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Pericytes have been identified as the major source of precursors of scar-producing myofibroblasts during
kidney fibrosis. The underlying mechanisms triggering pericyte-myofibroblast transition are poorly
understood. Transforming growth factor b-1 (TGF-b1) is well recognized as a pluripotent cytokine that
drives organ fibrosis. We investigated the role of TGF-b1 in inducing profibrotic signaling from epithelial
cells to activate pericyte-myofibroblast transition. Increased expression of TGF-b1 was detected
predominantly in injured epithelium after unilateral ureteral obstruction, whereas downstream signaling
from the TGF-b1 receptor increased in both injured epithelium and pericytes. In mice with ureteral
obstruction that were treated with the pan antieTGF-b antibody (1D11) or TGF-b receptor type I
inhibitor (SB431542), kidney pericyte-myofibroblast transition was blunted. The consequence was
marked attenuation of fibrosis. In addition, epithelial cell cycle G2/M arrest and production of profi-
brotic cytokines were both attenuated. Although TGF-b1 alone did not trigger pericyte proliferation
in vitro, it robustly induced a smooth muscle actin (a-SMA). In cultured kidney epithelial cells, TGF-b1
stimulated G2/M arrest and production of profibrotic cytokines that had the capacity to stimulate
proliferation and transition of pericytes to myofibroblasts. In conclusion, this study identified a novel
link between injured epithelium and pericyte-myofibroblast transition through TGF-b1 during kidney
fibrosis. (Am J Pathol 2013, 182: 118e131; http://dx.doi.org/10.1016/j.ajpath.2012.09.009)
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Pericytes are mesenchyme-derived perivascular cells
attached to the abluminal surface of capillaries.1 They share
developmental origins with fibroblasts, and there may be
plasticity between pericytes attached to capillaries and
fibroblasts embedded in adjacent collagenous matrix;
however, unlike fibroblasts, pericytes have vital functions in
regulating microvascular stability, angiogenesis, capillary
permeability, capillary flow, and capillary basement
membrane synthesis.1 We have previously shown that per-
icytes are the major sources of scar-producing myofibro-
blasts during kidney injury, and we have identified adult
kidney pericytes and perivascular fibroblasts are derived
from Foxd1-expressing progenitors, positive for collagen
I(a1)-GFP (Coll-GFPþ), platelet-derived growth factor
receptor b (PDGFR-bþ), and CD73 (CD73þ) and neg-
ative for a smooth muscle actin (a-SMA�) and CD45
stigative Pathology.

.

(CD45�).2e4 Recently, spinal cord pericytes were identified
as major progenitors of scar tissue in the central nervous
system, intestinal pericytes as a source of myofibroblasts in
models of colitis, and hepatic stellate cells, the major
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TGF-b1 Stimulates Signaling to Pericytes
precursor of myofibroblasts in liver disease, have been
determined to be specialized pericytes of the hepatic
sinusoid,5e8 indicating that pericytes may represent myofi-
broblast precursors in many organs. Many independent
studies support the notion of perivascular resident mesen-
chymal cells, not injured tubular epithelial cells, as the
major source of myofibroblasts in kidneys.9e12

Prompted by the newly identified role for these peri-
vascular cells in the pathogenesis of kidney fibrosis, we
earlier investigated the cellular crosstalk that regulates per-
icyte detachment from capillaries and regulates the transi-
tion of pericytes to myofibroblasts.13e15 Our investigations
so far have focused on pericyte-endothelial crosstalk,
because pericytes form direct communications with endo-
thelial cells of peritubular capillaries at peg and socket
junctions, where direct cell-cell signaling has been thought
to occur.13e20 We have recently shown that Coll-GFPþ

kidney pericytes function identically to brain pericytes in
migrating to and stabilizing capillary networks, functions
that require expression of tissue inhibitor of metal-
loproteinase 3 (TIMP-3).15 These pericyte functions are lost
when Coll-GFPþ pericytes transition to myofibroblasts.15

Furthermore, we reported that endothelial activation at
vascular endothelial cell growth factor (VEGF) receptor 2
and PDGFR-b signaling by pericytes are two critical
signaling pathways that link endothelial activation with
pericyte transition to myofibroblasts.14 Our studies showed
that these signaling events alone are sufficient to drive
microvascular rarefaction, inflammation, and fibrosis in
models of kidney disease.14 These findings are striking,
because during embryonic and fetal microvascular devel-
opment these same signaling pathways are critical in normal
formation of the vasculature, indicating that dysregulation
of signaling pathways between endothelium and pericytes is
central to kidney pathogenesis.

Nonetheless, studies unequivocally show that the injured
tubular epithelium can directly trigger interstitial fibrosis.
For example, overexpression of VEGF-A in adult kidney
epithelium is sufficient to drive fibrosis, and cell cycle arrest
of the kidney proximal epithelium at the G2/M checkpoint is
also sufficient to drive fibrosis.21,22 Therefore, epithelial
signaling events must somehow be transmitted across the
tubular basement membrane to pericytes to drive interstitial
fibrosis. These obscure molecular signaling events are the
focus of the studies we report here.

In previous investigations of embryonic microvascular
development, endothelial cells have been shown to be
a source of both PDGF and transforming growth factor b-1
(TGF-b1), cytokines that regulate pericyte attachment,
differentiation, and angiogenesis.17,23,24 Moreover, genetic
inactivation of either TGFB1 or of genes encoding its
receptors in mice leads to vascular defects and embryonic
lethality.17e19 TGF-b1 is thus a cytokine with a profound
effect on microvascular development and angiogenesis.

In adult kidney injury, although endothelial cells produce
PDGF and TGF-b1 in fibrosing kidneys, injured epithelial
The American Journal of Pathology - ajp.amjpathol.org
cells are a major source of these cytokines, and the TGF-b1
activator integrin avb6 is restricted to kidney epi-
thelium.13,25e29 Increased TGF-b1 expression by epithelium
is accompanied by activation of intracellular signaling path-
ways and downstream effectors in the epithelium itself.30,31

Blocking TGF-b1 and its downstream effectors can atten-
uate kidney injury and fibrosis,30e33 whereas transgenic
overexpression of TGF-b1 in kidney epithelial cells is suffi-
cient to trigger interstitial kidney fibrosis in the absence of
migration of epithelial-derived cells into the interstitium.34,35

Therefore, epithelial transgenic overexpression of TGF-b1,
which stimulates epithelial cell dedifferentiation and auto-
phagy, must stimulate pericyte to myofibroblast transition by
epithelial cell to pericyte crosstalk.34 Our aim in the present
study was to identify the mechanism by which TGF-b1
signaling from injured tubular epithelial cells can activate
pericytes to drive progressive kidney fibrosis.

