype to resting
glucose metabolism.

Materials and Methods

Subjects. ADNI is a longitudinal multisite study supported by the Na-
tional Institutes of Health, private pharmaceutical companies, and non-
profit organizations with ~50 medical center and university sites across
the United States and Canada (www.loni.ucla.edu/ADNI). Individuals
are recruited and followed longitudinally with imaging (FDG-PET and
MRI), cognitive assessments, and blood and CSF biomarkers. In the
second phase of ADNI, PET amyloid imaging with the ['F]-labeled
amyloid imaging agent florbetapir (Clark et al., 2011) was added to the
protocol. The subjects of this report are 175 cognitively normal ADNI
participants who had available FDG-PET, ApoE genotyping, and
[ '*F]Florbetapir-PET as of June 2012. Full inclusion/exclusion criteria
can be found at www.adni-info.org, but briefly, all normal subjects had a
clinical dementia rating (CDR; Morris, 1993) of 0, did not present with
cognitive complaints, and scored normally on a range of cognitive tests.

FDG-PET. Methods for FDG-PET data acquisition and analysis have
been published previously (Jagust et al., 2009; Landau et al., 2011). FDG
scans were acquired between 30 and 60 min after injection of ~5 mCi of
tracer. Images underwent a rigorous quality control protocol and were
processed to produce final images with standard orientation, voxel size,
and 8 mm resolution (Jagust et al., 2010).

The initial approach to image analysis used a group of regions of
interest (ROIs) that were derived from a literature review as described
previously (Landau et al., 2011). In brief, we found published papers
listing Talairach coordinates representing areas in which FDG uptake
differed significantly between AD patients and normal subjects. Intensity
values were generated for each study representing the size of group dif-
ferences, mapped into Talairach coordinates, superimposed, trans-
formed into z-scores, smoothed, intensity normalized, and thresholded.
These regions correspond to areas in left and right hemispheres of tem-
poral, lateral parietal, and medial parietal cortex in which AD-normal
differences were maximal (Fig. 2) and which we use as a single composite
ROI averaged together. For this study, FDG uptake from this composite
AD signature ROI, normalized to a reference region of cerebellar vermis
and pons, comprised the dependent measure of cerebral glucose metab-
olism that was extracted from PET data using the ROI template and brain
images transformed to standard MNT coordinates using SPM5. While we
did not use FDG-PET data in dichotomous form, in a previous study
values below 1.22 differentiated AD patients from controls with the best
overall accuracy (Landau et al., 2010).

Florbetapir-PET. [ **F]Florbetapir and FDG-PET were generally per-
formed within a week of one another. Florbetapir scans were acquired
50—70 min after injection of ~10 mCi of tracer. Images underwent qual-
ity control and processing steps similar to those of the FDG-PET data.
Scans were analyzed in native space using the subjects’ MRI images (one
or usually two averaged MPRAGE images acquired close to the time of
the florbetapir scans) that were segmented into cortical regions using
Freesurfer version 4.5.0 (surfer.nmr.mgh.harvard.edu/). These cortical
ROIs were used to extract florbetapir uptake from gray matter in lateral
and medial frontal, anterior, and posterior cingulate, lateral parietal, and
lateral temporal cortex. Values were normalized to florbetapir uptake in
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Table 1. Participant characteristics

Total sample  ApoE4+  ApoE4—  Florbetapir+  Florbetapir—

(N=175  (N=40) (N=135 (N=150) (N=125)
Age 71.2(6.0) 76.8(5.6) 773(6.1) 78.3(4.8) 76.7 (6.4)
Sex (M/F) 87/88 20/20 67/68 22/28 65/60
Education 16.3 (2.8) 159(29) 16.5(2.7) 16 (3) 16.5 (2.7)
MMSE? 29(1.2) 286(13) 29.1(1.2) 29(1.2) 29(1.2)
ADAS-Cog” 6(3.1) 68(3.6) 59(29) 64(33) 6(3)
ApoE2 carriers® 23 1 22 4 19

“ApoE4— has significantly higher MMSE than ApoE4+ (t = 2.35,p = 0.02).
®Alzheimer's Disease Assessment Scale— cognitive subscale.
“ApoE2 is more common with ApoE4— than ApoE4+ (x* = 5.1,p = 0.02).

the whole cerebellum. The averaged cortical uptake in this composite
ROI was used as the index of florbetapir uptake in each subject.

