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The size of an organism reflects its metabolic rate, growth rate,
mortality, and other important characteristics; therefore, the distri-
bution of body size is a major determinant of ecosystem structure
and function. Body-size distributions often are multimodal, with
several peaks of abundant sizes, and previous studies suggest that
this is the outcome of niche separation: species from distinct peaks
avoid competition by consuming different resources, which results
in selection of different sizes in each niche. However, this cannot
explain many ecosystems with several peaks competing over the
same niche. Here, we suggest an alternative, generic mechanism
underlying multimodal size distributions, by showing that the size-
dependent tradeoff between reproduction and resource utilization
entails an inherent resonance that may induce multiple peaks, all
competingover the sameniche. Our theory iswellfitted to empirical
data in various ecosystems, inwhich bothmodel andmeasurements
show a multimodal, periodically peaked distribution at larger sizes,
followed by a smooth tail at smaller sizes. Moreover, we show
a universal pattern of size distributions, manifested in the collapse
of data from ecosystems of different scales: phytoplankton in a lake,
metazoans in a stream, and arthropods in forests. The demon-
strated resonance mechanism is generic, suggesting that multi-
modal distributions of numerous ecological characters emerge from
the interplay between local competition and global migration.

adaptive dynamics | evolutionary ecology | universal scaling | species
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Multimodal body-size distributions, in which a population
exhibits several peaks of abundant sizes, characterize local

ecosystems and have puzzled ecologists for many years (1–4). To
resolve this puzzle, most previous studies concentrated on one
important aspect of body size, namely resource partitioning or
niche separation: larger individuals consume certain resources
more efficiently than smaller ones, whereas smaller individuals
have access to some resources that are unavailable to larger indi-
viduals. As a result, multimodal size distributions may originate
from community-wide character displacement, in which natural
selection pushes species to assort into packs, each of which fits to
a particular niche (1, 4, 5).
Another aspect of size, however, relates to a growth-vs.-

efficiency tradeoff (6, 7). Smaller individuals generally invest less
effort in their development and have a higher maximal growth
rate when the resource is abundant (8–12), whereas larger indi-
viduals have more efficient metabolism and are more successful in
direct competitive interferences (Fig. 1A) (6, 13, 14). As a result,
smaller individuals are more likely to be the first to populate
newly formed patches, and the larger individuals follow only later.
In this study, we show how this tradeoff may promote multimodal
body-size distributions, and we identify several characteristics of
the underlying dynamics.

Stochastic Subdivided Population Model
To examine how the growth–efficiency tradeoff leads to multi-
modal body-size distributions, we considered a population that is
subdivided into several habitable resource patches. As in Levins’s

classic metapopulation framework, we assume each patch is
either empty or occupied by a single species (15–17). In our
model, each species is specified by its maximal growth rate q,
which is negatively correlated with its body size. The higher
growth rate of smaller individuals results in more migrants sent
to other patches. Larger individuals, on the other hand, are ad-
vantageous in interference and exclude the smaller individuals
during within-patch competitions.
Specifically, we considered the following processes (Fig. 1):

First, occupied patches are emptied at a rate m. This may occur
because of mortality or because of path destruction and creation
in which occupied patches vanish and new patches enter the
system. Second, a patch occupied by a q-species spreads its off-
spring as migrants at a rate q. Each migrant arrives at a randomly
picked patch. If the destination patch is empty, the migrant takes
over. If it is occupied by a q′-species, the invasion probability is
given by the sigmoidal function (Fig. 1C)
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where s> 0 measures the selection strength. This function may
be seen as a phenomenological rule reflecting stochastic com-
petition in which a species with an inferior fitness (higher q) still
may take over, but also may be derived from microscopic dy-
namics of competition between the resident and migrant sub-
populations. In the deterministic limit, s→∞, the dynamics are
reduced to the “colonization-competition” model of Hastings
(16) and Tilman (17): the sigmoid (gs) becomes a step-function
and the larger species (lower q) always takes over.
To examine the possibility of multimodal distributions, we

solve the long-term evolution of the entire size spectra. The
hallmark of multimodal distributions is the emergence of dis-
crete peaks within the continuous spectrum of possible q-values,
0≤ q<∞. When the number of patches is large, the normalized
distribution of patch occupancy (relative abundance), ρðqÞ,
evolves according to the dynamics:
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where the term q corresponds to colonization without competi-
tion, the term m to mortality, the negative integral term to
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inhibition of colonization by competition, both due to the in-
vasion of competing migrants and due to the inability to invade
into already occupied patches, and the last term corresponds to
mutations that slightly tune q at a rate μ (SI Methods).

