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Biosynthetic pathways of secondary metabolites from fungi are
currently subject to an intense effort to elucidate the genetic basis
for these compounds due to their large potential within pharma-
ceutics and synthetic biochemistry. The preferred method is me-
thodical gene deletions to identify supporting enzymes for key
synthases one cluster at a time. In this study, we design and apply
aDNAexpression array forAspergillus nidulans in combinationwith
legacy data to form a comprehensive gene expression compendium.
We apply a guilt-by-association–based analysis to predict the extent
of the biosynthetic clusters for the 58 synthases active in our set of
experimental conditions. A comparison with legacy data shows the
method to be accurate in 13 of 16 known clusters and nearly accu-
rate for the remaining 3 clusters. Furthermore, we apply a data
clustering approach,which identifies cross-chemistry betweenphys-
ically separate gene clusters (superclusters), and validate this both
with legacy data and experimentally by prediction and verification
of a supercluster consisting of the synthase AN1242 and the prenyl-
transferase AN11080, as well as identification of the product com-
pound nidulanin A. We have used A. nidulans for our method
development and validation due to the wealth of available bio-
chemical data, but the method can be applied to any fungus with
a sequenced and assembled genome, thus supporting further sec-
ondary metabolite pathway elucidation in the fungal kingdom.
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No other group of biochemical compounds holds as much
promise for drug development as the secondary (nongrowth

associated) metabolites (SMs). A review from 2012 (1) found that
for small-molecule pharmaceuticals, 68% of the anticancer agents
and 52%of the antiinfective agents are natural products, or derived
from natural products. The fact that SMs are often synthesized as
polymer backbones that are subsequently diversified greatly via the
actions of tailoring enzymes sets the stage for combinatorial bio-
chemistry (2), because their biosynthesis is modular.
Major groups of SMs include polyketides (PKs) consisting of

-CH2-(C = O)- units, ribosomal and nonribosomomal peptides
(NRPs), and terpenoids made from C5 isoprene units. These
polymer backbones are, with the exception of ribosomal peptides,
made by synthases or synthetases and aremodified by a plethora of
tailoring enzymes, including (de)hydratases, oxygenases, hydro-
lases, methylases, and others.
In fungi, these biosynthetic genes of secondary metabolism are

organized in discrete clusters around the synthase genes. Although
quite accurate algorithms are available for identification of possible
SM biosynthetic genes, particularly PK synthases (PKSs), NRP
synthetases (NRPSs), and dimethylallyl tryptophan synthases
(DMATSs) (3, 4), the assignment and prediction of themembers of
the individual clusters solely from the genome sequence have not
been accurate.Relevant protein domains can be predicted for some
of the genes (e.g., cytochrome P450 genes) (5); however, genes in
identified clusters often have unknown functions, which makes
predicting their inclusion impossible. Furthermore, SM gene clus-
ters often colocalize on the chromosomes (6), which makes sepa-
ration of clusters solely based on gene function predictions difficult.

The efficient elucidation of the biosynthetic genes for each SM
cluster has thus so far been based on laborious single gene deletion
of each of the putative members and chemical profiling of the SMs
of the deletion strains. This effort has been especially noticeable in
themodel fungusAspergillus nidulans, which is presently the fungal
species with the largest number (n = 25) of characterized SM
synthases/synthetases, due to amassive effort by several groups (7–
30). In recent studies, this fungus has also been shown to have
cross-chemistry between gene clusters on separate chromosomes
(8, 30). Although these reactions are highly interesting for com-
binatorial chemistry, the identification of gene clusters involved in
cross-chemistry is cumbersome because it involves combinatorial
deletion of SM synthetic genes, thus greatly increasing the po-
tential number of candidates.
In this study, we propose a general “omics”-based method for

the accurate determination of fungal SM gene cluster members.
The method is based on an annotated genome sequence and
a catalog of gene expression, a set of information that is readily
available for many fungal species and can easily be generated for
more. To develop, benchmark, and validate this algorithm, we have
used A. nidulans as a model organism, which is especially well-
suited for this purpose due to the above-stated wealth of in-
formation. The algorithm is proven to be very powerful in identi-
fying gene cluster members. We furthermore report an extension
of the algorithm, which is proven to be successful in identifying
cross-chemistry between gene clusters.

Results
Analysis of SMs A. nidulans on Complex Solid Medium Identifies 42
Compounds. Initially, we evaluated the production of SMs on four
different solid media [oatmeal agar (OTA), yeast extract sucrose
(YES), Czapek yeast autolysate (CYA), and CYA with 50 g/L
NaCl sucrose (CYAS); Materials and Methods] at 4, 8, and 10 d.
The object of this was to identify a selection of media that (i)
gave as many produced SMs as possible, (ii) showed one or more
SMs unique to each medium, and (iii) had SMs that were only
produced on two of the selected media.