Materials and Methods

Coll-GFP Mice

Coll-GFP transgenic mice were generated on the C57BL6
background as described previously.2 In brief, 3.2 kb of the
collagen I(a1) (Col1a1) promoter and enhancer with the
open reading frame of enhanced GFP yielded the highest
levels of GFP expression when COL1A1 gene transcripts
were generated.

Mouse Models of Kidney Fibrosis

Unilateral ureteral obstruction (UUO) was performed in
adult (8 to 12 weeks) C57BL6 wild-type or Coll-GFP mice
as described previously.2 Briefly, the left ureter was ligated
twice using 4-0 nylon surgical sutures at the level of the
lower pole of kidney. All animal studies were conducted
under a protocol approved by the Institutional Animal Care
and Use Committee of the National Taiwan University
College of Medicine.

Culture of Kidney Pericytes

Purification of kidney pericytes from normal kidney was
performed as described previously.13 Kidney was diced,
incubated at 37�C for 1 hourwith Liberase (0.5mg/mL;Roche
Applied Science, Indianapolis, IN) and DNase (100 U/mL;
Roche Applied Science) in Hank’s balanced salt solution.
After centrifugation, cells were resuspended in 5 mL of PBS/
1% bovine serum albumin, and filtered (40-mm mesh). Peri-
cytes were purified by isolating GFPþPDGFR-aþ cells using
a fluorescence-activated cell sorting (FACS) system (FAC-
SAria; BD Biosciences, San Jose, CA), and then total RNA
was isolated or purified cells were cultured in Dulbecco’s
modified Eagle’s medium with 20% fetal bovine serum. The
primary cultured cells used in the present study were between
passages 4 and 8 and have been characterized previously.13
119
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Purification and Culture of PTECs

Purification of proximal tubular epithelial cells (PTECs) from
normal and day-7 UUO kidneys was performed as described
previously.36 Kidney was diced, incubated at 37�C for 1 hour
with collagenase (0.5 mg/mL; Worthington Biochemical,
Lakewood, NJ) and soybean trypsin inhibitor (0.5 mg/mL;
Gibco; Life Technologies, Carlsbad, CA) in Dulbecco’s
modified Eagle’s medium/F12 basal medium. After centrifu-
gation, cells were resuspended in 5 mL of PBS/1% bovine
serum albumin, and filtered (40-mm mesh). Cells were
labeled with Lotus tetragonolobus lectin (LTL)-fluorescein
isothiocyanate (Vector Laboratories, Burlingame, CA),
antieCD45-PE, and antieKim1-biotin antibodies (RMT1-4)
(1:200; eBioscience, San Diego, CA), followed by
streptavidin-allophycocyanin (Jackson ImmunoResearch
Laboratories, West Grove, PA). Normal and injured PTECs
were sorted by FACSAria cell sorting (BD Biosciences) for
LTLþCD45� cells and Kim1þCD45� cells, and then total
RNA was purified using an RNeasy system (Qiagen, Valen-
cia, CA). Day-7 UUO kidney proximal tubular cells were
cultured in Dulbecco’s modified Eagle’s medium/F12 with
1� insulin-transferrin-selenium and hydrocortisone (0.5
mmol/L; Sigma-Aldrich, St. Louis, MO) using established
methods that maintained tubular epithelial characteristics.37

The primary cultured tubular epithelial cells used in the
present study were between passages 4 and 8. In some
experiments, after 48-hour treatment of PTECs with TGF-b1
(5 ng/mL), the drug was washed out and the cells continued in
culture for 24 hours. The conditioned medium was then
collected and added to serum-starved kidney pericytes.
Control antibody 13C4, antieTGF-b antibody (1D11; Gen-
zyme, Framingham,MA), and antiePDGFR-b antibody (100
mg/mL) were added in the pericyte culture with conditioned
medium. Cell cycle, cell number, and gene expression of
kidney pericytes were analyzed after 24 hours.

Blocking TGF-b1 Signaling in Vivo

Mice were injected intraperitoneally with 13C4, 1D11 (5 mg/
kg/every other day), or the transforming growth factor
b receptor I (TGF-bRI) inhibitor SB431542 (5 mg/kg per day;
TocrisBioscience,Bristol,UK)2hours before surgery, and then
as scheduleduntil sacrificeonday4orday10 (nZ6pergroup).

Blocking TGF-b1 Signaling in Vitro

Normal kidney pericytes were incubated with TGF-b1 (10
ng/mL; R&D Systems, Minneapolis, MN) in the presence of
antibody 13C4 (100 mg/mL), 1D11 (100 mg/mL), or
SB431542 (5 mg/mL). The extent of Smad2 phosphorylation
was determined by Western blot analysis. In some experi-
ments, SP600125 (10 mmol/L; Sigma-Aldrich) and
SB203580 (10 mmol/L; Sigma-Aldrich) were used to block
c-jun NH2-terminal kinase (JNK) and mitogen-activated
protein kinase (MAPK) p38, respectively.
120
Tissue Preparation and Histology

