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Music moves us. Its kinetic power is the foundation of human
behaviors as diverse as dance, romance, lullabies, and the military
march. Despite its significance, the music-movement relationship is
poorly understood. We present an empirical method for testing
whethermusic andmovement share a commonstructure that affords
equivalent and universal emotional expressions. Our method uses
a computer program that can generate matching examples of music
andmovement from a single set of features: rate, jitter (regularity of
rate), direction, step size, and dissonance/visual spikiness.Weapplied
ourmethod in twoexperiments, one in theUnitedStates andanother
in an isolated tribal village in Cambodia. These experiments revealed
three things: (i) each emotion was represented by a unique combi-
nationof features, (ii) each combination expressed the same emotion
in both music and movement, and (iii) this common structure be-
tween music and movement was evident within and across cultures.

cross-cultural | cross-modal

Music moves us, literally. All human cultures dance to music
and music’s kinetic faculty is exploited in everything from

military marches and political rallies to social gatherings and
romance. This cross-modal relationship is so fundamental that in
many languages the words for music and dance are often inter-
changeable, if not the same (1). We speak of music “moving” us
and we describe emotions themselves with music and movement
words like “bouncy” and “upbeat” (2). Despite its centrality to
human experience, an explanation for the music-movement link
has been elusive. Here we offer empirical evidence that sheds
new light on this ancient marriage: music and movement share
a dynamic structure.
A shared structure is consistent with several findings from

research with infants. It is now well established that very young
infants—even neonates (3)—are predisposed to group metrically
regular, auditory events similarly to adults (4, 5). Moreover, infants
also infer meter from movement. In one study, 7-mo-old infants
were bounced in duple or triple meter while listening to an am-
biguous rhythm pattern (6). When hearing the same pattern later
without movement, infants preferred the pattern with intensity
(auditory) accents that matched the particular metric pattern at
which they were previously bounced. Thus, the perception of a
“beat,” established by movement or by music, transfers across mo-
dalities. Infant preferences suggest that perceptual correspond-
ences between music and movement, at least for beat perception,
are predisposed and therefore likely universal. By definition, how-
ever, infant studies do not examine whether such predispositions
survive into adulthood after protracted exposure to culture-specific
influences. For this reason, adult cross-cultural research provides
important complimentary evidence for universality.
Previous research suggests that several musical features are

universal. Most of these features are low-level structural proper-
ties, such as the use of regular rhythms, preference for small-in-
teger frequency ratios, hierarchical organization of pitches, and so
on (7, 8). We suggest music’s capacity to imitate biological dy-
namics including emotive movement is also universal, and that this
capacity is subserved by the fundamental dynamic similarity of the
domains of music and movement. Imitation of human physio-
logical responses would help explain, for example, why “angry”

music is faster and more dissonant than “peaceful” music. This
capacity may also help us understand music’s inductive effects: for
example, the soothing power of lullabies and the stimulating,
synchronizing force of military marching rhythms.
Here we present an empirical method for quantitatively com-

paring music and movement by leveraging the fact that both can
express emotion. We used this method to test to what extent
expressions of the same emotion in music andmovement share the
same structure; that is, whether they have the same dynamic fea-
tures. We then tested whether this structure comes from biology or
culture. That is, whether we are born with the predisposition to
relate music and movement in particular ways, or whether these
relationships are culturally transmitted. There is evidence that
emotion expressed in music can be understood across cultures,
despite dramatic cultural differences (9). There is also evidence
that facial expressions and other emotional movements are cross-
culturally universal (10–12), as Darwin theorized (13). A natural
predisposition to relate emotional expression in music and move-
ment would explain why music often appears to be cross-culturally
intelligible when other fundamental cultural practices (such as
verbal language) are not (14). To determine how music and
movement are related, and whether that relationship is peculiar to
Western culture, we ran two experiments. First, we tested our
common structure hypothesis in the United States. Then we con-
ducted a similar experiment in L’ak, a culturally isolated tribal
village in northeastern Cambodia. We compared the results from
both cultures to determine whether the connection between music
and movement is universal. Because many musical practices are
culturally transmitted, we did not expect both experiments to have
precisely identical results. Rather, we hypothesized results from
both cultures would differ in their details yet share core dynamic
features enabling cross-cultural legibility.