Author contributions: M.R.A., J.B.N., L.M.P., C.H.G., T.O.L., K.F.N., and U.H.M. designed
research; M.R.A., J.B.N., A.K., L.M.P., M.Z., T.J.H., L.H.B., C.H.G., and K.F.N. performed
research; M.R.A. and K.F.N. contributed new reagents/analytic tools; M.R.A., J.B.N.,
A.K., L.M.P., T.J.H., C.H.G., T.O.L., K.F.N., and U.H.M. analyzed data; and M.R.A., J.B.N.,
A.K., L.M.P., C.H.G., K.F.N., and U.H.M. wrote the paper.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission.

Data deposition: The gene expression data, gene expression microarray data description,
and legacy gene expression data reported in this paper are available from the Gene
Expression Omnibus (GEO) database, www.ncbi.nlm.nih.gov/geo (accession nos.
GSE39993, GPL15899, GSE12859 and GSE7295).
1To whom correspondence should be addressed. E-mail: mr@bio.dtu.dk.

See Author Summary on page 24 (volume 110, number 1).

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.
1073/pnas.1205532110/-/DCSupplemental.

www.pnas.org/cgi/doi/10.1073/pnas.1205532110 PNAS | Published online December 17, 2012 | E99–E107

M
IC
RO

BI
O
LO

G
Y

PN
A
S
PL

U
S

http://www.ncbi.nlm.nih.gov/geo
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE39993
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GPL15899
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE12859
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE7295
mailto:mr@bio.dtu.dk
http://www.pnas.org/content/110/1/E99/1
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1205532110/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1205532110/-/DCSupplemental
www.pnas.org/cgi/doi/10.1073/pnas.1205532110


These characteristics should allow us to have as many active
gene clusters as possible, as well as ensuring unique production
profiles for as many SM gene clusters as possible.
From this initial analysis, we selected the YES, CYA, and

CYAS media for transcriptional profiling. On these media, we
were able to separate and detect 59 unique SMs, of which we
could name 42 by comparison with our extensive in-house library
of microbial metabolites (31) and the AntiBase 2010 natural
products database. The production profile of the compounds
satisfied the three criteria listed above (Fig. 1, Fig. S1, and
Dataset S1).

Generation of a Diverse Gene Expression Compendium for A.
nidulans. Samples were taken for transcriptional profiling from
plates cultivated in parallel to those of the SM profiling above.
RNA was purified, prepared for labeling, and hybridized to cus-
tom-designed Agilent Technologies arrays based on version 5 of
the A. nidulans annotation (32).
The produced data were combined with previously published

microarray data fromA. nidulans bioreactor cultivations (33, 34) to
form a microarray compendium spanning a diverse set of con-
ditions, comprising 44 samples in total. The set includes four strains
of A. nidulans. Four different growth media are included: three
complex media (see above) and one minimal medium. Medium
variations include five different defined carbon sources (ethanol,
glycerol, xylose, glucose, and sucrose), as well as yeast extract.
The combined compendium of expression data is available in
Dataset S2.

Correlation-Based Identification of Gene Clusters. To identify gene
clusters efficiently around SM synthases, we developed a gene
clustering score (CS) based on the Pearson product-moment cor-
relation coefficient. Our CS gives a numerical value for correlation
of the expression profile of a given gene with the expression pro-
files of the three immediate neighbor genes on either side. Only
positive correlation is considered. Values for the CS are available
in Dataset S2.
Statistical simulation of the distribution of CS on the given

dataset showed that CS values ≥2.13 corresponded to a false-

positive rate of 0.05 (Fig. S2). Therefore, CS ≥ 2.13 was used as
a guideline for identifying the extent of gene clusters.

Prediction of the Extent of 51 Gene Clusters. Evaluation of the size
of the clusters around SM genes was performed using a pre-
computed list of 66 putative PKSs, NRPSs, and DMATSs from
the secondary metabolite unique regions finder (SMURF) algo-
rithm (3) based on the A. nidulans FGSC A4 gene set (35). In
addition to these 66 genes, we added one prenyltransferase gene
found in the primary literature (30) and three diterpene synthase
(DTS) genes predicted by Bromann et al. (25), resulting in 70
putative biosynthetic genes. All 25 experimentally verified PKSs,
NRPSs, DTSs, and prenyltransferases were found to be included
in this list (Tables 1–3).
For each of the 70 biosynthetic genes, we examined the genes

nearby for high CS values and inspected the expression profiles of
the genes manually for additional validation and refinement.
Apart from 12 genes that were silent under the conditions tested
(Table S1), this allowed prediction of the sizes of gene clusters
around 58 biosynthetic genes organized in 51 clusters and counting
of a total of 254 genes included in the clusters (an example is shown
in Fig. 2). The fact that we can map expression for 58 of the 70
biosynthetic genes (a large proportion of the gene clusters) is
surprising, considering that many, or even themajority, of the gene
clusters are reported to be silent under standard laboratory con-
ditions (13, 14, 20, 36–38). An example of a cluster previously
described as silent but identified here is the inpAB cluster (39).
However, those cultivation experiments were conducted on liquid
minimal medium and not on solid complex media, where we find
that the expression from most of these genes is most pronounced.
We therefore see the large number of active clusters as a confir-
mation of adequate diversity of the cultivation conditions in our
microarray compendium.
Next, we investigated how our cluster predictionsmatched those