Emergence of Multimodal Size Distributions
In the long term, the distribution ρðqÞ approaches a unique steady
state that we examine for multimodality. The case in which
competition over patches is deterministic (s→∞), i.e., a q-
migrant invades a populated q′ patch if and only if q< q′ (16, 17),
exhibits a monotonous steady-state solution (Fig. 2A). For μ= 0,
this solution is ρ*ðqÞ= ð ffiffiffiffi

m
p

=2Þq−3=2 if q≥m; and ρ*ðqÞ= 0 oth-
erwise (18): species with q<m vanish whereas species with q>m

distribute smoothly. (Evolution pushes species to differ, i.e., to be-
come further away from their neighboring species along the q-axis.)
In contrast, when the competition becomes stochastic, as the

selection strength s decreases below a certain threshold, peaks
emerge and the steady-state distribution becomes multimodal
(Fig. 2 B–D). For s just below the transition, peaks are most
prominent near the singularity at q=m. As s decreases further, the
peaks become significant even further away from the singularity.
This implies species packing: evolution pushes species toward the
peaks even when they already are populated by other species.
Peaks are located at approximately equal distances that are of
the order of the q range over which competition is stochastic,
δq∼ 1=s.
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Fig. 1. Stochastic colonization-competition model. (A) Body size is associated with a tradeoff between maximal growth rate, q, and competitiveness abilities
such as direct interference. (B) Schematic illustration of the dynamic processes. Mortality (or path destruction and creation): occupied patches are emptied at
a ratem.Migration: each species spreads migrants from its home patch to random patches at a rate proportional to its maximal growth rate q. Competition: if
the destination patch is empty, the migrant invades; if the patch is already occupied by a q′-species, the q-migrant takes over with a probability gðq;q′Þ and is
being eliminated otherwise. (C) The invasion probability gðq;q′Þ has a sigmoidal shape with a width ∼1=s, which corresponds to stochasticity. Species with
higher q have a smaller chance of taking over occupied patches. (D) Competition is much faster than migration, which implies that each patch is either empty
(∅) or occupied by a single species, entitled by its maximal growth rate (q). The resulting dynamics are that of a well-mixed population of patches subject to
the illustrated rate equations for all q and q′: exchange (up), colonization of empty patches (middle), and invasion into occupied patches (down). The cor-
responding mean-field equation is Eq. 2.
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Fig. 2. Emergence of multimodal body-size distributions. Steady-state distributions of the model (Eqs. 1 and 2) are demonstrated when the selection
strength (s) is varied. When competition is deterministic, the distribution is smooth (A). However, when competition is sufficiently stochastic, multimodal
patterns emerge (B–D): peaks appear near the singularity at q=m, followed by smooth tails on the right. The distance between consecutive peaks is of the
order of 1=s, and the width of the peaks is affected by the mutation rate (μ= 5× 10−5) (see also Fig. S1).

206 | www.pnas.org/cgi/doi/10.1073/pnas.1211761110 Lampert and Tlusty

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1211761110/-/DCSupplemental/pnas.201211761SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1211761110/-/DCSupplemental/pnas.201211761SI.pdf?targetid=nameddest=SF1
www.pnas.org/cgi/doi/10.1073/pnas.1211761110


The width of the peaks and their abundance are affected by
the mutation rate μ (Fig. S1): without mutations (μ= 0), the
distribution is discretized with many sharp zero-width peaks;
whereas as μ increases, peaks are smeared and apparent only
near the singularity. This can be understood by dimensional
analysis, which shows that the width of the first peak scales ap-
proximately are like ðμmÞ1=4 (see Supporting Information). This
width becomes comparable to the interpeak distance 1=s at
μc ∼ 1=ðms4Þ, which is the critical mutation rate for the appear-
ance of lumpiness. Equivalently, this determines the scaling of

the critical selection strength sc ∼ ðμmÞ−1=4. To show generality,
we also examined other sigmoidal invasion probabilities g, and
very similar patterns emerged (Fig. S1).