General Method
We created a computer program capable of generating both music
andmovement; the former as simple,monophonic pianomelodies,
and the latter as an animated bouncing ball. Both were controlled
by a single probabilistic model, ensuring there was an isomorphic
relationship between the behavior of the music and the movement
of the ball. This model represented both music and movement in
terms of dynamic contour: how changes in the stimulus unfold over
time. Our model for dynamic contour comprised five quantitative
parameters controlled by on-screen slider bars. Stimuli were gen-
erated in real time, and manipulation of the slider bars resulted in
immediate changes in the music being played or the animation
being shown (Fig. 1).
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The five parameters corresponded to the following features:
rate (as ball bounces or musical notes per minute, henceforth
beats per minute or BPM), jitter (SD of interonset interval), di-
rection of movement (ratio of downward to upward movements,
controlling either pitch trajectory or ball tilt), step size (ratio of big
to small movements, controlling pitch interval size or ball bounce
height), and finally consonance/smoothness [quantified using
Huron’s (15) aggregate dyadic consonance measure and mapped
to surface texture].
The settings for each of these parameters affected both themusic

and the movement such that certain musical features were guar-
anteed to correspondwith certainmovement features. The rate and
jitter sliders controlled the rate and variation in interonset interval
of events in both modalities. The overall contour of eachmelody or
bounce sequence was determined by the combined positions of the
direction of movement and step-size sliders. Absolute pitch posi-
tion corresponded to the extent to which the ball was tilted forward
or backward. Low pitches corresponded with the ball “leaning”
forward, as though looking toward the ground, and high pitches
corresponded with “leaning” backward, looking toward the sky.
For music, the consonance slider controlled the selection of one
of 38 possible 5-note scales, selected from the 12-note Western
chromatic scale and sorted in order by their aggregate dyadic
consonance (15) (SI Text). For movement, the consonance slider
controlled the visual spikiness of the ball’s surface. Dissonant in-
tervals in the music corresponded to increases in the spikiness of
the ball, and consonant intervals smoothed out its surface. Spikiness
was dynamic in the sense that it was perpetually changing because
of the probabilistic and continuously updating nature of the pro-
gram; it did not influence the bouncing itself. Our choice of spikiness
as a visual analog of auditory dissonance was inspired by the concept
of auditory “roughness” described by Parncutt (16). We understand
“roughness” as an apt metaphor for the experience of dissonance.
We did not use Parncutt’s method for calculating dissonance based
on auditory beating (17, 18). To avoid imposing a particular physical
definition of dissonance, we used values derived directly from ag-
gregated empirical reports of listener judgments (15). Spikiness was
also inspired by nonarbitrary mappings between pointed shapes and
unrounded vowels (e.g., “kiki”) and between rounded shapes and
rounded sounds (e.g., “bouba”; refs. 19–21). The dissonance-spiki-
ness mapping was achieved by calculating the dissonance of the
melodic interval corresponding to each bounce, and dynamically
scaling the spikiness of the surface of the ball proportionately.
Three of these parameters are basic dynamic properties: speed

(BPM), direction, and step-size. Regularity (jitter) and smooth-
ness were added because of psychological associations with
emotion [namely, predictability and tension (22)] that were not
already captured by speed, step-size, and direction. The number
of features (five) was based on the intuition that this number
created a large enough possibility space to provide a proof-of-
concept test of the shared structure hypothesis without becoming
unwieldy for participants. We do not claim that these five features
optimally characterize the space.
These parameters were selected to accommodate the production

of specific features previously identified with musical emotion (2).
In themusic domain, this set of features can be grouped as “timing”
features (tempo, jitter) and “pitch” features (consonance, step
size, and direction). Slider bars were presented with text labels

indicating their function (SI Text). Each of the cross-modal (music-
movement) mappings represented by these slider bars constituted
a hypothesis about the relationship between music and movement.
That is, based on their uses in emotional music and movement
(2, 23), we hypothesized that rate, jitter, direction of move-
ment, and step size have equivalent emotional function in both
music and movement. Additionally, we hypothesized that both
dissonance and spikiness would have negative valence, and that
in equivalent cross-modal emotional expressions the magnitude of
one would be positively correlated with the magnitude of the other.