published in the literature. This comparison demonstrated that our
algorithm generally predicts gene clusters with excellent accuracy.
Specifically, we accurately predict the extent of 11 of the 16 known
gene clusters (Tables 1–3). In two of the remaining 5 gene clusters,
the difference is due to artifacts. For the gene sterigmatocystin
cluster (Fig. 2), the difference of 24 genes relative to 25 genes is
caused by differences in the current gene annotation compared
with the original paper from 1996 (17). Changes in gene calling are
also the reason for discrepancy in the terrequinone cluster, where
our legacy microarray data only contain data for 3 of the 5 genes,
thus impairing the prediction. For the three remaining cases, the
2 gene clusters involved in meroterpenoid (austinol and dehy-
droaustinol) biosynthesis and the aspyridone cluster, the di-
vergence seems to be biological. For the austinol/dehydroaustinol
double-cluster system, we predict 3 extra genes in one cluster
(around AN8383) and 2 extra genes in the other cluster (around
AN9259) in addition to genes identified by Lo et al. (30). We in-
dividually deleted the 3 extra genes (AN8375, AN8376, and
AN8380) in the AN8383 cluster; however, apart from differences
in the austinol/dehydroaustinol ratio, we could only confirm the
results of Lo et al. (30) of these genes not being essential for
austinol/dehydroaustinol biosynthesis (Fig. S3). Because the size
of most of the clusters was accurately predicted by our algorithm,
we speculate that some or all of the extra genes are involved in
biosynthesis of derivatives of austinol/dehydroaustinol. In agree-
ment with this scenario, it is not uncommon that newly detected
compounds are linked to known PKS pathways. For example,
shamixanthones and arugusins were recently discovered to be
products derived from the monodictyphenone cluster (8, 11), and
this cluster has been redefined several times (9, 10). For the
remaining case, the apdG gene of the aspyridone cluster (20),
misprediction of the cluster members is due to a complete di-
vergence between the transcription profiles of apdG and the re-
mainder of the gene cluster. In general, we conclude that the use of

21(8)

116(4)

1

314(4)

2(1)

YES CYAS

CYA

Fig. 1. Venn diagram of SMs found on three different solid media. The
number of different metabolites is sorted according to which media the
metabolites have been identified on. The number of metabolites unable to
be confidently identified are noted in parentheses. Details can be found in
Dataset S1, and the chemical structures are illustrated in Fig. S1.
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CS values in combination with inspection of the expression profiles
is a very effective tool to predict the extent of gene clusters, be-
cause the borders of 13 of 16 clusters were accurately predicted
(when predictions were adjusted to compensate for the two arti-
facts discussed above) and there was near-accurate prediction of
all 16 clusters.

Diverse Gene Expression Compendium Is Important for Accurate
Prediction. To evaluate the compendium size needed for accu-
rate predictions, we used principal component analysis (PCA) on
our matrix of expression values (Dataset S2). Greater than 95% of
the variation within the set can be described in the first three
principal components. This suggests that a theoretical lower limit
for this type of analysis would be three arrays if one could select
conditions with a near-perfect difference in expression levels,
ideally high, medium, and low expression for all genes, and with
a maximum difference between all clusters and their surrounding
genes. This would be nearly impossible to achieve for all clusters.
However, if one is only interested in a single or a few gene clusters
of interest, and has the appropriate prior knowledge, it should be
possible to select three to five conditions and achieve accurate
predictions. Very informative studies have been performed with
two conditions, but the boundaries of the cluster can be difficult to
determine (e.g., ref. 25).
To test howmuch it was possible to reduce our dataset, we used an

unsupervised PCA-based analysis for incremental reduction of the
dataset. In this, we found (unsurprisingly) that our biological repli-
cate samples contain the smallest amount of unique information.

Ten of 44 samples can be removed with only an approximately 10%
loss in the data variation, and 25 of 44 samples (all replicates) can be
removedwith less than a 35% loss in data variation. The time sample
series on a solid medium presented in this study were not reduced
from the set until all biological replicates were reduced. We con-
clude that in selection of samples for cluster elucidation, one should
sample as diversely as possible. Biological replicates are not cost-
effective unless already available from prior studies.

Clustering of Synthase Expression Profiles Identifies Superclusters.
Recent work has identified two cases of cross-chemistry between
clusters located on separate chromosomes. The production of
austinol and derived compounds (themeroterpenoid pathway) has
been shown to be dependent on two separate clusters (11, 30), and
the biosynthesis of prenyl xanthones is dependent on three sepa-
rate clusters (8). We were interested in seeing whether this is
a general phenomenon and whether such cross-chromosomal
“superclusters” could be detected using our expression data.
A full gene-to-gene comparison of expression profiles between

all predictedNRPSs, PKSs,DTSs, and prenyl transferases found in
the array data was conducted, and the genes were clustered (Fig.
3). This clustering is not based directly on the expression profiles,
because expression index variation from silent conditions distorts
clustering. Instead, we clustered on the basis of a Spearman-based
score of similarity to the expression profiles of the other synthases,
which effectively eliminates noise.
The method is efficient for clustering the synthases and trans-

ferases according to shared products. Seven of eight sets of genes

Table 1. Prediction of PKS gene clusters

Cluster size

GeneID Gene Compound (if known) Predicted Known Medium Ref(s).

