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Abstract
Purpose—To investigate the effect of standardized and study-specific human brain diffusion
tensor templates on the accuracy of spatial normalization, without ignoring the important roles of
data quality and registration algorithm effectiveness.

Materials and Methods—Two groups of diffusion tensor imaging (DTI) datasets, with and
without visible artifacts, were normalized to two standardized diffusion tensor templates (IIT2,
ICBM81) as well as study-specific templates, using three registration approaches. The accuracy of
inter-subject spatial normalization was compared across templates, using the most effective
registration technique for each template and group of data.

Results—It was demonstrated that, for DTI data with visible artifacts, the study-specific
template resulted in significantly higher spatial normalization accuracy than standardized
templates. However, for data without visible artifacts, the study-specific template and the
standardized template of higher quality (IIT2) resulted in similar normalization accuracy.

Conclusion—For DTI data with visible artifacts, a carefully constructed study-specific template
may achieve higher normalization accuracy than that of standardized templates. However, as DTI
data quality improves, a high-quality standardized template may be more advantageous than a
study-specific template, since in addition to high normalization accuracy, it provides a standard
reference across studies, as well as automated localization/segmentation when accompanied by
anatomical labels.
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INTRODUCTION
The potential of diffusion tensor imaging (1,2) (DTI) for detecting differences in brain tissue
architecture and micro-structural integrity between healthy subjects and patients has been
widely recognized (3–8). Several studies perform voxel-wise analysis to automatically
investigate the whole brain for micro-structural differences across groups of subjects. This
approach requires inter-subject spatial normalization of DTI data to minimize differences in
brain positioning and structural features across subjects. Any remaining inter-subject DTI
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differences are then interpreted as differences in measured diffusion properties due to a
disease process, normal development, or other factors (9). Thus, the accuracy of spatial
normalization influences the accuracy of voxel-wise inter-group comparisons. The accuracy
of spatial normalization depends on a) the quality of the available data, b) the effectiveness
of the registration technique used, and c) the characteristics of the DTI brain template used
as a reference (10). Different types of DTI templates have been developed to date (11). The
present study focuses on the effect of DTI template selection on the accuracy of inter-subject
spatial normalization, without however ignoring the important roles of data quality and
registration algorithm effectiveness.

Human brain DTI templates can be divided into two categories: study-specific (11,12) and
standardized (10,13–15). A study-specific DTI template is typically developed by averaging
the data collected for the purposes of a particular study. The main advantage of a study-
specific template is that, in theory, if carefully constructed (e.g. using an effective
registration technique), it can be most representative of the characteristics of the data under
investigation, thereby maximizing spatial normalization accuracy for that study (11).
However, study-specific DTI templates are typically not coupled with a set of anatomical
labels (atlas). Thus, registration to study-specific DTI templates does not directly
accommodate automated segmentation of various white matter brain structures, or
automated localization of detected brain changes. On the other hand, standardized DTI
templates are developed by averaging data from a group of healthy subjects, independent of
a specific clinical or research study. One advantage of a standardized template is that it may
be part of an atlas (13,14), thereby allowing automated segmentation, localization, or
seeding for tractography (16,17). Furthermore, a standardized template may be constructed
from a larger number of subjects than those available in a specific study, and may therefore
be characterized by lower noise levels than the study-specific template (18) (which is
important for registration accuracy). However, care must be taken when using a
standardized template, since a single such template is not representative of the brain of all
human subjects (14).

It was recently demonstrated that carefully constructed study-specific DTI brain templates
improve inter-subject spatial normalization compared to standardized templates (11).
However, only one publicly available standardized template was evaluated, and only DTI
data with visible magnetic susceptibility-induced artifacts was used. Standardized templates
of higher quality are now publicly available (10,15), and DTI data acquisition techniques
that substantially reduce or minimize susceptibility and other artifacts have been developed
(19–23). Since the characteristics of the template and the quality of the data under study
influence the accuracy of spatial normalization, the role of standardized and study-specific
templates in inter-subject spatial normalization warrants further investigation. Therefore, the
purpose of this study was to investigate the effect of standardized and study-specific human
brain diffusion tensor templates on the accuracy of spatial normalization, considering DTI
datasets with different levels of artifacts and different registration algorithms.