United States
Methods. Our first experiment took place in the United States
with a population of college students. Participants (n = 50) were
divided into two groups, music (n = 25) and movement (n = 25).
Each participant completed the experiment individually and with-
out knowledge of the other group. That is, each participant was
told about either the music or the movement capability of the
program, but not both.
After the study was described to the participants, written in-

formed consent was obtained. Participants were given a brief
demonstration of the computer program, after which they were
allowed unlimited time to get used to the program through un-
directed play. At the beginning of this session, the slider bars were
automatically set to random positions. Participants ended the play
session by telling the experimenter that they were ready to begin
the experiment. The duration of play was not recorded, but the
modal duration was ∼5–10 min. To begin a melody or movement
sequence, participants pressed the space bar on a computer key-
board. Themusic andmovement output were continuously updated
based on the slider bar positions such that participants could see
(or hear) the results of their efforts as theymoved the bars. Between
music sequences, there was silence. Between movement sequences,
the ball would hold still in its final position before resetting to a
neutral position at the beginning of the next sequence.
After indicating they were ready to begin the experiment, par-

ticipants were instructed to take as much time as needed to use the
program to express five emotions: “angry,” “happy,” “peaceful,”
“sad,” and “scared.” Following Hevner (24), each emotion word
was presented at the top of a block of five words with roughly the
same meaning (SI Text). These word clusters were present on the
screen throughout the entire duration of the experiment. Partic-
ipants could work on each of these emotions in any order, clicking
on buttons to save or reload slider bar settings for any emotion at
any time. Only the last example of any emotion saved by the par-
ticipant was used in our analyses. Participants could use all five
sliders throughout the duration of the experiment, and no restric-
tions were placed on the order in which the sliders were used. For
example, participants were free to begin using the tempo slider,
then switch to the dissonance slider at any time, then back to the
tempo slider again, and so on. In practice, participants constantly
switched between the sliders, listening or watching the aggregate
effect of all slider positions on the melody or ball movement.

Results. The critical question was whether subjects who used
music to express an emotion set the slider bars to the same
positions as subjects who expressed the same emotion with the
moving ball.

Fig. 1. Paradigm. Participants manipulated five
slider bars corresponding to five dynamic features
to create either animations or musical clips that ex-
pressed different emotions.
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To answer this question, the positions of the sliders for each
modality (music vs. movement) and each emotion were analyzed
using multiway ANOVA. Emotion had the largest main effect on
slider position [F(2.97, 142.44) = 185.56, P < 0.001, partial η2 =
0.79]. Partial η2 reflects how much of the overall variance (effect
plus error) in the dependent variable is attributable to the factor in
question. Thus, 79% of the overall variance in where participants
placed the slider bars was attributable to the emotion they were
attempting to convey. Thismain effect was qualified by anEmotion×
Slider interaction indicating each emotion required different slider
settings [F(4.81, 230.73) = 112.90, P < 0.001; partial η2 = 0.70].
Although we did find a significant main effect of Modality

(music vs. movement) [F(1,48) = 4.66, P < 0.05], it was small
(partial η2 = 0.09) and did not interact with Emotion [Emotion ×
Modality: F(2.97, 142.44) = 0.97, P > 0.4; partial η2 = 0.02]. This
finding indicates slider bar settings for music and movement were
slightly different from each other, regardless of the emotion being
represented. We also found a three-way interaction between
Slider, Emotion, andModality. This interaction was significant but
modest [F(4.81, 230.73) = 4.50, P < 0.001; partial η2 = 0.09], and
can be interpreted as a measure of the extent to which music and
movement express different emotions with different patterns of
dynamic features.
To investigate the similarity of emotional expressions, we

conducted a Euclidean distance-based clustering analysis. This
analysis revealed a cross-modal, emotion-based structure (Fig. 2).
These results strongly suggest the presence of a common struc-

ture. That is, within this experiment, rate, jitter, step size, and di-
rection of movement functioned the same way in emotional music
and movement, and aggregate dyadic dissonance was functionally
analogous to visual spikiness. For our United States population,
music and movement shared a cross-modal expressive code.

Cambodia
Methods. We conducted our second experiment in L’ak, a rural
village in Ratanakiri, a sparsely populated province in northeast-
ern Cambodia. L’ak is a Kreung ethnic minority village that has
maintained a high degree of cultural isolation. (For a discussion
of the possible effects of modernization on L’ak, see SI Text.) In
Kreung culture, music and dance occur primarily as a part of rit-
uals, such as weddings, funerals, and animal sacrifices (25). Kreung
music is formally dissimilar to Western music: it has no system of
vertical pitch relations equivalent to Western tonal harmony, is
constructed using different scales and tunings, and is performed on
morphologically dissimilar instruments. For a brief discussion of
the musical forms we observed during our visit, see SI Text.