AN0150 mdpG Monodictyphenone/emodin 12 12 Solid (7–10)
AN7903 Violaceol I and II 12 ? Solid (11)
AN6448 pkbA 8 ? Solid (24)
AN7084 8 Solid
AN8209 wA Green conidial pigment 6 ? Solid
AN7909 orsA Orsellinic acid/F9975/violaceols 5 5 Solid (11–14)
AN1784 4 Solid
AN9005 4 Solid
AN6000 aptA Asperthecin 3 3 Solid (15)
AN6431 3 Solid
AN11191 2 Solid
AN7489 1 Solid
AN3273 1 Solid
AN2547 easB Emericellamide 4 4 Both (16)
AN3230 pkfA Orsellinaldehydes 6 ? Both (24)
AN7071 pkgA Alternariol/isocoumarins 7 ? Both (24)
AN7825 stcA Sterigmatocystin 24* 25 Both (17–19)
AN7815 stcJ Sterigmatocystin 24* 25 Both (17–19)
AN8383 ausA Austinol 7 4 Both (11, 24, 30)
AN2032 pkhA Unknown 10 ? Liquid (24)
AN2035 pkhB Unknown 10 ? Liquid (24)
AN8412 adpA Aspyridone 7† 8 Liquid (20)
AN6791 1 Liquid
AN8910 1 Liquid

This table contains predicted PKSs as well as PKS-like genes (AN7489 and AN7815) and a PKS/hybrid gene
(AN8412). The medium column describes under which type of medium (liquid, solid, or both) the cluster is
expressed. For gene clusters with identified functions and gene members, the number of identified cluster
members is given as well as references to the original papers. Further details on the cluster members and the
expression profiles of the individual clusters may be found in Dataset S2 and Fig. S4. Chemical structures of all
compounds may be found in Fig. S1.
*Difference seemingly due to the current gene calling diverging from the original paper from 1996 (17).
†Algorithm was not able to predict the inclusion of apdG, the outmost gene hypothesized to be a part of the
cluster (20). The expression profile of apdG diverges from the rest of the cluster.
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predicted to be in the same biosynthetic clusters by the method
above are found to cluster together in this representation. The
exception is AN2032 and AN2035, which do not cocluster due to
very low signals from the AN2032 probes on the microarray.
Furthermore, the clustering is accurate in terms of cross-chemistry.

In examining the two examples of cross-chemistry between gene
clusters, it is found that these are predicted correctly. The mer-
oterpenoid pathway includes the PKS AN8383 and the DMATS
AN9259, which are illustrated to colocate in Fig. 3. The other ex-
ample is the prenylxanthone biosynthetic pathway, which includes

Table 2. Prediction of NRPS gene clusters

Cluster size

GeneID Gene Compound (if known) Predicted Known Medium Source

AN9226 18 Solid
AN6444 8 Solid
AN4827 7 Solid
AN8105 8 Solid
AN8513 tdiA Terrequinone A 3* 5 Solid (21, 22)
AN1242 nlsA Nidulanin A 3 Solid This study
AN6961 2 Solid
AN0016 1 Solid
AN10486 1 Solid
AN7884 14 Both
AN3495 inpA Unknown 7 7 Both (25, 39)
AN3496 inpB Unknown 7 7 Both (25, 39)
AN2545 easA Emericellamide 4 4 Both (16)
AN2621 acvA/pcbAB Penicillin G 3 3 Both (25, 27, 28)
AN3396 mica Microperfuranone 3 3† Both (29)
AN2924 2 Both
AN10576 ivoA N-acetyl-6-hydroxytryptophan 2 2 Both (23, 26)
AN0607 sidC Siderophores 1 1 Both (55)
AN10297 1 Both
AN5318 1 Both
AN1680 1 Liquid
AN2064 1 Liquid
AN9129 1 Liquid
AN9291 1 Liquid

This table contains predicted NRPSs as well as NRPS-like genes (AN3396, AN5318, and AN9291). The medium
column describes under which type of medium (liquid, solid, or both) the cluster is expressed. For gene clusters
with identified functions and gene members, the number of identified cluster members is given as well as refer-
ences to the original papers. Further details on the cluster members and the expression profiles of the individual
clusters may be found in Dataset S2, and Fig. S4. Chemical structures of all compounds may be found in Fig. S1.
*Extent of the gene cluster is predicted correctly. The difference is due to the absence of two of the genes on the
legacy microarray data, which removes them from the prediction.
†Yeh et al. (29), who examined this cluster, found increased transcription of the two extra genes we predict, but
they found them to be nonessential for microperfuranone production.