MATERIALS AND METHODS
DTI Data

Two groups of DTI data were used in this study. Written informed consent was provided by
all participants according to procedures approved by the local institutional committees for
the protection of human subjects. None of the datasets was included in the development of
the standardized templates used in this study.

Group 1 consisted of data from 22 healthy human subjects (9 male, 32.3 ± 5.9 years of age,
min age = 22 years, max age = 40 years) (13 female, 28.8 ± 4.6 years of age, min age = 22
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years, max age = 36 years), obtained from the IXI brain database (24) (http://www.brain-
development.org). DTI data in Group 1 was collected on a 3 Tesla (T) Philips MRI scanner
(Best, Netherlands), using a single-shot echo-planar (EPI) DTI sequence with the following
imaging parameters: TR = 12,000 ms, TE = 51 ms, field-of-view 224 mm × 224 mm, 2 mm
slice thickness, 64 axial slices, 128 × 128 image matrix, b = 1,000 s/mm2 for 15 diffusion
gradient directions, and parallel imaging with an acceleration factor of 2. Group 1 data was
used to study the effect of standardized and study-specific DTI templates on the accuracy of
spatial normalization of DTI data with visible artifacts.

Group 2 consisted of data from 22 healthy human subjects (9 male, 32.8 ± 5.8 years of age,
min age = 20 years, max age = 40 years) (13 female, 28.8 ± 4.8 years of age, min age = 21
years, max age =36 years), collected on a 3 T General Electric MRI scanner (GE, Waukesha,
WI) using Turboprop-DTI (25) and the following imaging parameters: TR = 5,800 ms, TE =
94 ms, 8 spin-echoes per TR, 5 k-space lines per spin-echo, 128 samples per line, 16 blades
per image, field-of-view 24 cm × 24 cm, 3 mm slice thickness, 36 axial slices, 256 × 256
image matrix, b = 900 s/mm2 for 12 diffusion gradient directions (minimum energy scheme
(26)), and two b = 0 s/mm2 image-volumes. The sex and age of the subjects was matched for
Groups 1 and 2. Group 2 data was used to study the effect of standardized and study-specific
DTI templates on the accuracy of spatial normalization of DTI data without visible artifacts.

Pre-processing
For each dataset of Group 1, diffusion-weighted (DW) and b = 0 s/mm2 image-volumes
were co-registered using TORTOISE (27) to correct bulk motion and eddy-current
distortions. A similar approach was followed for the data of Group 2 to correct bulk motion
only, since eddy-current distortions are minimal in Turboprop-DTI (20). All corrected
datasets from Groups 1 and 2 were then interpolated to cubic 1 mm3 voxels using trilinear
interpolation. Finally, diffusion tensors were estimated for each dataset. Eigenvalues and
eigenvectors were derived from the diffusion tensors, and maps of fractional anisotropy
(FA) and trace of the diffusion tensor were generated (2).

DTI Registration
Three publicly available DTI registration techniques were used for registration of DTI data
to the different templates: DTIGUI (28), MedINRIA (29), and DTITK (30). In DTIGUI,
gray matter, white matter and cerebrospinal fluid are first segmented based on FA and trace
maps, and the three tissue components are registered to the reference by a high-dimensional
elastic registration method (31). The resulting deformation is then applied to the DTI data,
and the tensors are reoriented (32). In contrast to DTIGUI, MedINRIA performs registration
based on full tensor information, using a fast diffeomorphic demons algorithm (29). Also,
the exact gradient of the registration objective function is calculated, and tensor reorientation
with the finite-strain approach is incorporated and used as an additional constraint in the
registration (33). DTITK is also tensor-based and performs piecewise affine registration
with explicit optimization of tensor orientation. The finite-strain strategy is used for tensor
reorientation during registration, while the preservation of principal direction approach is
used for the final re-slicing (33). All registrations of DTI data to the standardized and study-
specific templates were repeated with each of the three algorithms.