The experiment we conducted in L’ak proceeded in the same
manner as the United States experiment, except for a few mod-
ifications made after pilot testing. Initially, because most of the
participants were illiterate, we simply removed the text labels from
the sliders. However, in our pilot tests we found participants had
difficulty remembering the function of each slider during the
movement task. We compensated by replacing the slider labels for
the movement task with pictures (SI Text). Instructions were
conveyed verbally by a translator. (For a discussion of the trans-
lation of emotion words, see SI Text.) None of the participants had
any experience with computers, so the saving/loading functionality
of the program was removed. Whereas the United States partic-
ipants were free to work on any of the five emotions throughout the
experiment, the Kreung participants worked out each emotion
one-by-one in a random order. There were no required repetitions
of trials. However, when Kreung subjects requested to work on
a different emotion than the one assigned, or to revise an emotion
they had already worked on, that request was always granted. As
with the United States experiment, we always used the last ex-
ample of any emotion chosen by the participant. Rather than using
a mouse, participants used a hardware MIDI controller (Korg
nanoKontrol) to manipulate the sliders on the screen (Fig. 3A).
When presented with continuous sliders as in the United States

experiment, many participants indicated they were experiencing
decision paralysis and could not complete the task. To make the
task comfortable and tractable we discretized the sliders, limiting
each to three positions: low, medium, and high (SI Text). As with
the United States experiment, participants were split into separate
music (n = 42) and movement (n = 43) groups.

Results: Universal Structure in Music and Movement
There were two critical questions for the cross-cultural analysis: (i)
Are emotional expressions universally cross-modal? and (ii) Are
emotional expressions similar across cultures? The first question
asks whether participants who used music to express an emotion
set the slider bars to the same positions as participants who
expressed the same emotion with the moving ball. This question
does not examine directly whether particular emotional expres-
sions are universal. A cross-modal result could be achieved even
if different cultures have different conceptions of the same emo-
tion (e.g., “happy” could be upward and regular in music and
movement for the United States, but downward and irregular in
music and movement for the Kreung). The second question asks
whether each emotion (e.g., “happy”), is expressed similarly across
cultures in music, movement or both.
To compare the similarity of the Kreung results to the United

States results, we conducted three analyses. All three analyses
required the United States and Kreung data to be in a comparable
format; this was accomplished by making the United States data
discrete. Each slider setting was assigned a value of low, medium,
or high in accordance with the nearest value used in the Kreung
experiment. The following sections detail these three analyses. See
SI Text for additional analyses, including a linear discriminant

Fig. 2. Music-movement similarity structure in the United States data.
Clusters are fused based on the mean Euclidean distance between members.
The data cluster into a cross-modal, emotion-based structure.

Fig. 3. (A) Kreung participants used a MIDI controller to manipulate the
slider bar program. (B) L’ak village debriefing at the conclusion of the study.
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analysis examining the importance of each feature (slider) in dis-
tinguishing any given emotion from the other emotions.

ANOVA. We z-scored the data for each parameter (slider) sepa-
rately within each population.We then combined all z-scored data
into a single, repeated-measures ANOVA with Emotion and
Sliders as within-subjects factors and Modality and Population
as between-subjects factors. Emotion had the largest main effect
on slider position [F(3.76, 492.23) = 40.60, P < 0.001, partial η2 =
0.24], accounting for 24% of the overall (effect plus error) vari-
ance. There were no significant main effects of Modality (music
vs. movement) [F(1,131) = 0.004, P = 0.95] or Population (United
States, Kreung) [F(1,131) < 0.001, P = 0.99] and no interaction
between the two [F(1,131) = 1.15, P = 0.29].
This main effect of Emotion was qualified by an Emotion ×

Sliders interaction, indicating each emotion was expressed by
different slider settings [F(13.68, 1791.80) = 38.22, P < 0.001;
partial η2 = 0.23]. Emotion also interacted with Population, albeit
more modestly [F(3.76, 492.23) = 11.53, P < 0.001, partial η2 =
0.08] and both were qualified by the three-way Emotion× Sliders×
Population interaction, accounting for 7% of the overall vari-
ance in slider bar settings [F(13.68, 1791.80) = 10.13, P < 0.001,
partial η2 = 0.07]. This three-way interaction can be understood
as how much participants’ different emotion configurations could
be predicted by their population identity. See SI Text for the
z-scored means.
Emotion also interacted with Modality [F(3.76, 492.23) = 2.84,

P = 0.02; partial η2 = 0.02], which was qualified by the three-way
Emotion×Modality× Sliders [F(13.68, 1791.80)= 4.92, P< 0.001;
partial η2= 0.04] and the four-way Emotion×Modality× Sliders×
Population interactions [F(13.68, 1791.80) = 2.8, P < 0.001; partial
η2 = 0.02]. All of these Modality interactions were modest, ac-
counting for between 2% and 4% of the overall variance.
In summary, the ANOVA revealed that the slider bar config-

urations depended most strongly on the emotion being conveyed
(Emotion × Slider interaction, partial η2 = 0.23), with significant but
small influences of modality and population (partial η2’s < 0.08).