Mouse tissues were prepared and stained as described
previously.2 Primary antibodies against the following
proteins were used for immunolabeling: a-SMA-Cy3 (clone
1A4; Sigma-Aldrich), laminin a4 (R&D Systems), Ki-67,
PDGFB, TGF-bRII (Abcam, Cambridge, UK), p-Smad2,
p-histone H3 (Ser10) (Cell Signaling Technology, Danvers,
MA), proliferating cell nuclear antigen (PCNA) (Thermo
Scientific, Fremont, CA), TGF-b1 and Nidogen (Santa Cruz
Biotechnology, Santa Cruz, CA), and NG2 (gift from W.
Stallcup). Fluorescent conjugated secondary antibody
labeling (Jackson ImmunoResearch Laboratories), colabeled
with DAPI, mounting with Vectashield medium (Vector
Laboratories), and image capture and processing were per-
formed as described previously. Quantification of specific
cells in tissue sections was performed as described previ-
ously.14 In brief, sections were colabeled with DAPI, and
Coll-GFPþ cells were identified by blue and green nuclear
colocalization; a-SMAþ cells were identified by greater
than 75% of the cell area immediately surrounding nuclei
(detected by DAPI) staining positive with Cy3 fluorescence
indicative of the antigen expression; Ki-67þ, PCNAþ,
p-Smad2þ, or p-histone H3þ cells were identified by posi-
tive nuclear staining for Cy3 or fluorescein fluorescence.
Specific cells were counted in 10 cortical interstitial fields
per mouse; the high-power fields (�400) were randomly
selected. Interstitial fibrosis was quantified in Picrosirius
Red-stained paraffin sections.

qPCR

cDNA was synthesized using oligo(dT) and random
primers. Quantitative PCR (qPCR) was performed using
methods described previously.2 The specific primer pairs
used in qPCR are listed in Table 1.

Western Blot Analysis

Total cellular protein extracted using radioimmuno-
precipitation assay buffer was subjected to Western blot
analysis using methods described previously.38 The following
primary antibodies were used to detect the specific protein: p-
Smad2 (Ser465/467), p-JNK (Thr183/Tyr185), p-p38 MAPK
(Thr180/Tyr182), phosphorylated extracellular signal-
regulated kinases (p-ERK) (Thr024/Tyr206), Smad2 (Cell
Signaling Technology), a-SMA (Abcam), p21, p27, glycer-
aldehyde 3-phosphate dehydrogenase (GAPDH) (Santa Cruz
Biotechnology), and GFP (Medical & Biological Laborato-
ries, Nagoya, Japan).

FACS Analysis

PDGFR-a was exclusively expressed in interstitial Coll-
GFPþ cells.13 To analyze a-SMA expression in kidney Coll-
GFPþPDGFR-aþ cells, single cells were fixed in 4%
ajp.amjpathol.org - The American Journal of Pathology
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Table 1 Primer Sequences Used in qPCR

Target Primer Sequence

PDGFB Forward 50-CCCACAGTGGCTTTTCATTT-30

Reverse 50-GTGAACGTAGGGGAAGTGGA-30

TGF-b1 Forward 50-GGACTCTCCACCTGCAAGAC-30

Reverse 50-GACTGGCGAGCCTTAGTTTG-30

Colla1 Forward 50-GAGCGGAGAGTACTGGATCG-30

Reverse 50-GTTCGGGCTGATGTACCAGT-30

a-SMA Forward 50-CTGACAGAGGCACCACTGAA-30

Reverse 50-CATCTCCAGAGTCCAGCACA-30

GAPDH Forward 50-CTGGAGAAACCTGCCAAGTA-30

Reverse 50-AAGAGTGGGAGTTGCTGTTG-30

Table 2 siRNA Sequences

ON-TARGETplus SMARTpool
L-058636-00-0005,
Mouse p21 Target sequence

J-058636-05 50-CGAGAACGGUGGAACUUUG-30

J-058636-06 50-CAGACCAGCCUGACAGAUU-30

J-058636-07 50-GAACAUCUCAGGGCCGAAA-30

J-058636-08 50-GGAGCAAAGUGUGCCGUUG-30

ON-TARGETplus D-001810-10-05 served as the nontargeting control pool.

TGF-b1 Stimulates Signaling to Pericytes
paraformaldehyde/PBS for 10 minutes with shaking at 4�C,
then permeabilized in 0.1% saponin/PBS for 10 minutes.
After a washing, the single cells were incubated with anti-
bodies against PDGFR-a (1:200; eBioscience), a-SMA, or
isotype control (1:20; R&D Systems) for 30 minutes. Cells
were then analyzed using a flow cytometer. To determine cell
cycle progression, cells were first fixed with cold methanol
and then stained with propidium iodide (50 mg/mL; Sigma-
Aldrich) in RNase A (5 mg/mL; Invitrogen; Life Technolo-
gies, Carlsbad, CA). Analysis of DNA content was performed
as described previously.39

Transfection

For transient silencing of p21, PTECs were transfected using
Lipofectamine transfection reagent (Invitrogen; Life Tech-
nologies) according to the manufacturer’s protocols. siRNA
sequences are listed in Table 2. ON-TARGETplus SMART-
pool siRNA sequences against p21 and ON-TARGETplus
nontargeting pool (Thermo Scientific) were incubated over-
night at a final concentration of 50 nmol/L, and cells were then
treated with TGF-b1 (5 ng/mL). Cell cycle and protein
expression were analyzed after 24 hours.

Statistical Analysis

Data are expressed as means � SEM. Statistical analyses
were performed using GraphPad Prism software version 4.0
(GraphPad Software, La Jolla, CA). The statistical signifi-
cance was evaluated by one-way analysis of variance.