Diffusion Tensor Human Brain Templates
Two standardized brain templates were used in this work: the ICBM81 (13) and the
IIT2mean (10). The ICBM81 template was constructed by averaging DTI data from 81
healthy subjects (18–59 years of age), collected on two 1.5 T MRI scanners using EPI-based
DTI sequences with parallel imaging and an acceleration factor of 2. Affine registration was
used for spatial normalization of the 81 datasets prior to averaging. The IIT2 template was
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constructed by averaging DTI data from 67 healthy subjects (20–40 years of age), collected
on a 3 T MRI scanner using Turboprop-DTI (10). DTIGUI was used for spatial
normalization of the 67 datasets prior to averaging. It was previously shown that the IIT2
template is characterized by higher image sharpness, provides the ability to distinguish
smaller white matter fiber structures, has fewer image artifacts, and contains diffusion tensor
information that is more representative of single-subject human brain data than ICBM81
(10,15). The ICBM81 and IIT2 templates were used in this study since they a) are publicly
available, b) are in the same space (ICBM152), c) were constructed based on data with and
without image artifacts d) from large numbers of subjects e) and age groups similar to those
studied here, and f) contain full tensor information. Therefore, use of these two templates
allowed tensor-based registration and minimized biases and nuisance factors in the
comparison of spatial normalization accuracy achieved with standardized templates of
different quality.

Study-specific templates were constructed for Group 1 and Group 2 data, using a
population-based approach (34). For each group, the DTI data from a single subject was
registered to the data from the remaining 21 subjects of the same group, using DTITK. The
21 transformations were then averaged, and the average transformation was applied to the
data from the single subject. The same procedure was repeated for all subjects. The study-
specific template of each group was then constructed by averaging the spatially transformed
DTI data of the group.

Metrics of Inter-subject Spatial Normalization Accuracy
Group 1 and Group 2 DTI data were registered to the standardized and study-specific
templates using all three registration techniques (Fig.1). In each case, white matter was
identified through K-means clustering of the mean FA maps of the corresponding
normalized data. K-means clustering was preferred instead of thresholding the mean FA
maps, since no single FA threshold can segment WM similarly in data collected with
drastically different DTI sequences. A number of metrics were used to assess the accuracy
of spatial normalization achieved for each combination of: group of data, registration
technique and template. These metrics have been described in detail previously and are
simply listed here to avoid repetition. The average cross-correlation of FA values (corrFA) in
white matter was estimated considering all possible pairs of subjects (10). The average
Euclidean distance of tensors (DTED) for all possible pairs of subjects was estimated in
each voxel (10). The average Euclidean distance of the deviatoric tensors (DVED) was also
estimated (10). The average log-Euclidean tensor distance (LETD) for all possible pairs of
subjects was estimated in each voxel (35). The average overlap of eigenvalues-eigenvectors
between tensors (OVL) of all possible pairs of subjects was estimated in each voxel (10).
The coherence of primary eigenvectors from co-registered tensors (COH) was estimated in
each voxel (10). The 95% cone of uncertainty (36) (COU) and the total variance of the
diffusion tensor (37) (TVDT) were estimated in each voxel considering co-registered tensors
from all subjects. Maps of the average DTED, DVED and LETD, the average OVL, the
COH, the COU and the TVDT were produced. Histograms of these quantities in white
matter were also generated. Each histogram was normalized with the corresponding total
number of white matter voxels.

Comparison of Inter-Subject Spatial Normalization Accuracy Across Registration
Techniques

For each combination of group of data and template (Fig.1), spatial normalization accuracy
was first compared for different registration methods. For that purpose, the average corrFA
in white matter was compared across registration techniques using analysis of variance
(ANOVA) with Tukey’s honestly significant difference post hoc test accounting for multiple
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comparisons. Differences were considered significant at p<0.01. Also, for each combination
of group of data and template, histograms of the metrics of spatial normalization accuracy
listed in the previous section were compared across registration techniques. Based on the
results of the above comparisons, the most effective registration technique for each
combination of group of data and template was identified.