Monte Carlo Simulation. Traditional ANOVA is well-suited to
detecting mean differences given a null hypothesis that the means
are the same. However, this test cannot capture the similarity
between populations given the size of the possibility space. One
critical advance of the present paradigm is that it allowed partic-
ipants to create different emotional expressions within a large
possibility space. Analogously, an ANOVA on distance would
show that Boston and New York City do not share geographic
coordinates, thereby rejecting the null hypothesis that these cities
occupy the same space. Such a comparison would not test how close
Boston and New York City are compared with distances between
either city and every other city across the globe (i.e., relative to
the entire possibility space). To determine the similarity between
Kreung and United States data given the entire possibility space
afforded by the five sliders, we ran a Monte Carlo simulation.
The null hypothesis of this simulation was that there are no
universal perceptual constraints on music-movement-emotion
association, and that individual cultures may create music and
movement anywhere within the possibility space. Showing instead
that differences between cultures are small relative to the size of
the possibility space strongly suggests music-movement-emotion
associations are subject to biological constraints.
We represented the mean results of each experiment as a 25-

dimensional vector (five emotions × five sliders), where each
dimension has a range from 0.0 to 2.0. The goal of the Monte
Carlo simulation was to see how close these two vectors were to
each other relative to the size of the space they both occupy. To
do this, we sampled the space uniformly at random, generating
one-million pairs of 25-dimensional vectors. Each of these vec-
tors represented a possible outcome of the experiment. We
measured the Euclidean distance between each pair to generate
a distribution of intervector distances (mean = 8.11, SD = 0.97).

The distance between the Kreung and United States mean
result vectors was 4.24, which was 3.98 SDs away from the mean.
Out of one-million vector pairs, fewer than 30 pairs were this
close together, suggesting it is highly unlikely that the similarities
between the Kreung and United States results were because of
chance (Fig. 4).
Taken together, the ANOVA and Monte Carlo simulation

revealed that the Kreung and United States data were re-
markably similar given the possibility space, and that the com-
bined data were best predicted by the emotions being conveyed
and least predicted by the modality used. The final analysis ex-
amined Euclidean distances between Kreung and United States
data for each emotion separately.

Cross-Cultural Similarity by Emotion: Euclidean Distance. For this
analysis, we derived emotional “prototypes” from the results of the
United States experiment. This derivation was accomplished by
selecting the median value for each slider for each emotion (for
music and movement combined) from the United States results
and mapping those values to the closest Kreung setting of “low,”
“medium,” and “high.”For example, themedian rate for “sad”was
46 BPM in the United States sample. This BPM was closest to the
“low” setting used in the Kreung paradigm (55 BPM). Using this
method for all five sliders, the “sad” United States prototype was:
low rate, low jitter, medium consonance, low ratio of big to small
movements, and high ratio of downward to upward movements.
We measured the similarity of each of the Kreung datapoints to
the corresponding United States prototype by calculating the
Euclidean distance between them.
For every emotion except “angry,” this distance analysis re-

vealed that Kreung results (for music and movement combined)
were closer to the matching United States emotional prototypes
than they were to any of the other emotional prototypes. In other
words, the Kreung participants’ idea of “sad” was more similar to
the United States “sad” prototype than to any other emotional
prototype, and this cross-cultural congruence was observed for all
emotions except “angry.”This pattern also held for the movement
results when considered separately from music. When the music
results were evaluated alone, three of the five emotions (happy,
sad, and scared) were closer to the matching United States pro-
totype than any nonmatching prototypes.
The threeKreung emotional expressions that were not closest to

their matching United States prototypes were “angry” movement,

Distribution of distances
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Fig. 4. Distribution of distances in the Monte Carlo simulation. Bold black
line indicates where the similarity of United States and Kreung datasets falls
in this distribution.
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“angry” music, and “peaceful” music; however, these had several
matching parameters. For both cultures, “angry” music and “angry”
movement were fast and downward. Although it was closer to the
United States “scared” prototype, Kreung “angry” music matched
the United States “angry” prototype in four of five parameters.
Kreung “peaceful” music was closest to the United States “happy”
prototype, and second closest to the United States “peaceful” pro-
totype. In both cultures, “happy” music was faster than “peaceful”
music, and “happy”movementwas faster than “peaceful”movement.