Comparison with Measurements
To test the validity of our model, we first examined the empirical
data by Janzen, who measured body lengths of thousands of ran-
domly sampled arthropods from several forests (19). To estimate
the maximal growth rate q, we used the well-established empirical
relation q∼ ðmassÞ−1=4 (8–12) and estimated mass∼ ðlengthÞ3 (20,
21). The resulting distribution of biomass vs. maximal growth rate
is multimodal, periodically peaked at larger sizes, and followed by
a smooth tail at smaller sizes, just like the steady-state distributions
exhibited by our model (Fig. 3A). Qualitative agreement was
achieved by fitting the three model parameters, m, s, and μ.
Our model also fits well to two other datasets: the time-av-

eraged weight distributions of phytoplankton in Lake Kinneret
and of metazoans in the Lone Oak stream (Fig. 3B) (22, 23).
Moreover, we were able to universally fit all three distributions
simultaneously by a single graph (Fig. 3B) via scaling all rates by
the mortality m, as q~ = q=m, ρ~ =mρ, s~ =ms, and μ~ = μ=m3 (SI
Methods). The shape of this distribution is independent of m,
which merely scales the q-axis by a value specific to each eco-
system. The scaled parameter s~ = sm corresponds to the number
of offspring an organism must renounce within a time window to
guarantee taking over a patch within that time.
In addition to s~ and μ~ , which seem to be nearly the same for all

three ecosystems, our model may predict via scaling the resource
exchange ratem of each ecosystem (seeMethods): ∼ð2�3 moÞ−1
for arthropods, ∼ð8  dÞ−1 for metazoans, and ∼ð1  dÞ−1 for phy-
toplankton. A careful empirical examination still is needed to
verify these predictions, but the predicted exchange rates appear
to be plausible. First, arthropods usually have an annual or
seasonal life cycle, after which they lay eggs and sometimes mi-
grate; moreover, their resources are plant products that often are
also annual or seasonal (24). Second, the phytoplankton turn-
over rate is about ð2�6  dÞ−1 (25). The lower bound of this rate,
which corresponds to small phytoplankton, may fairly estimate
the resource exchange rate because of the relatively poor ability
of small phytoplankton to persist without resources. This turn-
over rate also may approximate the resource exchange rate in the
metazoans’ ecosystem, in which phytoplankton is a primary re-
source. More generally, our results are supported by the obser-
vation that turnover rates in plants also scale approximately like
ðmassÞ−1=4 (12).

Resonance Mechanism for Multimodal Distributions
The underlying “microscopic” dynamics of species competition
has a natural effective frequency, which is exhibited at the
“macroscopic” scale as the width over which the invasion prob-
ability g varies (δq∼ 1=s, Fig. 1C). This frequency is inherent in
the competition, and its resonance with colonization rates leads
to a nearly periodic discrete pattern with a corresponding period
δq∼ 1=s (see Supporting Information). Although competition in
our model is fast, its characteristic frequency persists at the
macroscopic scale because of its stochastic nature. Indeed, sim-
ilar periodic patterns appear if we modify the model and assume
that selection is deterministic but occurs over a nonnegligible
period s, during which both competing species spread migrants
from the same patch.
This resonance is evident in the dynamics (Fig. 4 and Movies