Table 3. Prediction of gene clusters around prenyltransferases and diterpene synthases

Cluster size

GeneID Type Gene Compound (if known) Predicted Known Medium Source

AN11194 DMATS 18 Solid
AN11202 DMATS 18 Solid
AN9259 DMATS 12 10 Both (30)
AN8514 DMATS tdiB Terrequinone A 3* 5 Solid (21, 22)
AN11080 DMATS nptA Nidulanin A 1 Both This study
AN10289 DMATS 1 Solid
AN6784 DMATS xptA Variecoxanthone A 1 1 Solid (8–10)
AN1594 DTS Ent-pimara-8(14),15-diene 9 9 Solid (25)
AN3252 DTS 7 Solid
AN9314 DTS 2 Solid

This table contains predictedDMATSs, functionally prenyltransferases, and threeDTSs predictedbyBromann et al.
(25). Themedium columndescribes onwhich type ofmedium (liquid, solid, or both) the cluster is expressed. For gene
clusters with identified functions and gene members, the number of identified cluster members is given as well as
references to the original papers. Further details on the clustermembers and the expression profiles of the individual
clusters may be found in Dataset S2, and Fig. S4. Chemical structures of all compounds may be found in Fig. S1.
*Extent of the gene cluster is predicted correctly. The difference is due to the absence of two of the genes on the
legacy microarray data, which removes them from the prediction.
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the PKS AN0150 and the DMATS AN6784. These two genes are
also found close to each other in Fig. 3.
We further use the maximum separation distance of two genes

in the same biosynthetic cluster in the heat map of Fig. 3 as a cutoff
distance for cross-chemistry. This allowed the genes to be sorted
into seven larger superclusters. Details on the expression profiles
of the individual clusters in each supercluster can be found in Fig.
S4. Although we cannot directly separate tight coregulation from
cross-chemistry with this method, the presence of these super-
clusters consisting of individual clusters with similar expression
profiles suggests a larger extent of cross-chemistry in A. nidulans
than what has been reported to date. To test the predictive power
of this clustering further, we performed a gene deletion study
within supercluster 5, which contains clusters located on six of the
eight chromosomes.

Identification of the Chemical Structure of Nidulanin A Confirms
Prediction of Cross-Chemistry Between NRPS AN1242 (NlsA) and
Prenyltransferase AN11080 (NptA). To test the hypothesis of super-
clusters and whether the analysis above could be used to elucidate
cross-chemistry, we constructed a deletion mutant of the NRPS
AN1242 and evaluated the SMs found in the mutant relative to
a reference strain. Four related compounds (compounds 1–4) were
found to be absent in the ΔAN1242 strain (Fig. S5). MS isotope
patterns as well as tandemMS (MS/MS) analysis showed compound
1 to have the molecular formula C34H45N5O5, with compounds
2 and 3 likely being oxygenated forms with one and two extra oxygen
molecules, respectively. Compounds 1–3 all seem to be prenylated,
as shown by spontaneous loss of a prenyl-like fragment, C5H8, in

a small fraction of the ions during MS analysis. Compound 4 has
a molecular formula of (1)-C5H8, suggesting it to be the unpreny-
lated precursor of compound 1.
We thus isolated and elucidated the structure of compound 1,

henceforth called nidulanin A, based on NMR spectroscopy. The
stereochemistry of compound 1 was examined using Marfey’s
method (40) and was supported by bioinformatic analysis of the
protein domains of AN1242 (SI Text). Altogether, nidulanin A is
proposed to be a tetracyclopeptide with the sequence -L-Phe-L-
Kyn-L-Val-D-Val- and an isoprene unit N-linked to the amino
group of L-kynurenine (Fig. 4).
Because no prenyltransferase genes are found near AN1242,

cross-chemistry catalyzed by an N-prenylating DMATS is a likely
assumption. Examination of supercluster 5 in Fig. 3, where the
NRPS AN1242 is found, shows AN11080 to be the DMATS with
the expression profile most similar to AN1242. Gene deletion of
AN11080 and subsequent ultra-high-performance liquid chroma-
tography (UHPLC) high-resolution MS (HRMS) analysis of the
ΔAN11080 strain show that the deprenylated compound 4, but
none of the three prenylated forms, is present, thus confirming that
nidulanin A and the two oxygenated forms (compounds 3 and 4)
are synthesized by cross-chemistry between AN1242 (now NlsA)
on chromosome VIII and AN11080 (now NptA) on chromosome
V (Fig. S5).
Furthermore, we note that the masses corresponding to com-

pound 3 (nidulanin A + O) and compound 4 (nidulanin A + O2)
are not found in the reference strain or in the ΔAN11080 strain.
This suggests that compounds 3 and 4 are oxidized after the
prenylation step.
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Discussion
In this study, we present a method for fungal SM cluster esti-
mation based on similarity of expression profiles for neighboring
genes. For the given organism A. nidulans, comparison with legacy

data has verified the method to be highly accurate and effective
for a large proportion of the gene clusters.
It is clear from our results that the composition of the gene

