Skip to main content
. 2012 Jan 22;127(1):25–33. doi: 10.1007/s00414-012-0666-x

Table 1.

The calculating formulae of Q(j,B) for different combinations of mixture M l and arbitrary set of alleles B at a particular autosomal locus l with alleles A 1,A 2,...,A K and corresponding allele frequencies p 1,p 2,...,p K, under the assumption of Hardy–Weinberg equilibrium

M l B Q(0,B) Q(1,B) Q(2,B)
A i ϕ 1 p i \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p_i^2$\end{document}
A i,A j ϕ 1 p i + p j \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(p_i+p_j)^2$\end{document}
A i 0 p i \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p_i^2+2p_ip_j$\end{document}
A j 0 p j \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p_j^2+2p_ip_j$\end{document}
A i,A j,A k ϕ 1 p i + p j + p k \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(p_i+p_j+p_k)^2$\end{document}
A i 0 p i p i(p i + 2p j + 2p k)
A j 0 p j p j(p j + 2p i + 2p k)
A k 0 p k p k(p k + 2p i + 2p j)
A i,A j 0 0 2p i p j
A i,A k 0 0 2p i p k
A j,A k 0 0 2p j p k
A i,A j,A k,A t ϕ 1 p i + p j + p k + p t \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(p_i+p_j+p_k+p_t)^2$\end{document}
A i 0 p i p i(p i + 2p j + 2p k + 2p t)
A j 0 p j p j(p j + 2p i + 2p k + 2p t)
A k 0 p k p k(p k + 2p i + 2p j + 2p t)
A l 0 p t p t(p t + 2p i + 2p j + 2p k)
A i,A j 0 0 2p i p j
A i,A k 0 0 2p i p k
A i,A t 0 0 2p i p t
A j,A k 0 0 2p j p k
A j,A t 0 0 2p j p t
A k,A t 0 0 2p k p t

The indices i, j, k, and t are pairwise distinct