Comparison of Inter-Subject Spatial Normalization Accuracy Across Templates
For each group of data, spatial normalization accuracy was compared across templates using
the preferred registration technique for each template. The average corrFA in white matter
was compared across templates using ANOVA with Tukey’s honestly significant difference
post hoc test accounting for multiple comparisons. Also, histograms of the metrics of spatial
normalization accuracy were compared using the two-sample Kolmogorov-Smirnov (KS)
test. Differences were considered significant at p<0.01. Furthermore, regions of interest
(ROI) were selected in the following white matter structures based on the mean FA maps of
the corresponding normalized datasets: 1) in relatively thin white matter structures where
misregistration across subjects might have a substantial effect on metrics of spatial
normalization accuracy: corticopontine tract (cpt), column of the fornix (fxc), medial
lemniscus (ml), and cingulum (cg); 2) in relatively large structures where misregistration
might have a relatively smaller effect on metrics of spatial normalization accuracy: splenium
of the corpus callosum (scc), genu of the corpus callosum (gcc) and internal capsule (ic), in
both hemispheres (Fig. 2). All ROIs were selected along the skeleton of white matter to
avoid partial volume effects, and spanned three axial slices with 1mm slice thickness. The
mean and standard deviation of metrics of spatial normalization accuracy were calculated in
the ROIs. ANOVA with Tukey’s honestly significant difference post hoc test accounting for
multiple comparisons was used to compare normalization accuracy in the selected ROIs
across templates. Differences were considered significant at p<0.01.

RESULTS
Group 1 data contained visible artifacts in the frontal and temporal lobes (Fig.3A) due to
magnetic susceptibility variations. In contrast, Group 2 data did not contain visible artifacts
(Fig.3B).

Comparison of Inter-Subject Spatial Normalization Accuracy Across Registration
Techniques

Tables 1 and 2 include the average corrFA values for registration of Group 1 and 2 data,
respectively, to the standardized and study-specific templates using three registration
techniques. DTIGUI resulted in the highest corrFA for registration of a) Group 1 data to the
ICBM81 and IIT2 templates, and b) Group 2 data to the ICBM81 template. DTITK resulted
in the highest corrFA for registration of a) Group 1 data to the study-specific template, and b)
Group 2 data to the IIT2 and study-specific templates.

In histograms of the various spatial normalization accuracy metrics, MedINRIA was shown
to be the preferred registration technique for registration of a) Group 1 data to all templates,
and b) Group 2 data to the ICBM81 template, since it resulted in a higher percentage of
white matter voxels with high COH, low COU and high OVL (Fig.4). DTITK was shown to
be the preferred registration technique for registration of Group 2 data to the IIT2 and study-
specific templates, since it resulted in a higher percentage of white matter voxels with high
COH, low COU and high OVL (Fig.4). Histograms of the remaining spatial normalization
accuracy metrics (average DTED, average DVED, average LETD, TVDT) provided the
same results.
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The tests based on the average corrFA in white matter did not indicate the same preferred
registration techniques for some combinations of data-groups and templates as the tests
based on all other quantities. This was due to the fact that the average corrFA in white matter
assesses spatial normalization accuracy for FA maps, while the rest of the quantities assess
spatial normalization accuracy for other types of tensor-derived information, including the
complete tensor. Since the average corrFA is based only on FA information, and the results
from all other quantities were in agreement with each other, the registration method used for
each combination of a group of data with a template in the rest of this work was decided
according to the results for the average DTED, DVED, and LETD, the average OVL, the
COH, the COU and the TVDT. Therefore, in the comparisons of spatial normalization
accuracy across templates, MedINRIA was used for registration of Group 1 data to all
templates, as well as for registration of Group 2 data to the ICBM81 template, and DTITK
was used for registration of Group 2 data to the IIT2 and study-specific templates (Fig.4).
Finally, as shown in the discussion section, the same conclusions about the effects of
different templates on spatial normalization accuracy (main goal of this research) would be
drawn if the decision for the preferred registration technique was made exclusively based on
the average corrFA results.