expression compendium has a significant effect on cluster pre-
dictions. We show here that it is important with a diverse set of
samples, including both liquid and agar cultures as well as min-
imal medium and complex medium. This is in accordance with
previous observations (11, 13, 14, 20, 36) stating that at a given
set of conditions, only a fraction of the clusters are active. A
reduction analysis of our own data has further shown that the
inclusion of biological replicates in the dataset does not improve
the analysis as much as inclusion of more unique samples. A
diverse set of conditions should remedy regulation at the tran-
scriptional level as well as chromatin-level regulation, which has
been shown to have significant effects in fungi (13, 41). Another
factor of importance is the quality of genome annotation. Er-
roneous gene calls inside clusters decrease the value of the CS
for genes within a distance of three genes. Furthermore, prob-
lems with gene calls can affect expression profiling if a non-
transcribed region is included in the gene cluster. However,
neither of these seems to be a problem in the data presented
here. Including the expression profiles of seven genes in the
calculation of the CS also increases the robustness of the method
toward erroneous gene calls.
The stated robustness of the CS has the disadvantage that the

CS alone performs poorly for clusters with four or fewer genes,
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because the maximum value of CS for n genes is n − 1. However,
in the cases of small clusters, the clustering can still be predicted
from the transcription profiles, as shown in this study.
In some cases, we also see that cluster calling based on expression

profiles outperforms the combination of gene KO and metab-
olomics. If a given detectedmetabolite is not the end product of the
biosynthetic pathway, gene deletions will only identify a part of an
SM cluster as being relevant for thatmetabolite, thusmissing genes.
An example of this is seen in the emodin/monodictyphenone
cluster (PKS AN0150), where a subset of the genes is only required
for some of the metabolites, resulting in a two-step elucidation of
the gene cluster (7, 8). The CS method correctly calls the
full cluster.
One aspect of the method is the ability to identify gene clusters

simply from identifying groups of genes with high CS values, and
not using a seeding set of synthases as was done in this case. This
allows the unbiased identification of gene clusters throughout the
entire genome. Although we see a surprising amount of these
clusters (Dataset S2) not limited to the predicted SM synthases, we
have not evaluated these in this study, because data for appropriate
benchmarking is not available. However, we believe that there is
great potential for biological discoveries to be made here, both in
terms of promoter and chromatin-based transcriptional regulation.
The final extension of the algorithm is its ability to identify

biosynthetic superclusters scattered across different chromo-
somes. Although this is a recently reported phenomenon (8), we
believe that this is a common phenomenon, at least in A. nidulans
and possibly in fungi in general. It is important to note that our
method does not allow one to discriminate between tight cor-
egulation and cross-chemistry between two distant clusters. It is
therefore most efficient in cases in which it is evident that a given
gene cluster does not hold all enzymatic activities required to
synthesize the associated compound. In those cases, the use of
a diverse transcription catalog, such as the one applied here, is
a powerful strategy for identifying cross-chemistry, as shown for
the NRPS AN1242 and the assisting prenyltransferase AN11080
in the synthesis of nidulanin A and derived compounds.
In summary, this study provides (i) an updated gene expres-

sion DNA array for A. nidulans, (ii) a wealth of information
advancing the cluster elucidation in the model fungus A. nidu-
lans, (iii) a powerful tool for prediction of SM cluster gene
members in fungi, (iv) a proven methodology for prediction of
SM gene cluster cross-chemistry, and (v) a proposed structure for
the compound nidulanin A.

Materials and Methods
Strains. A. nidulans FGSC A4 was used for all transcriptomic experiments in
this study. Furthermore, legacy data using the FGSC A4, A. nidulans
AR16msaGP74 (expressing the msaS gene from Penicillium griseofulvum)
(34), A. nidulans AR1phk6msaGP74 (expressing the msaS gene from P. gri-
seofulvum and overexpressing the A. nidulans xpkA) (34), and A. nidulans
AR1phkGP74 (overexpressing the A. nidulans xpkA) (33), were applied.

The A. nidulans FGSC A4 stock culture was maintained on CYA agar at 4 °C.
A. nidulans strain IBT 29539 (veA1, argB2, pyrG89, and nkuAΔ) was used for all
gene deletions. Gene deletion strains (see below) are available from the IBT
fungal collection as A. nidulans IBT 32029, (AN1242Δ::AfpyrG, veA1, argB2,
pyrG89, and nkuAΔ) and A. nidulans IBT 32030, (AN11080Δ::AfpyrG, veA1,
argB2, pyrG89, and nkuAΔ). For chemical analyses, A. nidulans IBT 28738
(veA1, argB2, pyrG89, and nkuA-trS::AfpyrG) was used as reference strain.

Metabolite Profiling Analysis. A. nidulans strains were inoculated on CYA
agar, OTA, YES agar, and CYAS agar (42). All strains were three-point in-
oculated on these media and incubated at 32 °C in darkness for 4, 8, or 10 d,
after which three to five plugs (6-mm diameter) along the diameter of the
fungal colony were cut out and extracted (43).