Subjects were characterized as florbetapir positive or negative as de-
scribed previously (Landau et al., 2012). A threshold value of 1.10 for the
cortical/cerebellar ratio in a separate study represented the upper limit of
the 95% confidence interval for a group of normal young subjects (Joshi
etal., 2012) and was also the value below which no pathological evidence
of plaque AB deposition greater than “low likelihood” was found in an
imaging—autopsy correlation study (Clark et al., 2011). To account for
processing differences between those studies and the methods used here,
a separate data set was processed with both methods, yielding a regres-
sion equation (y = 0.80x + 0.23) that permitted conversion of the 1.10
threshold to a value of 1.11, which we applied to the current dataset to
define A positivity.

Statistics. Both florbetapir and ApoE genotype were independent bi-
nary categorical variables. Glucose metabolism, measured in the com-
posite ROI, was the dependent measure as a continuous variable. The
initial linear model evaluating these relationships included age as a cova-
riate; a subsequent model included additional potentially confounding
variables and variables of interest. The relationship between florbetapir
and glucose metabolism was also analyzed as a continuous function using
nonparametric statistics because of the non-normality of the florbetapir
distribution. ApoE homozygosity was ignored in all analyses. All statisti-
cal tests were considered significant at p < 0.05, and two-tailed test
results are reported. Statistical analyses used SPSS 20.

Because the selected ROIs were small (see Fig. 2), and to investigate
potentially larger regions of hypometabolism that might have been
missed, we followed the ROI analysis with a whole-brain voxelwise anal-
ysis using SPM5 to examine the effects of both genotype and Af on
glucose metabolism. Voxelwise FDG images in MNI coordinate space
were used to carry out an ANOVA with florbetapir and ApoE genotype as
binary categorical independent variables, and age as a variable of no
interest (as in the FDG ROI model described above). Voxelwise results
were initially displayed at p < 0.05 (uncorrected) to illustrate global
patterns, but subsequently were corrected for multiple dependent com-
parisons at cluster corrected p < 0.001 (cluster peak threshold, p < 0.001;
extent threshold, k = 210). This was derived from the image volume,
degrees of freedom, and image smoothness using Gaussian random field
theory (Cao and Worsley, 2001).

Results

Subject characteristics are reported in Table 1. Forty subjects
were carriers of the ApoE4 allele; all but three were heterozy-
gotes for an overall allele frequency of 0.12. ApoE2 alleles were
significantly more common in ApoE4 noncarriers. Fifty sub-
jects (28.6%) were categorized as florbetapir+. The group as a
whole was evenly distributed between men and women. Be-
sides the ApoE2 distribution, the only other significant group
differences when subjects were compared by either genotype
or florbetapir status was for the Mini-Mental State Examina-
tion (MMSE); ApoE4 carriers had slightly but significantly
lower mean scores than noncarriers. Of the ApoE4 carriers, 20
(50%) were florbetapir+, and of the noncarriers 30 (22%)
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Figure 1.  Relationships between florbetapir positivity, ApoE carrier status, and glucose me-

tabolism (FDG-PET). Analysis indicates a significant effect of ApoE, but no effect of florbetapir.

were florbetapir+, a significant association of genotype with
AB (x> = 11.7,p = 0.001).

Glucose metabolism in the composite ROI was inversely asso-
ciated with age (r = —0.19, p = 0.01) and was also lower in ApoE4
carriers (mean = 1.26, SD = 0.11) than noncarriers (mean =
1.31, SD = 0.10), a statistically significant difference (t = 2.83,
p = 0.005). There was no significant difference (¢t = 1.5, p = 0.14)
in glucose metabolism between those who were florbetapir+
(mean = 1.28, SD = 0.10) and florbetapir— (mean = 1.31,SD =
0.11). There was also no relationship between glucose metabo-
lism and florbetapir as a continuous variable (Spearman p =
~0.09, p = 0.24).