Results

Pericyte-Myofibroblast Transition during Progressive
Kidney Fibrosis

To study the response of kidney pericytes to injury, we
performed UUO in Coll-GFP reporter mice. Confocal
microscopy of normal kidney cortex showed the direct
contact of endothelium and pericyte bodies, and showed
pericyte processes passing through the capillary basement
membrane (Supplemental Figure S1). In addition to its
The American Journal of Pathology - ajp.amjpathol.org
detection in pericytes, Coll-GFP was also detected in peri-
vascular fibroblasts and glomerular podocytes of the normal
kidney (Supplemental Figure S2A). Fibroblasts are spindle-
shaped cells of mesenchymal origin surrounded by collagen
matrix. Pericytes in the kidney were defined anatomically
as extensively branched cells of mesenchymal origin
that partially surrounded the endothelium of capillaries
(Supplemental Figures S1 and S2A). The branched
processes of the pericytes are sheathed within the capillary
basement membrane, and the capillary basement membrane
is often broken or incomplete between the endothelial cell
and pericyte, allowing close appositions or interdigitations
to occur.13,40e44 On the other hand, despite having a similar
origin as that of kidney pericytes, perivascular fibroblasts
surrounded arterioles within a collagenous matrix and had
no close appositions with endothelial cells (Supplemental
Figure S2A). After UUO injury, pericytes lost the intimate
connection with endothelium and their cell population
increased (Supplemental Figure S2B). a-SMA was not
detected in normal kidney pericytes, but its expression
markedly increased in Coll-GFPþ pericytes, indicating their
transition to myofibroblasts after UUO surgery (Figure 1C).
NG2 proteoglycan has been reported to be a marker of
pericytes in the eye and brain, but reports also indicate
that NG2 is expressed only by active pericytes.45 Our
previous study showed that Coll-GFPþPDGFR-bþ pericytes
express NG2 in neonatal kidney, but lose expression with
maturity.2 Similar to the increase in a-SMA expression,
pericytes reactivated expression of NG2 soon after UUO
injury, indicating that myofibroblasts were activated peri-
cytes during progressive kidney fibrosis (Supplemental
Figure S3).

TGF-b1 Signaling Responses Are Activated in Tubular
Epithelial Cells and Pericytes after UUO

Whole-kidney TGFB1 gene transcripts increased after
initiation of UUO injury (Figure 1A). In parallel with
increased TGF-b1 expression, we detected increased phos-
phorylation of the canonical signaling pathway downstream
effector protein Smad2 (Figure 1B). The extent of canonical
TGF-b1 signaling was mirrored by expression of GFP,
which reported COL1A1 gene transcripts and expression of
the intermediate filament a-SMA (Figure 1, B and C).
a-SMA, a robust marker of myofibroblast differentiation,
121
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Figure 1 Activation of TGF-b1 signaling
during obstructive kidney fibrosis. A: qPCR time
course of whole-kidney TGFB1 gene transcript after
UUO surgery. Expression levels were normalized by
GAPDH. B: Western blot of whole kidney after UUO
surgery for p-Smad2, Coll-GFP, a-SMA, and GAPDH
in Coll-GFP transgenic mice. C: Confocal micro-
graphs show Coll-GFPþ pericytes in normal control
kidney (CON) and Coll-GFPþ myofibroblasts with a-
SMA expression. In control kidney, a-SMA is
expressed only in arterial vascular smooth muscle
cells (a). D: Confocal micrographs show p-Smad2
expression in both tubular epithelial cells
(arrowheads) and Coll-GFPþ cells (arrows) of day-
4 UUO kidney, but not in control kidney. Tubular
epithelial cells are indicated by the letter T. E:
Quantification of cell numbers with positive
nuclear p-Smad2 staining. F: Immunofluorescence
micrographs show primary cultured kidney peri-
cytes colabeled with a-SMA. G: qPCR of gene
transcripts of a-SMA of primary kidney pericyte
culture in the presence and absence of TGF-b1 and
SB431542. Blots are representative of three
independent experiments with similar results. Data
are expressed as means � SEM. n Z 5 per time
point (A) or 3 per group (G). ***P < 0.001 versus
normal kidney at day 0 (A) or as indicated by
brackets (E and G).
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was expressed in almost all Coll-GFPþ pericytes by 4 days
after UUO surgery, whereas in normal kidneys a-SMA
expression was restricted to vascular smooth muscle cells
of the arterioles and was not expressed by Coll-GFPþ

pericytes (Figure 1C). Both epithelial cells and Coll-GFPþ

pericytes expressed TGF-bRII in normal kidneys and at
day 4 in UUO kidneys (Supplemental Figure S4).
Canonical TGF-b1 signaling, detected by nuclear
p-Smad2, was seen in both tubular cells and Coll-GFPþ

pericytes after UUO surgery, but not in normal adult
kidneys (Figure 1, D and E). In addition to Coll-GFPþ

pericytes, nuclear p-Smad2 was seen in other interstitial
cells (these were probably endothelial cells or leukocytes,
which were not the focus of the present study).
122
TGF-b1 Signaling Induces Pericyte-Myofibroblast
Transition in Vivo and in Vitro

To study the role of TGF-b1 signaling in pericyte-
myofibroblast transition during UUO injury, we examined
the extent of Smad2 phosphorylation in primary kidney
pericyte cultures triggered by TGF-b1 in the presence of the
pan antieTGF-b antibody, 1D11, or the TGF-bRI small-
molecule inhibitor SB431542. TGF-b1-induced p-Smad2 in
pericytes was inhibited by 1D11 antibody or SB431542
(Supplemental Figure S5). In parallel studies, we treated
primary pericyte cultures with TGF-b1 alone or in the
presence of SB431542 and assessed expression of the
myofibroblast marker a-SMA (Figure 1, F and G). In normal
ajp.amjpathol.org - The American Journal of Pathology

http://ajp.amjpathol.org


Figure 2 Blocking TGF-b1 signaling inhibited pericyte-myofibroblast transition.A andB: Blocking TGF-b1 signaling by pan antieTGF-b antibody 1D11 (5mg/kg
every other day) (A) or type I TGF-b receptor (TGF-bRI) small-molecule inhibitor SB431542 (5 mg/kg every day) (B) inhibited expression of p-Smad2, Smad2, and
a-SMA expression in UUO kidneys. 13C4 was administered as isotype control antibody. Lane C, control; Lane U, UUO kidney at day 4. C and D: Picrosirius Red-stained
kidney sections for interstitial fibrillar collagens (red) in mice treated with control antibody13C4 or antieTGF-b antibody 1D11 (C) or treated with vehicle (VEH) or
SB431542 (D) for 10 days after UUO surgery, withmorphometric quantification offibrillar collagen fromwhole sagittal kidney sections. E and F: qPCR analysis showed
that increased expression of collagen I(a1) (Col1a1) and transcripts of a-SMA in UUO kidney were inhibited by either 1D11 antibody (E) or SB431542 (F). G and H:
Immunofluorescence detection of Coll-GFPþ cells in control and day-4 UUO kidneys treated with 13C4, 1D11, and SB431542 and in control kidney (G), with
quantification of Coll-GFPþ cells (H). I and J: Confocal micrographs show Coll-GFPþ cells colabeled with myofibroblast marker a-SMA (Coll-GFPþa-SMAecells are
indicated byarrows, I),with quantificationof thepercentage of Coll-GFPþ cells witha-SMAexpression (J).K andL: Fluorescence-activated cell sortingquantified the
percentageofa-SMAþ cells in Coll-GFPþPDGFR-aþ cells (K) and themeanpeakfluorescence ofa-SMA in Coll-GFPþPDGFR-aþ cells (L) of control andUUOkidneys from
mice treatedwith 13C4, 1D11, or SB431542. Blots (A andB) are representative of sixmice per group. Data are expressed asmeans� SEM. nZ 6 per group (C-F,H, J);
nZ 3 per group (K, L). *P < 0.05, **P < 0.01. Scale bars: 25 mm (C, D, G); 20 mm (I).