Samples were subsequently analyzed by UHPLC-UV/vis diode array detector
(DAD)-HRMS on a maXis G3 quadrupole time-of-flight mass spectrometer
(Bruker Daltonics) equipped with an electrospray injection (ESI) source. The
mass spectrometerwas connected to anUltimate 3000UHPLC system (Dionex).
Separation of 1-μL samples was performed at 40 °C on a 100-mm × 2.1-mm

inner diameter (ID), 2.6-μm Kinetex C18 column (Phenomenex) using a linear
water-acetonitrile gradient (both buffered with 20 mM formic acid) at a flow
rate of 0.4 mL/min starting from 10% (vol/vol) acetonitrile and increased to
100% acetonitrile in 10 min, keeping this for 3 min. HRMS was performed in
ESI+ with a data acquisition range of 10 scans per second atm/z 100–1,000. The
mass spectrometer was calibrated using sodium formate automatically infused
before each analytical run, providing a mass accuracy better than 1.5 ppm.
Compounds were detected as their [M + H]+ ion ± 0.002 Da, often with
their [M + NH4]

+ and/or [M + Na]+ ion used as a qualifier ion with the same
narrow mass range. SMs with a peak areas >10,000 counts (random noise
peaks of approximately 300 counts) were integrated and identified by com-
parison with approximately 900 authentic standards available from previous
studies (31, 44) and dereplicated against the approximately 18,000 fungal
metabolites listed in AntiBase 2010 by ultraviolet-visible (UV/Vis) spectra, re-
tention time, adduct pattern, and high-resolution data (<1.5 ppm mass accu-
racy and isotope fit better than 40 using SigmaFit; Bruker Daltonics) (31, 45).

Array Design. Initial probe design was done using OligoWiz 2.0 software (46)
from the coding sequences of predicted genes from the genome sequence
of A. nidulans FGSC A4 (35), using version 5 of the A. nidulans gene anno-
tation, downloaded from the Aspergillus Genome Database (32).

For each gene, a maximum of three nonoverlapping, perfect-match 60-
mer probes was calculated using the OligoWiz standard scoring of cross-
hybridization, melting temperature, folding, position preference, and low
complexity. A position preference for the probes was included in the com-
putations. Pruning of the probe sequences was done by removing duplicate
probe sequences.

Also included on the chip were 1,407 standard controls designed by
Agilent Technologies. Details of the array are available from the National
Center for Biotechnology Information Gene Expression Omnibus (accession
no. GPL15899).

Microarray Gene Expression Profiling. Mycelium harvest and RNA purification.
Whole colonies from three-stab agar plates were sampled for transcriptional
analysis by scraping the mycelium off the agar with a scalpel and transferring
the agar directly into a 50-mL Falcon tube containing approximately 15 mL of
liquid nitrogen. Care was taken to transfer a minimum of agar to the Falcon
tube. The liquid nitrogen was allowed to evaporate before capping the lid
and recooling the tube in liquid nitrogen before storing the tube at −80 °C
until use for RNA purification.

For RNA purification, 40–50 mg of frozen mycelium was placed in a 2-mL
microcentrifuge tube precooled in liquid nitrogen containing three steel
balls (two balls with a diameter of 2 mm and one ball with a diameter of 5
mm). The tubes were then shaken in a Retsch Mixer Mill at 5 °C for 10 min
until the mycelium was ground to a powder. Total RNA was isolated from
the powder using the Qiagen RNeasy Mini Kit according to the protocol for
isolation of total RNA from plant and fungi, including the optional use of
the QiaShredder column. Quality of the purified RNA was verified using
a NanoDrop ND-1000 spectrophotometer and an Agilent 2100 Bioanalyzer
(Agilent Technologies).
Microarray hybridization. A total of 150 ng in 1.5-μL total RNA was labeled
according to the One Color Labeling for Expression Analysis, Quick Amp Low
Input (QALI) manual, version 6.5, from Agilent Technologies. Yield and spe-
cific activity were determined on the ND-1000 spectrophotometer and veri-
fied on a Qubit 2.0 fluorometer (Invitrogen). A total of 1.65 μg of labeled
cRNA was fragmented at 60 °C on a heating block, and the cRNA was pre-
pared for hybridization according to the QALI protocol. A 100-μL sample was
loaded on a 4 × 44 Agilent Gasket Slide situated in a hybridization chamber
(both from Agilent Technologies). The 4 × 44 array was placed on top of the
Gasket Slide. The array was hybridized at 65 °C for 17 h in an Agilent Tech-
nologies hybridization oven. The array was washed following the QALI pro-
tocol and scanned in a G2505C Agilent Technologies Micro Array Scanner.
Analysis of transcriptome data. The raw array signal was processed by first
removing the background noise using the normexp method, and signals
between arrays were made comparable using the quantiles normalization
method as implemented in the Limma package (47). Multiple probe signals
per gene were summarized into a gene-level expression index using Tukey’s
medianpolish, as performed in the last step of the robust multiarray average
(RMA) processing method (48). The data are available from the Gene Ex-
pression Omnibus database (accession no. GSE39993).