Comparison of Inter-Subject Spatial Normalization Accuracy Across Templates
The average corrFA in white matter for registration of Group 1 data to the study-specific
template (0.956±0.004) was significantly higher than that for registration to the IIT2
template (0.943±0.005) (p<10−9), which was significantly higher than that for the ICBM81
template (0.936±0.006) (p<10−9). The average corrFA values for registration of Group 2 data
to the IIT2 (0.961±0.005) and study-specific templates (0.962±0.005) were similar (p=0.02),
and significantly higher than that for registration to the ICBM81 template (0.934±0.006)
(p<10−9).

Histograms of the various spatial normalization accuracy metrics for Group 1 data showed
that the study-specific template resulted in a higher percentage of white matter voxels with
high COH, low COU, high OVL, low DTED, DVED, LETD and TVDT, compared to the
IIT2 and ICBM81 templates (Fig.5A). The difference between the histograms corresponding
to the study-specific template and those corresponding to the standardized templates was
statistically significant according to the KS test (p<10−8). The difference between the
histograms corresponding to the IIT2 and ICBM81 templates was small, but statistically
significant according to the KS test (p<10−8). Histograms of the various spatial
normalization accuracy metrics for Group 2 data showed that both the study-specific and
IIT2 templates resulted in a higher percentage of white matter voxels with high COH, low
COU, high OVL, low DTED, DVED, LETD and TVDT, compared to the ICBM81 template
(Fig.5B). The difference between the study-specific or IIT2 histograms and those
corresponding to the ICBM81 template was statistically significant according to the KS test
(p<10−8). The difference between the study-specific and IIT2 histograms was small, but
statistically significant according to the KS test (p<10−8). For both groups of data, the
findings above were in agreement with the results observed in maps of the various metrics of
spatial normalization accuracy (Fig.6).

The results of ROI analysis were consistent with the above findings. More specifically, for
Group 1 data, the study-specific template resulted in significantly higher COH, lower COU,
higher OVL, lower DTED, DVED, LETD and TVDT, compared to the standardized
templates, in almost all ROIs (Fig.7). For Group 2 data, both the study-specific and IIT2
templates resulted in significantly higher COH, lower COU, higher OVL, lower DTED,
DVED, LETD and TVDT, compared to the ICBM81 template, in almost all ROIs (Fig.8).
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DISCUSSION
The accuracy of inter-subject spatial normalization of DTI data depends on the quality of the
available data, the effectiveness of the registration technique used, and the characteristics of
the DTI brain template used as a reference (10). This work focused on the effect of DTI
template selection on the accuracy of inter-subject spatial normalization, without however
ignoring the important roles of data quality and registration algorithm effectiveness. In the
following, we analyze the procedures and findings of this study and discuss the implications
for DTI research.

Three different DTI registration techniques were first tested in this work for each
combination of template and group of data. Several other DTI registration approaches have
been published to date. However, the main goal of this study was not to compare the
performance of all published DTI registration methods. That is beyond the scope of the
present research (38). The purpose of using different registration techniques was to reduce
any potential bias of the registration approach on the comparison of spatial normalization
accuracy for different templates, by identifying a preferred method for each combination of
template and data-group. The selected registration methods were appropriate and sufficient
for the purposes of this work because they a) are robust, b) are freely available and widely
used, c) allow deformations that substantially increase matching of anatomical features
across subjects, d) cover a range of DTI registration approaches that perform at or near the
highest level of published DTI registration algorithms (38). Therefore, we do not anticipate
that use of a registration technique other than the three used here will alter the main
conclusions of this work regarding the spatial normalization accuracy achieved with
standardized and study-specific templates.

A number of standardized DTI templates have been developed to date (15). The IIT2
template was used here because it is a) the only standardized tensor template developed by
nonlinearly normalizing and averaging a large number of datasets (i.e. 67) without visible
artifacts (10), similar to Group 2 data, b) it was constructed based on subjects from the age-
range of Groups 1 and 2, and c) it possesses characteristics that make it most representative
of Group 2 data, among all standardized templates. The ICBM81 template was selected
because a) it was developed based on a large number (i.e. 81) of EPI tensor datasets with
typical visible artifacts, similar to Group 1 data, b) it included subjects from the age-range of
the IIT2 template, as well as the age-range of Groups 1 and 2, and c) it is located in the same
space as the IIT2 template (ICBM152). Several other templates have been built from EPI-
based DTI data. However, some of these templates a) are not publicly available, b) are not in
ICBM152 space, c) contain data from a single subject that may not be representative of the
population in this study (39), d) were built using information from very different age-groups
than those studied here (24), and others e) do not contain full tensor information (40). These
factors may reduce spatial normalization accuracy, and those templates were therefore
avoided. The selection of the IIT2 and ICBM81 standardized templates minimized nuisance
factors and supported the objectives of this study.