TGF-b1 Stimulates Signaling to Pericytes
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culture conditions, primary pericytes weakly expressed
a-SMA, but expression was markedly up-regulated by
TGF-b1. This up-regulation was almost completely abro-
gated by the TGF-b1 inhibitor (Figure 1, F and G).

Next, we administered 1D11 antibodies or SB431542 to
mice with UUO. We studied the effect of these inhibitors of
TGF-b1 signaling on pericyte-myofibroblast transition and
its consequences in vivo in the UUO model of kidney injury.
Compared with mice treated with the isotype control anti-
body 13C4 or vehicle, the expected increased levels of
p-Smad2 and a-SMA in UUO kidneys were attenuated on
day 4 of UUO in mice treated with 1D11 antibody or
SB431542 (Figure 2, A and B); by day 10, the extent of
interstitial fibrosis and of gene transcripts of Col1a1 and
a-SMA (encoded by ACTA1) were all markedly attenuated
by TGF-b1 signaling inhibition (Figure 2, CeF). We
examined the kidneys of Coll-GFP mice for pericyte
expansion and found that 1D11 and SB431542 adminis-
tration had decreased the expanded population of Coll-
GFPþ cells in UUO kidneys by 22% and 28%, respectively
(Figure 2, G and H). To determine the effect of TGF-bR
blockade on a-SMA expression in Coll-GFPþ cells,
regardless of the inhibitory effect on cell number, we
assessed the proportion of Coll-GFPþ cells that coexpressed
a-SMA at day 4 of UUO by staining or FACS analysis. In
the presence of control antibodies more than 96.8% of Coll-
GFPþ cells coexpressed a-SMA, whereas in the presence of
1D11 antibodies and SB431542 the proportion of Coll-
GFPþ cells coexpressing a-SMA fell to 75.5% and 81.1%,
respectively (Figure 2, I and J). Using a combination of
Coll-GFP expression and the kidney pericyte marker
PDGFR-a (which is not expressed by podocytes) to identify
pericytes,13 FACS analysis also identified a significant
reduction in the proportion of pericytes that expressed
a-SMA and the mean peak fluorescence of a-SMA in the
cells that were expressing a-SMA (Figure 2, K and L, and
Supplemental Figure S6).

These different approaches, measuring either the number
of positive (Coll-GFPþ or a-SMAþ) cells or the relative
expression of these proteins within the positive cells, indeed
showed modest inhibition, compared with the inhibition of
p-Smad2 and a-SMA in Western blot analyses (Figure 2, A
and B), which might be due to incomplete inhibition of
TGF-b1 signaling and/or the fact that pericytes might
constitutively express low levels of a-SMA even without
TGF-b1 signaling.

Because we had discovered that TGF-bR blockade
reduces the number of Coll-GFPþ cells in the UUO kidney,
in addition to reducing a-SMA expression in these cells
(Figure 2), we tested whether TGF-b1 inhibition inhibited
proliferation of Coll-GFPþ pericytes. In control antibody
(13C4)-treated UUO kidneys at day 4, 54% of the Coll-
GFPþ cells in kidneys were in cell cycle, as determined by
nuclear expression of PCNA (Figure 3, A and B). In 1D11-
treated kidneys, the index of proliferating Coll-GFPþ cells
was only 34% (Figure 3, A and B). We therefore
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hypothesized that TGF-b1 would stimulate pericyte prolif-
eration. Primary pericyte cultures were prepared in serum-
free medium. DNA content analysis indicated that more
than 80% of the cells were in G0/G1 phase (Figure 3, C and
D). PDGF-BB stimulates cells into cell cycle (Figure 3, C
and D). Surprisingly, under identical conditions, TGF-b1
did not stimulate pericytes into or through cell cycle; in fact,
it tended to arrest pericytes further in G0/G1 (Figure 3, C
and D). Our studies thus indicate that, although TGF-b1
signaling stimulates pericyte activation and transition to
myofibroblasts both in vitro and in vivo, it stimulates peri-
cyte proliferation only in vivo, not in vitro. These findings
suggest that TGF-b1 may stimulate pericyte proliferation
in vivo by an indirect mechanism.

TGF-b1 Signaling Induces a Profibrotic Phenotype in
Injured Kidney Epithelial Cells

Because TGF-b1 stimulated canonical TGF-b1 signaling in
epithelial cells as well as in pericytes (Figure 1), we
hypothesized that TGF-b1 signaling in epithelium may be
responsible for release of proproliferative factors that could
contribute to pericyte proliferation in vivo. We have
previously shown that PDGF signaling in pericytes is
a major stimulant of pericyte detachment, migration, and
transition to myofibroblasts.13 In whole kidney, TGF-bR
inhibition markedly down-regulated both TGFB1 and
PDGFB gene transcripts (Figure 4A). TGF-b1 and
PDGFB proteins were easily identified in the cytoplasm of
dilated, injured epithelium of UUO kidney at day 4, as
well as in perivascular and interstitial cells (Supplemental
Figure S7A). To more accurately determine the expression
of PDGFB and TGF-b1 in injured PTECs compared with
uninjured PTECs, we purified Kim1-expressing PTECs
from day-4 UUO kidney and LTL-expressing PTECs from
normal kidney by FACS of single-cell preparations
(Figure 4B and Supplemental Figure S7B). Injured UUO
PTECs expressed high levels of PDGFB and TGFB1 gene
transcripts. Both gene transcripts were down-regulated in
kidneys treated with 1D11 or SB431542 (Figure 4B).
These findings suggest that TGF-bR ligation by TGF-b1
simulates both TGF-b1 and PDGFB production by
epithelial cells in vivo.