The initial linear model revealed no effect of florbetapir (p =
0.64), but a significant effect of ApoE genotype (p = 0.007) and
age (p = 0.008) on glucose metabolism, with the ApoE4 genotype
and older age associated with lower glucose metabolism in the
composite ROI. A second model added sex, MMSE score, ApoE2
genotype, and an ApoE4 X florbetapir interaction term. None of
these additional model parameters were significantly associated
with glucose metabolism, and there was no effect on the original
results other than changes in p values (for ApoE, p = 0.03; for age,
p = 0.01; and for florbetapir, p = 0.98). Glucose metabolism in
the composite ROI, plotted as a function of ApoE genotype and
florbetapir status, is shown in Figure 1.

In the voxelwise analyses, ApoE4 carriers compared to non-
carriers showed reductions in metabolism throughout the entire
brain. Figure 2 shows voxels that met a threshold of at least p <
0.05 (uncorrected), with cluster peak voxels that met the p <
0.001 cluster threshold shown in Table 2. Some of these findings
were in brain regions associated with metabolic reductions in
AD, such as the temporal and parietal cortex, but reductions were
much more widespread, including both lateral and medial pre-
frontal cortex. While reductions were extensive, clusters that met
criteria for significance were seen particularly in temporal, pari-
etal, and frontal cortex. There were no regions in which ApoE4
carriers showed higher metabolism than noncarriers at p < .05 or
lower. Contrasts of subject groups by florbetapir status revealed
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several small regions of increased metabolism in superior parietal
cortex in florbetapir+ subjects compared to florbetapir—, and
several regions in temporal lobes in which the florbetapir— sub-
jects showed greater metabolism. These regions were not signifi-
cant using the cluster threshold.

Discussion

These data show a significant effect of ApoE4 genotype on cere-
bral glucose metabolism in aging that is not explained by the
presence of fibrillar cerebral A as detected by florbetapir bind-
ing. Florbetapir uptake was not associated with glucose hypome-
tabolism, while both age and ApoE genotype were. Even after
accounting for age effects, the presence of the ApoE4 allele re-
mained associated with lower glucose metabolism. These results
were seen in a pre-specified ROI analysis that sampled regions
typically affected by AD, and a whole-brain voxelwise analysis
found widespread reductions in metabolism associated with the
ApoE4 genotype. This adds to a growing list of functional brain
abnormalities that are associated with the ApoE4 allele and do
not appear mediated by fibrillar, aggregated forms of Ap.

The results from the ROI approach and the voxelwise ap-
proach require integration with one another. The ROIs sampled
voxels that mainly showed metabolic reductions at the p < 0.05
level. Because these ROIs targeted specific brain regions and were
not corrected for multiple comparisons, they were highly sensi-
tive in defining abnormalities. This ROI approach has been ap-
plied and found to be sensitive in different laboratories and
different samples for the detection of AD (Landau et al., 2010;
Caroli etal.,, 2012; Jack et al., 2012), but it is likely nonspecific for
AD. Thus, the idea that these metabolic reductions represent
presymptomatic AD is not necessarily supported by the wide-
spread reductions seen in the whole-brain analysis. For the vox-
elwise analysis, the actual pattern of results depends on the
significance threshold; widespread reductions are seen at the lib-
eral p < 0.05 level, but more restricted reductions are noted when
using a cluster threshold. While neither set of whole-brain results
defines voxels limited to regions typically affected by AD, they are
consistent with earlier studies showing widespread ApoE4 effects
on metabolism (Reiman et al., 1996, 2004). Regardless of thresh-
olding, there are numerous brain regions in which ApoE4 carriers
show reductions compared to noncarriers, and no regions in
which the reverse is seen. These findings are not restricted to the
pattern of hypometabolism seen in patients with AD.