A number of metrics was used to determine the registration technique that maximizes spatial
normalization accuracy for each combination of template and data-group. Since each of
these metrics is based on different portions of the information contained in the diffusion
tensor, it is not guaranteed that the results from all metrics match. In fact, in the present
work, the preferred registration technique resulting from the average corrFA values in white
matter was not the same as that resulting from all other metrics, for some combinations of
templates and data-groups. The final decision on the registration techniques used in the rest
of this study was made based on the results from metrics other than the average corrFA,
which were all in agreement. Nevertheless, using Tables 1, 2 and Figure 4, it can be seen
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that even if the preferred registration techniques were selected based exclusively on the
average corrFA results, ignoring the other metrics, the same final conclusions would be
reached about the spatial normalization accuracy achieved with different templates.

In this work, it was demonstrated that, for data with visible artifacts (Group 1), spatial
normalization accuracy was significantly higher when using the study-specific template,
compared to standardized templates (Table 1) (Fig.5–7). This finding was in agreement with
the results of a recent study (11). The artifacts of Group 1 data were primarily caused by
magnetic susceptibility variations in the frontal and temporal lobes, and consisted of signal
loss or pileup and severe distortions (Fig.3). Since susceptibility-related effects in EPI-based
acquisitions depend on subject-specific and scanner-specific factors, they are expressed
differently in each dataset. As a result, the template that better represents the distinct
features of a number of EPI-based DTI datasets is a template built from the data under
investigation. Thus, for typical EPI-based DTI data a study-specific template results in
higher spatial normalization accuracy than standardized templates.

It was also shown that for EPI-based DTI data with visible artifacts (Group 1) the IIT2
template resulted in similar or higher spatial normalization accuracy than the ICBM81
template (Fig.5,7) (Table 1), although the former was constructed from DTI data with no
visible artifacts and the latter from EPI-based data with typical artifacts. One explanation for
this finding may be that the artifacts in the data used to develop the ICBM81 template were
not similar to those in the Group 1 data, and therefore the ICBM81 template did not have an
advantage over the IIT2 template. A second factor that may have contributed to this finding
is that, in brain regions free of artifacts, the diffusion tensor information contained in the
IIT2 template is shown to be more representative of that of individual subjects from the 20–
40 years age-range, than the information contained in the ICBM81 template (10).

For data without visible artifacts (Group 2), both the IIT2 and study-specific templates
resulted in similar spatial normalization accuracy, significantly higher than that of the
ICBM81 template (Table 2) (Fig.5,6,8). This was due to the fact that, for data without
artifacts, both the IIT2 and study-specific templates are representative of the data under
investigation, since there are no features in the data that are not contained in the two
templates. Therefore, for DTI data without visible artifacts, the IIT2 template results in
similar spatial normalization accuracy as the study-specific template. This has not been
previously reported, since an earlier study on template selection used only EPI-DTI data
with typical EPI artifacts (11).