S1 and S2). Assume that initially all individuals are “packed” and
have the same maximal growth rate q= q1 (Fig. 4A). As long as
q1 is sufficiently large, mutants with q( q1 have a considerable
competitive advantage and they invade the population, thereby
pushing q1 to lower values (Fig. 4 A and B). As q1 decreases, the
fraction of occupied patches decreases (Fig. S2) and the com-
petition with the q1-pack becomes less important. Consequently,
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Fig. 3. Universal body-size distribution. Demonstrated are histograms of
biomass as a function of maximal growth rate q, estimated by the well-
established empirical relation q∼ ðmassÞ−1=4 (8–12). (A) Arthropods from
five different regions [data from Janzen (19), biomass estimated as
#individuals× ðlengthÞ3: forest 1-TPR; 2-OS; 3-TPH; 4-SVP; 5-TAP]. To fit the
data, we used exchange rate m corresponding to ð0:06 mmÞ−3=4, which is
about ð2�3 moÞ−1 (see Methods). (B) Biomass distributions of arthropods
(average), phytoplankton [wet weight, 4-y average from Lake Kinneret (22)],
and metazoans [dry weight, 1-y average from the Lone Oak stream (23)] are
plotted on the same graph. All distributions are lumpy and nearly periodic
on the left, followed by a smooth curve on the right, which agrees with our
theory (black solid line). To fit all datasets simultaneously, we used s

~
= 3:2

and μ~ = 10−4, and rescaled the q-axis by the exchange rates m of approxi-
mately ð2�3 moÞ−1 (arthropods), ð8 dÞ−1 (metazoans), and ð1 dÞ−1 (phyto-
plankton) (see Methods).
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the pack stops moving as q1 approaches qc, where the competi-
tive advantage of lower q-individuals is sufficiently low and is
balanced by their reduced colonization rate. Meanwhile, species
with sufficiently large q can proliferate by occupying the patches
left unoccupied by the q1 population (17), thereby creating new
packs, which in turn also propagate to lower q (Fig. 4 B and C).
Eventually, each pack stops at a q-value at which the benefit
from the reduced inhibition of the pack itself is compensated
by the cost of slower colonization (Fig. 4 C and D). Nevertheless,
if competition is deterministic (s→∞), then every mutant with
q( q1 invades q1-patches in every competition; hence, the pop-
ulation becomes more competitive and less fertile until it van-
ishes as q1 approaches m [Fig. 4 E–G; “evolutionary suicide”
(26)]. The succeeding packs undergo similar dynamics, which
result in a series of evolutionary suicides, and no single pack is
sustained. Eventually, newer packs catch the preceding ones, and
a smooth distribution is obtained (Fig. 4H). Note that for sto-
chastic competition, the transition from an initially smooth dis-
tribution into a lumpy one also is through a cascade of moving
packs (Movie S3).
We derived an analytic steady-state solution of Eq. 2 for the

multimodal distribution (see Supporting Information) assuming
s � 1=m and the mutation rate is small enough to allow adia-
batic adjustment of population abundance [adaptive dynamics
(27)]. In this limit, the fraction of patches occupied by species
from the first pack at q1 >m (the area of the peak) is
Γðq1Þ= ðq1 −mÞ=q1 (Fig. S2). At steady state, this pack is located
at qc ≈m+ 2=s, and consequentially, ΓðqcÞ≈ 2=ðmsÞ. The fol-
lowing few peaks are periodically located at distances of ap-
proximately δq≈ 4=s from one another, which supports the
numerical solution (Fig. 2 and Fig. S1).

Discussion
Our examination of body-size distributions of species competing
over the same resources in a local environment, such as a forest or
a lake, revealed a universal body-size distribution that holds for
various taxa. We suggest that this is a natural consequence of the
tradeoff between growth rate and competitiveness. We also found
some characteristics of size distributions mediated by that tradeoff.
First, multimodality appears at larger body sizes, whereas the dis-
tribution of smaller sizes is smooth. Second, evolution entails di-
rectional dynamics toward larger sizes, which is consistent with
fossil records showing that species tend to increase in size during
evolution (Cope’s rule) (14, 28). Our study suggests that examining
biomass distributions plotted vs. ðmassÞ−1=4 may reveal features
that are less apparent in the traditional logðmassÞ plot. On a
logðmassÞ plot, peaks are still evident, but their periodicity may be
masked and some extra peaks may appear at larger masses be-
cause of stochasticity. Hence, the ðmassÞ−1=4 transformation may
enable meaningful comparison among several distributions.
Our model cannot fit all body-size distributions, particularly