The metabolic reductions in some of the association cortex,
especially those seen on the medial surface in Figure 2, includes
regions that in PET and fMRI studies are part of the default mode
network (DMN), a network that is more active in the absence of
externally presented stimuli and deactivates during externally
driven cognitive engagement (Raichle et al., 2001). This network
becomes disconnected in AD (Greicius et al., 2004) and in nor-
mal older people with evidence of AB deposition detected with
another amyloid imaging agent, [''C]PIB (Pittsburgh Com-
pound B; Hedden et al., 2009; Mormino et al., 2011). Itis also a
region in which A tends to be deposited (Buckner et al., 2005).
However, neither the ApoE4 effects seen here, nor the pattern of
AP deposition conforms specifically to the topography of the
DMN (Buckner et al., 2009). Based on both the pattern of hypo-
metabolism and its lack of association with aggregated A3, our
results do not support an explanation whereby ApoE4 increases
AP deposition in the DMN, leading to AD. Another possibility is
that the widespread metabolic reductions seen throughout the
brain of ApoE4 carriers confers vulnerability to other processes,
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Figure 2.
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Results of whole brain voxelwise analysis showing three contrasts as indicated in the label. Lower threshold for all images is t = 1.70, p = 0.05 uncorrected, with brighter shades

indicating higher t and p values as indicated. No significant voxels were found for the contrast ApoE4+ > ApoE4—. The blue set of ROIs represents the composite, pre-specified ROl as defined in
the text. The peak voxels of clusters meeting the p << 0.001 clusterwise criterion (see Materials and Methods) for the ApoE4 — > ApoE4+ contrast (top row) are listed in Table 2.

Table 2. Hypometabolic regions for ApoE4 carriers relative to non-carriers

k t X y z
Left inferior frontal gyrus 383 438 —30 44 -2
Right rolandic operculum 653 4.6 'y} —28 20
Left supramarginal gyrus 1124 44 —60 =32 28
Left middle occipital gyrus 292 43 —32 =72 38
Left fusiform gyrus 314 4.1 —34 -30 —16
Left precentral gyrus 232 4.0 —24 —24 58
Right insula 244 4.0 32 14 —14
Right fusiform gyrus 222 3.8 40 —16 —=20

such as metabolic stress (Vaishnavi et al., 2010; Vlassenko et al.,
2010), that are involved in the pathogenesis of AD.

Other reports confirm an effect of the ApoE polymorphism
on brain function that is independent of AB. An fMRI study
examined the DMN in normal older subjects who were char-
acterized as AB negative using PIB-PET (Sheline et al., 2010).
Contrasts between ApoE4 carriers and noncarriers revealed
multiple nodes in which connectivity was increased in the
carriers relative to noncarriers, as well as areas where connec-
tivity was decreased. Another recent report examined rela-
tionships between AB, ApoE genotype, and cognition and
found an interaction such that AB had more deleterious effects

on cognitive function in ApoE4 carriers (Kantarcietal., 2012),
another indication of a genotypic effect on brain function in
aging that is independent of the amount of AB. The numerous
studies indicating hypometabolism (Reiman et al., 2004),
brain atrophy (Shaw et al., 2007), and alterations in resting
state connectivity and brain activation (Filippini et al., 2009)
in young adults at ages well before likely fibrillar A pathology
support the idea of amyloid-independent effects on neural
processes. Finally, ApoE has also been shown to have an effect
on mitochondrial function, with young ApoE4 carriers with-
out AB showing reduced cytochrome oxidase activity com-
pared to noncarriers (Valla et al., 2010).