TGF-b1 Signaling Blockade Limits G2/M Arrest of
Kidney Epithelial Cells

Recent investigations have shown that, during injury, kidney
epithelial cells become arrested at the G2/M cell cycle check-
point. Cell cycle arrest, of itself, endows a profibrotic pheno-
type on epithelial cells, and factors that drive cells through
this cell cycle arrest are beneficial for kidney repair.22,36 We
therefore tested whether TGF-b1 signaling in epithelium trig-
gers a profibrotic phenotype by arresting cells in G2/M. UUO
of kidneys triggered epithelial cells into cell cycle, detected by
Ki-67 protein expression (Figure 5, A and B), but many
ajp.amjpathol.org - The American Journal of Pathology
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Figure 3 TGF-b1 signaling stimulated cell proliferation of Coll-GFPþ

pericytes in vivo, but not in vitro. A and B: Blocking TGF-b1 signaling by
1D11 decreased proliferation of Coll-GFPþmyofibroblasts in UUO kidneys.
Immunofluorescence micrographs show Coll-GFPþ cells (arrows) cola-
beled with the cell proliferation marker PCNA in control or day-4 UUO
kidneys (A), with quantification of the percentage of PCNAþ cells in all
Coll-GFPþ cells (B). Renal tubules are indicated by the letter T. C and D:
Platelet-derived growth factor (PDGF-BB), but not TGF-b1, stimulated
proliferation of primary cultured kidney pericytes. Cell cycle profiles were
determined by flow cytometric analysis in serum-starved cells without
(Con) or with TGF-b1, PDGF-BB stimulation for 24 hours (C) or at different
time points, from 8 to 48 hours (D). Data are expressed as means� SEM.
nZ 6 per group (A, B); nZ 3 per group (C, D). *P< 0.05, **P< 0.01,
and ***P < 0.001. Scale barZ 25 mm.

TGF-b1 Stimulates Signaling to Pericytes
(66.3%) of these were in G2/M, detected by positive nuclear
staining of histone H3 with phosphorylation at Ser10 (p-H3)
(Figure 5, A and C). However, in UUO kidneys of mice with
blockade of TGF-bR signaling (using 1D11 antibodies or
SB431542), the total number of kidney epithelial cells in cell
cycle was decreased, and, in addition to those cells in cycle,
many fewer were in the G2/M phase. These findings indicate
that TGF-b1 may be an important factor in triggering G2/M
arrest in kidney epithelium.

TGF-b1 Provokes Epithelial Cell Cycle G2/M Arrest and
Release of Factors That Drive Pericyte to Myofibroblast
Differentiation in Vitro

To study the effect of TGF-b1 on the phenotype of epithelial
cells further, we generated PTEC cultures (Supplemental
Figure S8) and stimulated these unsynchronized cultures
with TGF-b1. Over a 72-hour period, TGF-b1 increased the
proportion of PTECs in G2/M phase (Figure 6, AeC). TGF-
b1etreated PTECs up-regulated expression of profibrotic
The American Journal of Pathology - ajp.amjpathol.org
cytokines, including TGF-b1 and PDGFB (Figure 6D). To
test the importance of epithelial factors in the pericyte transi-
tion to myofibroblasts, we performed a supernatant transfer
experiment by harvesting conditioned medium from TGF-
b1etreated PTECs and applying it to primary kidney pericyte
cultures. After 24 hours of coincubation, supernatants from
TGF-b1etreated PTECs stimulated pericyte proliferation and
up-regulated gene transcripts of Col1a1 and a-SMA in peri-
cytes (Figure 6, E and F). Using specific antibody to block
PDGFR-b and TGF-bR signaling, we showed that the in-
creased cell proliferation and gene transcripts of Col1a1 and
a-SMA in kidney pericytes induced by conditioned medium
were PDGFB-dependent and TGF-b1-dependent, respec-
tively (Figure 6F).

TGF-b1 increased phosphorylation of Smad2 in primary
epithelial cultures, and this effect was inhibited by SB431542
(Figure 6G). TGF-bR/Smad2 signaling resulted in increased
expression of the cyclin-dependent kinase inhibitor p21 and
decreased expression of the cyclin-dependent kinase inhi-
bitor p27 (Figure 6G). Inhibition of TGF-bRI signaling by
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Figure 5 Blocking TGF-b1 signaling prevents G2/M arrest of tubular
epithelial cells. A: Confocal micrographs show tubular epithelial cells in cell
cycle (staining with pan-cell cycle marker Ki-67-specific antibody) and in
G2/M phase [staining with phosphorylation-specific antibody against
histone H3 with Ser10 phosphorylation (p-H3)]. The p-H3 staining shows
chromatin patterns depending on the cells in respective G2 and M phases of
the cell cycle. Basement membrane nidogen staining was used to identify
the tubules. Ki-67þp-H3þ tubular epithelial cells are indicated by arrows.
B and C: Blocking TGF-b1 signaling by either 1D11 or SB431542 decreased
tubular epithelial cells entering cell cycle (B) and the proportion of tubular
epithelial cells in G2/M phase (C). Data are expressed as means � SEM.
n Z 6 per group. *P < 0.05. Scale bar Z 20 mm.

Figure 4 Blocking TGF-b1 signaling inhibits profibrotic phenotype of
injured tubular epithelial cells. A: qPCR analysis showed that increased
expression of TGFB1 and PDGFB gene transcripts in day-4 UUO kidney was
inhibited by either 1D11 antibody or SB431542. B: qPCR analysis of PTECs
purified from control and day-4 UUO kidneys using FACS showed that
blocking TGF-b1 signaling inhibited the increased transcripts of TGF-b1 and
PDGFB in UUO-injured PTECs. Data are expressed as means � SEM. n Z 6
per group (A); n Z 3 per group (B). *P < 0.05, **P < 0.01.
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SB431542 had the capacity to reverse G2/M cell cycle delay
and to down-regulate transcripts of the profibrotic cytokines
PDGFB and TGF-b1 in TGF-b1etreated PTECs (Figure 6,
H and I, and Supplemental Figure S9). Silencing p21 re-
versed cell cycle G2/M arrest of TGF-b1etreated PTECs
(Figure 6K and Supplemental Figure S10), but did not
affect transcripts of the profibrotic cytokines PDGFB and
TGF-b1.