certain seemingly unimodal body-size distributions with a long tail
at large sizes, which were found by several studies (29, 30). This
may result from three possible effects. First, some of the analyzed
ecosystems are much larger than a typical dispersal length, so
large that the environmental conditions vary throughout the
ecosystem. In contrast, our model assumes global connectivity
and identical patches; therefore, it should be examined in rela-
tively small, homogeneous regions. Indeed, Brown and Nicoletto
(31) found that peaks become evident when the system size
decreases. Second, our model disregards the possibility of re-
source partitioning within a niche or a patch, which is relevant in
many ecosystems. Third, several studies examine the number of
species (instead of the biomass) as a function of the mass (32, 33).
Fitting to such available data of species size distributions requires

A B C D

E F G H

Fig. 4. Species packing vs. evolutionary suicide. Graphed are time evolutions of the distribution ρðqÞ (solid line) and of the corresponding per capita growth
rate, fðqÞ≡d   ln  ρðqÞ=dtjμ=0 (dashed line). (A–D) Stochastic competition (s= 1, μ= 10−6). At t = 0, the entire population is packed around q=q1. Mutants with
q(q1 have a substantial competitive advantage (fðqÞ> 0), and they push the pack leftward to lower q (A and B). As the pack moves leftward, the proportion
of patches occupied by the q1-pack decreases until their advantage from better competitiveness is sufficiently small and is compensated by the cost of slower
colonization (fðqÞ has a local maximum at q1) and the pack stops (C). Meanwhile, new packs with much larger q emerge, and, in turn, also propagate leftward
(C). This process ensues until a stationary, multimodal pattern is obtained, in which each pack is located at a local maximum of fðqÞ (D). (E–H) Deterministic
competition (s=∞, μ= 10−4). Evolution pushes the initial packs leftward until they vanish as their q-values approach m (evolutionary suicide). Eventually,
newly emerged packs reach the preceding ones, which results in a smooth distribution. See also Movies S1, S2, and S3.
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further formulation of the speciation processes. Nevertheless,
note that species spectra are known to exhibit multimodality in
local ecosystems (1–4).
In a broader context, our study suggests an alternative, generic

mechanism for emergence of species assembly (multimodality) in
trait space. Mechanisms that induce discreteness in trait space are
of central importance in ecology and evolution, and were exam-
ined in previous studies. In particular, it is known that resource
partitioning may result in community-wide character displace-
ment, even along a homogeneous resource axis (4). To model this
effect, several studies considered dynamics somewhat formally
similar to Eq. 2, but with a symmetric kernel (usually Gaussian)
(4, 34). This equation alsomay represent a single-species population
competing over a one-dimensional, homogeneously distributed re-
source, in which the initially homogeneous population may undergo
Turing instability and become patchy (35–37). In contrast, in our
model the competition is asymmetric and entails essentially
different dynamics—specifically, no smooth solution exists
near the singularity at q=m and peak dynamics are directional.
Our study suggests that species assembly is naturally mediated

by the interplay between local competition and global migration.
The possibility that asymmetric competition may induce a
discrete community pattern, such as the one exhibited in the
present work, was shown by Geritz et al. (38), and general criteria

for such discretization were derived by Gyllenberg and Meszéna
(34). We focused on a prototypic model in which local competi-
tion takes place rapidly, but multimodality also appears if we relax
this assumption and allow several species to compete within the
same patch. The combination of local competition and global
migration is central in many ecological processes; therefore, the
mechanism we suggest may promote multimodality in a large va-
riety of traits other than body size, including dispersal rates, seed
sizes, and more.

Methods
The theoretical results are numerical solutions of Eq. 2 with invasion prob-
ability (gs) given by Eq. 1. These equations incorporate the tradeoff between
having a larger maximal growth rate q (smaller individuals) and having
better local competitive interference abilities (larger individuals; Fig. 1). To
compare our theory with empirical data (Fig. 3), we used the well-estab-
lished empirical relation qðdaysÞ−1 = 0:025× ðmassðgÞÞ−1=4 (8–12), and used
the rescaled equation Eq. S1 to simultaneously fit distributions from various
scales (Fig. 3B).
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