Study-specific DTI templates of the human brain can be most representative of the data
under study if carefully constructed using accurate registration algorithms based on full
tensor information, unbiased template-building approaches, and large numbers of whole-
brain datasets. One disadvantage of study-specific DTI templates is that they are typically
not part of an atlas and therefore do not directly accommodate automated segmentation.
Standardized DTI templates may be constructed from a larger number of subjects than those
available in a specific study, and may therefore be characterized by lower noise levels than
the study-specific template. In addition, a standardized DTI template provides a standard
reference across studies, and may be part of an atlas, thereby allowing automated
segmentation, localization, or seeding for tractography. However, this and other studies have
shown that for data with visible artifacts, a carefully constructed study-specific template is
more representative of the data under investigation than a standardized template, leading to
higher spatial normalization accuracy. When using data without visible artifacts, a carefully
constructed high-quality standardized template, provides similar spatial normalization
accuracy to that of the corresponding study-specific template, as well as all other advantages
of standardized templates mentioned above. Therefore, each DTI study must weigh the
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advantages and disadvantages of the two types of templates. Template selection depends on
a number of factors, including the characteristics and quality of the data. As data quality
continuously improves with the use of parallel imaging with high acceleration factors and
other data acquisition techniques (19–23) high quality standardized templates become more
advantageous for DTI research.

This study included healthy adult subjects and DTI templates constructed from data on
healthy adults. DTI investigations of neonates, elderly subjects, or patients with various
neurological disorders (excluding those with tumors and other large lesions in which
registration to a template is problematic) require corresponding DTI templates (24, 38). It is
expected that the conclusions from the comparison of standardized and study-specific
templates discussed above also hold in studies of these populations, as long as the
standardized templates used are generally representative of the population under
investigation (i.e. are constructed using data from a cohort with generally similar
characteristics as those of the cohort under study).

In conclusion, this work assessed the accuracy of inter-subject DTI spatial normalization for
standardized and study-specific templates, using data with and without visible artifacts and
different registration techniques. It was demonstrated that, for DTI data with visible
artifacts, the study-specific template resulted in significantly higher spatial normalization
accuracy than standardized templates. However, for data without visible artifacts, both the
IIT2 and study-specific templates resulted in similar normalization accuracy. As the quality
of DTI data improves with the use of advanced acquisition techniques, a high-quality
standardized template may be more advantageous than a study-specific template, since in
addition to high normalization accuracy, it provides a standard reference across studies, as
well as automated localization/segmentation when accompanied by anatomical labels.
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Figure 1.
Outline of the spatial normalization process of Group 1 and Group 2 data to study-specific
(SS), IIT2 and ICBM81 templates using DTIGUI (solid line), MedINRIA (dashed line) and
DTITK (dash-dot line) registration techniques.
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Figure 2.
Location of selected regions of interest (ROIs). Top left: corticopontine tract (cpt) and
medial lemniscus (ml); bottom left: cingulum (cg) and column of the fornix (fxc); right:
genu of the corpus callosum (gcc), splenium of the corpus callosum (scc), and internal
capsule (ic).
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Figure 3.
Typical examples of mean diffusion-weighted images from Group 1 (A) and Group 2 (B)
data, after preprocessing.
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Figure 4.
Histograms of the relative number of white matter voxels at different values of COH, COU,
and average OVL, for registration of Group 1 and Group 2 data to the ICBM81 (A), IIT2 (B)
and study-specific (C) templates using DTIGUI (light grey curve), MedINRIA (dark grey
curve) and DTITK (black curve).
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Figure 5.
Histograms of the relative number of white matter voxels at different values of COH, COU,
average OVL, average DTED, DVED and LETD, and TVDT, for registration of Group 1
(A) and Group 2 (B) data to ICBM81 (light grey curve), IIT2 (dark grey curve) and study-
specific (SS, black curve) templates using the preferred registration method for each case.
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Figure 6.
Maps of the COU (A) and average DVED (B) for Group 1 and Group 2 data registered to
the ICBM81, IIT2 and study-specific (SS) templates using the preferred registration
technique for each case.
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Figure 7.
Means and standard deviations of the COH, COU, average OVL, average DTED, DVED
and LETD, and TVDT in selected ROIs, for normalization of Group 1 data to the ICBM81,
IIT2, and study-specific templates. For each ROI, the template with the best performance in
each metric of spatial normalization accuracy is marked with an asterisk (*).
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Figure 8.
Means and standard deviations of the COH, COU, average OVL, average DTED, DVED
and LETD, and TVDT in selected ROIs, for normalization of Group 2 data to the ICBM81,
IIT2, and study-specific templates. For each ROI, the template with the best performance in
each metric of spatial normalization accuracy is marked with an asterisk (*).
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