The generated data from the Agilent Technologies arrays were combined
with legacy Affymetrix data (accession nos. GSE12859 and GSE7295) using the
qspline normalization method (46) to combine the two normalized sets of
data to onemicroarray catalog with expression indices in comparable ranges.
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Calculation of the Gene CS. The CS is calculated for each individual gene along
the chromosomes according to the following equation:

CS± 3 ¼
X3
i¼− 3

�
s0;i þ

��s0;i��
2

�2

þ
X3
i¼1

�
s0;i þ

��s0;i��
2

�2

; [1]

where s0,i is the Spearman coefficient for the expression indices of the gene
in question and the gene located i genes away in a positive or negative
direction relative to the chromosomal coordinate of the gene. The absolute
term is added to set inverse correlations to 0. The CS assigned to a specific
gene is the average of the CS for the liquid cultures and the CS for the solid
cultures to adjust for background expression levels. Genes located less than
four genes away from the ends of the supercontigs are assigned a CS of 0. All
calculations were performed in the R software suite v. 2.14.0 (49), using the
Bioconductor package (50, 51) for handling of array data. An adaptable R
script for calculation of the CS is available on request.

Generation of Random Values for Evaluation of CS Significance. To estimate
significance levels of the CS, a random set of scores was generated by
selecting six genes at random as simulated neighbors for each of the 10,411
genes in the dataset. Examining this random distribution showed 95% of the
population to have a CS <2.13 (Fig. S2). This value was used to have a false
discovery rate of 0.05. All calculations were performed in R (49).

Identification of Gene Clusters. Gene clusters were defined around each NRPS,
PKS, and DMATS by examination of the transcription profile of all sur-
rounding genes with a CS ≥2.13 as well as three flanking genes in either
direction. All genes with similar expression profiles were included in
the cluster.

PCA-Based Analysis of Dataset Variation. PCA analysis was performed on the
data of Dataset S2 using the prcomp-function of R (49). For stepwise re-
duction of the dataset, all principal components were calculated in each
iteration and a sample was eliminated based on the one that had the largest
contribution to the last principal component (i.e., with the smallest amount
of unique information).

Generation of A. nidulans Gene Deletion Mutants. The genetic transformation
experiments were performed with A. nidulans strain IBT 29539 [veA1, argB2,
pyrG89, and nkuAΔ as described by Nielsen et al. (52)]. Fusion PCR-based
bipartite gene targeting of substrates using the AFpyrG marker for selection
and deletion of AN1242 was performed as described by Nielsen et al. (52),
with the exception that all PCR assays were performed with the PfuX7 DNA
polymerase (53). The deletion construct for AN11080 was assembled by
uracil-specific excision reagent (USER) cloning. Specifically, sequences up-

stream and downstream of the gene to be deleted were amplified by PCR
using primers containing a uracil residue (Table S2). The two PCR fragments
were simultaneously inserted into the PacI/Nt.BbvCI USER cassette of
pU20002A by USER cloning (54, 55). As a result, AFpyrG is now flanked by
the two PCR fragments to complete the gene targeting substrate. The gene
targeting substrate was released from the resulting vector pU20002A-
AN11080 by digestion with SwaI. All restriction enzymes are from New
England Biolabs. Primer sequences for deletion of the targeted genes and
verification of strains are listed in Table S2. In addition, internal AFpyrG
primers were used in combination with the check primers listed in Table S2
for confirmation of correct integration of DNA substrates (52). Trans-
formants and AFpyrG pop-out recombinant strains were rigorously tested
for correct insertions as well as for the presence of heterokaryons by
touchdown spore-PCR analysis on conidia with an initial denaturation at 98 °C
for 20 min.

MS/MS-Based Characterization of Compounds 1–4. Analysis was performed as
stated above for the UHPLC-DAD-HRMS but in MS/MS mode, where analysis
of the target mass and 6 m/z units up (to maintain isotopic pattern) was
performed both via a targeted MS/MS list for the target compounds of in-
terest and by the data-dependent MS/MS mode with an exclusion list, such
that the same compound was selected several times. MS/MS fragmentation
energy was varied from 18 to 55 eV.

Isolation and Structural Elucidation of Nidulanin A. Two hundred plates of
minimal medium were inoculated with A. nidulans, from which SMs were
extracted and nidulanin A was isolated in pure form. One-dimensional and
2D NMR spectra were recorded on a Bruker Daltonics Avance 800-MHz
spectrometer with a 5-mm TCI Cryoprobe at the Danish Instrument Centre
for NMR Spectroscopy of Biological Macromolecules at Carlsberg Laboratory.
Stereoisometry of the amino acids was elucidated using Marfey’s method
(40). Details are provided in SI Text, Table S3, and Figs. S6–S8.

NRPS protein domainswere predicted to identify adenylation domains and
epimerase domains (56). Adenylation-domain specificities were predicted
using NRPSpredictor (57). Details are provided in SI Text.
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