To explore the mechanism by which TGF-bR signaling
activates transcripts of the profibrotic cytokine PDGFB and
TGF-b1, we dissected noncanonical downstream signaling
events. TGF-b1 stimulated phosphorylation of p38 and
JNK, but not ERK (Figure 6J). We next tested whether
inhibiting JNK activation or p38 activation with the small-
molecule inhibitor SP600125 (for JNK) or SB203580 (for
p38) could reverse G2/M cell cycle delay or transcripts of
profibrotic cytokines in TGF-b1etreated PTECs (Figure 6,
H and I, and Supplemental Figure S9). In contrast to the
inhibitory effect of SB431542, neither SP600125 nor
SB203580 was capable of inhibiting cell cycle delay
(Figure 6H). However, inhibition of the JNK signaling
pathway specifically inhibited transcripts of the profibrotic
cytokines PDGFB and TGF-b1, whereas inhibition of p38
had no effect (Figure 6I and Supplemental Figure S9).

Discussion

In the present study, we demonstrated that, after UUO
injury, TGF-b1 promoted tubular epithelial cell cycle arrest
in G2/M and stimulated profibrotic cytokine production
through up-regulation of p21 and activation of the JNK
pathway, respectively. Injured epithelial cells play a central
126
role in activating pericyte-myofibroblast transition through
generation of PDGF and TGF-b1, finally leading to patho-
logical fibrosis (Figure 7).
Within 1 day after surgery, the subsequent mechanical

injury to the kidney induced both epithelial cells and pericytes
to phosphorylate Smad2, indicating that activation of TGF-b1
signaling is a very early event, much earlier than the activation
of PDGFR signaling.13 In normal and diseased kidney, the
TGF-bR is widely expressed, including kidney epithelium
and pericytes, whereas synthesis of the ligand, TGF-b, is most
up-regulated in injured tubular epithelium; inflammatory
macrophages and endothelial cells of the peritubular capil-
laries in UUO kidney express lower levels of TGF-b.14,46

Previous studies have identified TGF-b as an important
cytokine in myofibroblast expansion and progressive fibrosis
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Figure 6 TGF-b1 stimulated profibrotic epithelial signaling to pericytes. AeC: TGF-b1 arrested nonsynchronizing PTECs in cell cycle G2/M phase. D: TGF-b1
induced profibrotic phenotype of PTECs with increased transcripts of TGF-b1 and PDGFB. E: Conditioned medium from TGF-b1etreated PTECs (TGF-b1-PTEC)
increased cell number in primary kidney pericyte culture. White bars, Con-PTEC; black bars, TGF-b1-PTEC. F: Conditioned medium from TGF-b1-PTEC increased cell
proliferation and transcripts of Col1a1 and a-SMA in primary kidney pericyte cultures, which were blocked by antiePDGFR-b antibody and antieTGF-b antibody,
respectively.G: TGF-b1 increased Smad2 phosphorylation and p21 expression, but decreased p27, all of whichwere reversed by the TGF-bRI inhibitor SB431542.H:
TGF-bRI inhibitor SB431542, but not pan c-jun NH2-terminal kinase (JNK) inhibitor SP600125 and p38 inhibitor SB203580, reversed cell cycle G2/M arrest of TGF-
b1etreated PTECs. I: SB431542 and SP600125, but not SB203580, decreased transcripts of PDGFB in TGF-b1etreated PTECs. J: TGF-b1 induced phosphorylation of
p38 (p-p38) and JNK (p-JNK), but not extracellular regulated kinase (p-ERK). K: Silencing p21 reversed cell cycle G2/M arrest of TGF-b1etreated PTECs.
The control was nontargeting siRNA. Data are expressed as means � SEM. Quantification was from three independent experiments. *P < 0.05, **P < 0.01, and
***P < 0.001.

TGF-b1 Stimulates Signaling to Pericytes
not only in chronic kidney disease, but also in injury and in the
loss of epithelial cells known as tubular atrophy.25,27,30,31,47,48

A common feature of kidney injury models that result in
interstitial fibrosis induced by ureteral obstruction, ischemia-
reperfusion, or aristolochic acid is epithelial G2/M arrest,
The American Journal of Pathology - ajp.amjpathol.org
which contributes directly to a profibrotic phenotype of the
epithelial cell.22 A presumed central role of G2/M arrest in
regulating the epithelial profibrotic phenotype was demon-
strated by administration of an inhibitor of the nuclear factor
p53, which attenuates fibrosis in the unilateral postischemic
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kidney. Although the causal association between G2/M arrest
and a fibrotic outcome is further supported by reinterpretation
of many previous studies,49e52 the common pathway leading
to tubular G2/M arrest in different animal models is unclear.
In the present study, blocking TGF-b1 signaling attenuated
epithelial G2/M arrest, which supports a role for TGF-b1
signaling in both cell cycle regulation and profibrotic dedif-
ferentiation of injured epithelial cells. In support of the in vivo
findings, our in vitro epithelial cell culture confirmed that
TGF-b1 arrested cells in G2/M phase, but at the same time
increased expression of profibrotic factors TGF-b1 and
PDGFB. In accord with our findings in tubular epithelial
cells, previous studies have shown that TGF-b1 induces cell
cycle G2/M arrest in cultured podocytes.53 Cell cycle arrest
and profibrotic cytokine production was reversed by TGF-
bRI kinase inhibitor SB431542 in TGF-b1etreated tubular
epithelial cells, which confirms the role of TGF-bR signaling
in the cell cycle regulation and profibrotic dedifferentiation.
In the present study, TGF-b1 released tubular epithelial cells
from G0/G1 phase by decreased p27 levels, but further
arrested cells in G2/M phase by increased p21 through
a TGF-bR-dependent pathway. In accord with our data, in
Figure 7 Schematic of TGF-b1 stimulated profibrotic epithelial
signaling to pericytes during fibrotic kidney injury. Fibrotic injury induced
TGF-b1 production of tubular epithelial cells. TGF-b1 then induced G2/M
cell cycle arrest and profibrotic phenotype through up-regulation of p21
and activation of the JNK pathway, respectively. TGF-b1 and PDGF subse-
quently stimulated pericyte-myofibroblast transition through differentia-
tion and proliferation, respectively.
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other studies TGF-b1 decreased p27 in primary epithelial
cultures, which typically provokes cell cycle arrest in G1
phase, but increased p21, which regulates progression
through S phase and also the G2 DNA checkpoint.54e57