While the results of this study indicate that fibrillar, aggre-
gated forms of AB are an unlikely cause of hypometabolism in
ApoE4 carriers, A also occurs in soluble, oligomeric forms that
may affect neural function and are not detected by PET imaging
agents (Shankar et al., 2007; Walsh and Selkoe, 2007). Therefore,
itis possible that there is undetected soluble AB in ApoE4 carriers
that would account for the hypometabolism in this group. How-
ever, aggregated fibrillar forms of AB in amyloid plaques are
accompanied by soluble AB in human brains (Klunk et al., 2005),
and the concentration of soluble A is correlated with AB plaque
burden (Kuo et al., 1996). Thus, failure to find an association
between fibrillar AB and hypometabolism cannot be explained by
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the absence of soluble AB. Second, a recent study of biomarkers
in presymptomatic, dominantly inherited AD suggests that solu-
ble AB may become elevated and then begin to decline 25 years
before symptoms, before fibrillar aggregation can be detected in
the brain (Bateman et al., 2012). These forms of AB could con-
tribute to hypometabolism and yet go undetected with amyloid
imaging agents. However, glucose hypometabolism was not seen
at early time points, but only years later, well after AB was detect-
able in fibrillar form with PET. ApoE4 also plays a role in enhanc-
ing the synaptotoxic effects of oligomeric forms of A (Koffie et
al., 2012). While it seems unlikely that soluble AB explains the
hypometabolism in our study, we cannot definitively exclude that
possibility. These data do not suggest that the risk for AD seen
with the ApoE4 genotype is unrelated to AB, as we confirmed the
well-described association between ApoE4 and AB deposition
(Morris et al., 2010; Rodrigue et al., 2012) that, along with other
extensive data, certainly makes it likely that this is one pathway
through which ApoE may exert its effects. However, these results
indicate that more than one such ApoE-mediated route to AD is
likely to exist.

A conceptual model that unifies these results with theories of
AD pathogenesis has recently been proposed (Jagust and Mor-
mino, 2011). This model builds upon the observation, made
through extensive animal studies, that neural activity modulates
the secretion of AP through synaptic exocytosis (Nitsch et al.,
1993; Kamenetz et al., 2003; Cirrito et al., 2005). In young trans-
genic mice, neural activity is related to both A release and later
regional deposition of plaques (Bero et al., 2011). This has led to
the conjecture that neural activity itself may play a role in AB
deposition in humans, an idea supported by findings that AB
release parallels fluctuations in synaptic activity in human sleep/
wake cycles (Gilestro et al., 2009) and is associated with level of
consciousness in coma (Brody et al., 2008). The ApoE4 genotype
could play a role in this process by reducing neural efficiency.
Mice expressing human ApoE4 display abnormalities of synaptic
transmission and dendritic arborization (Wang et al., 2005), re-
duction in dendritic spines (Ji et al., 2003; Dumanis et al., 2009),
and alterations in LTP (Trommer et al., 2004). Taken in conjunc-
tion with the human imaging data showing lower resting metab-
olism and greater activation in the brains of young ApoE4 carriers
performing cognitive tasks (Reiman et al., 2004; Filippini et al.,
2009; Dennis et al., 2010; Filippini et al., 2011), these findings
raise the possibility that resting metabolic dysfunction due to
either ApoE4-related synaptic alterations or mitochondrial ener-
getics results in the necessity for increased synaptic activity that
might lead to more A release.

Finally, these data have implications for existing models of
the AD pathological cascade, which suggest that A3 deposition
precedes synaptic dysfunction (Jack et al., 2010). Our results
argue for the reverse, at least in ApoE4 carriers. Changes in
glucose metabolism may reflect synaptic activity, because the
majority of the energy budget of the neuron is devoted to
signaling (Attwell and Laughlin, 2001), and because correla-
tions between glucose metabolism and synaptic markers have
been reported (Rocher et al., 2003). In studies of AD and
presymptomatic stages of AD to date, it appears that AB is
detectable before metabolic decline (Lo et al., 2011). However,
our ability to measure A in vivo is relatively new, so exami-
nation of changes in metabolism and brain function in indi-
viduals who might be at risk for AD but have no detectable A3
is limited. Future studies of unaffected individuals with differ-
ent risks for AD should expand our understanding of the se-
quence of events in the development of this disorder.
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