Although the present study is the first to report this
important connection, previous reports can be reinterpreted
as supportive of the involvement of p21 in TGF-b-induced
kidney epithelial G2/M arrest.55,58 However, our data did
not support the role of up-regulated p21 in the profibrotic
cytokine production of TGF-b1etreated tubular epithelial
cells. TGF-b1 itself activated many signaling pathways,
including Smad, JNK, and p38, through TGF-bR in cultured
tubular epithelial cells. Among these activated signaling
pathways, inhibitor studies using SP600125 indicated that
JNK signaling was responsible for mediating the TGF-bR
downstream signaling that resulted in expression of profi-
brotic cytokines. Specific JNK inhibition by SP600125 was
previously shown to attenuate fibrosis in a unilateral post-
ischemic kidney model.22 Thus, TGF-b1 can induce cell
cycle arrest and profibrotic cytokine production of injured
tubular epithelial cells through disparate intracellular
signaling pathways, further supporting the important role of
TGF-b1 and tubular epithelial cells in kidney fibrosis.
The early response to kidney injury, irrespective of

underlying mechanisms, consists of an expanding pop-
ulation of interstitial cells and deposition of collagen.2,3 The
expanding interstitial cells comprise collagen-producing
myofibroblasts and inflammatory leukocytes.2,3,36,46,59

A large population of endogenous cells derived from
Foxd1-expressing stromal precursors overlying cap mesen-
chyme during embryogenesis is the source of myofibroblast
precursors.3,4,10 In the adult kidney, the branched processes of
these cells are embedded in the capillary basement membrane
of peritubular capillaries and are therefore considered peri-
cytes that support microvascular stability.2e4,14,15 Although
kidney pericytes are directly apposed to the abluminal surface
of endothelial cells, they are also in close proximity to the
tubular basement membrane.4,14 We have previously shown
by electron microscopy that some pericytes have processes
that abut directly on the tubular basement membrane.4,14

Moreover, there is normally a molecular and solute flux
from the tubular compartment to the peritubular capil-
lary.14,25,26,30 It makes sense, therefore, that epithelial cell
signaling (either via the interstitial space or via direct
receptor engagement on pericyte processes on the tubular
basement membrane) can regulate pericyte functions in the
kidney. Recent studies have indicated that injured tubular
epithelial cells either die through programmed cell death
(including apoptosis and autophagy) or remain in a state of
G2/M arrest with characteristic phenotypic changes,
including flattened morphology and loss of polarity.22,34,47

This injured phenotype is associated with up-regulated
TGF-b1 signaling and, as we have shown here, a profi-
brotic phenotype.3,34,47 Our experiments indicate that
supernatants generated by primary epithelial cultures can
transfer factors sufficient to stimulate pericyte-myofibroblast
ajp.amjpathol.org - The American Journal of Pathology
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transition in vitro, suggesting that soluble factors rather than
matrix-bound or membrane-tethered factors, are the major
mechanism of epithelial signaling to pericytes.

In the present study, pericytes responded to TGF-b1
differently than did kidney epithelial cells. Blocking TGF-b1
signaling decreased both pericyte proliferation and pericyte-
myofibroblast transition in theUUOkidney in vivo. However,
TGF-b1 did not directly stimulate pericyte proliferation, but it
did stimulate transition to myofibroblasts. The mechanism by
which TGF-b1 stimulates pericyte proliferation in vivo has
been shown to be indirect, through activation of local
epithelium to generate pericyte growth factors, including
PDGF.13,26 In contrast, in the present study TGF-b1 induced
pericyte-myofibroblast transition in vitro, but PDGF did not.
Supernatant transfer from TGF-b1-activated epithelial cells
stimulated both pericyte proliferation and myofibroblast
transition, suggesting that the activated epithelial cells can
produce factors sufficient for pericyte transition and expan-
sion. Thus, PDGF andTGF-b1 exert distinct effects on kidney
pericytes, both of which are necessary for the population
expansion of myofibroblasts.

It is likely that PDGF and TGF-b1 form a positive feedback
network in vivo by up-regulating one another in injured
epithelial cells, in interstitial cells (including macrophages),
and in endothelial cells.13,14 Injured tubular epithelium appar-
ently plays a central role in activating pericyte-myofibroblast
transition and renal fibrosis through responding to the
injuries, sensing the injury-stimulated cytokine (TGF-b1 in the
present study), and amplifying the profibrotic cytokines.
Injury-induced or TGF-b1-induced cell death of tubular
epithelial cells further contributes to the attrition of nephrons
and loss of renal function.34 Further studies are required to
define other critical factors released by injured epithelium that
can promote pericyte detachment from the capillaries and
sustain myofibroblast expansion. In addition, further studies
will be required to understand the underlying signaling
cascades that explain the distinct cellular responses of kidney
pericytes to TGF-b1, compared with kidney epithelial cells.

In conclusion, TGF-b1 induces tubular epithelial cell cycle
arrest in G2/M through up-regulation of p21 and stimulates
profibrotic cytokine production in a TGF-bR/Smad-depen-
dent pathway, thereby stimulating pericyte proliferation and
transition to myofibroblasts by effector cytokines PDGF and
TGF-b1, respectively (Figure 7). By blocking TGF-bR
signaling, we can promote normal cell cycle progression in
injured tubular epithelial cells and prevent pericyte-
myofibroblast transition by both direct and indirect mecha-
nisms. TGF-bR/Smad and p21 signaling effectors are
important therapeutic targets for attenuating interstitial
fibrosis and chronic kidney disease progression.
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