Discussion
These data suggest two things. First, the dynamic features of
emotion expression are cross-culturally universal, at least for the
five emotions tested here. Second, these expressions have similar
dynamic contours in both music and movement. That is, music
and movement can be understood in terms of a single dynamic
model that shares features common to both modalities. This
ability is made possible not only by the existence of prototypical
emotion-specific dynamic contours, but also by isomorphic struc-
tural relationships between music and movement.
The natural coupling of music and movement has been sug-

gested by a number of behavioral experiments with adults. Friberg
and Sundberg observed that the deceleration dynamics of a runner
coming to a stop accurately characterize the final slowing at the
end of a musical performance (26). People also prefer to tap to
music at tempos associated with natural types of humanmovement
(27) and common musical tempi appear to be close to some bi-
ological rhythms of the human body, such as the heartbeat and
normal gait. Indeed, people synchronize the tempo of their walking
with the tempo of the music they hear (but not to a similarly paced
metronome), with optimal synchronization occurring around 120
BPM, a common tempo in music and walking. This finding led the
authors to suggest that the “perception ofmusical pulse is due to an
internalization of the locomotion system” (28), consistent more
generally with the concept of embodied music cognition (29).
The embodiment of musical meter presumably recruits the

putative mirror system comprised of regions that coactivate for
perceiving and performing action (30). Consistent with this hy-
pothesis, studies have demonstrated neural entrainment to beat
(31, 32) indexed by beat-synchronous β-oscillations across audi-
tory and motor cortices (31). This basic sensorimotor coupling
has been described as creating a pleasurable feeling of being “in
the groove” that links music to emotion (33, 34).
The capacity to imitate biological dynamics may also be ex-

pressed in nonverbal emotional vocalizations (prosody). Several
studies have demonstrated better than chance cross-cultural
recognition of several emotions from prosodic stimuli (35–39).
Furthermore, musical expertise improves discrimination of tonal
variations in languages such as Mandarin Chinese, suggesting
common perceptual processing of pitch variations across music
and language (40). It is thus possible, albeit to our knowledge not
tested, that prosody shares the dynamic structure evinced here by
music and movement. However, cross-modal fluency between
music and movement may be particularly strong because of the
more readily identifiable pitch contours and metric structure in
music compared with speech (4, 41).
The close relationship between music and movement has

attracted significant speculative attention from composers, musi-
cologists, and philosophers (42–46). Only relatively recently have
scientists begun studying the music-movement relationship em-
pirically (47–50). This article addresses several limitations in this
literature. First, using the same statistical model to generate music
and movement stimuli afforded direct comparisons previously
impossible because of different methods of stimulus creation.
Second, modeling lower-level dynamic parameters (e.g., conso-
nance), rather than higher-level constructs decreased the potential
for cultural bias (e.g., major/minor). Finally, by creating emotional
expressions directly rather than rating a limited set of stimuli
prepared in advance, participants could explore the full breadth of
the possibility space.

Fitch (51) describes the human musical drive as an “instinct to
learn,” which is shaped by universal proclivities and constraints.
Within the range of these constraints “music is free to ‘evolve’ as
a cultural entity, together with the social practices and contexts of
any given culture.”We theorize that part of the “instinct to learn”
is a proclivity to imitate. Although the present study focuses on
emotive movement, music across the world imitates many other
phenomena, including human vocalizations, birdsong, the sounds
of insects, and the operation of tools and machinery (52–54).
We do not claim that the dynamic features chosen here describe

the emotional space optimally; there are likely to be other useful
features as well as higher-level factors that aggregate across fea-
tures (37, 55–56). We urge future research to test other universal,
cross-modal correspondences. To this end, labanotation—a sym-
bolic language for notating dance—may be a particularly fruitful
source. Based on general principles of human kinetics (57), laba-
notation scripts speed (rate), regularity, size, and direction of
movement, as well as “shape forms” consistent with smoothness/
spikiness. Other Laban features not represented here, but poten-
tially useful for emotion recognition, include weight and symmetry.
It may also be fruitful to test whether perceptual tendencies
documented in one domain extend across domains. For example,
innate (and thus likely universal) auditory preferences include:
seven or fewer pitches per octave, consonant intervals, scales with
unequal spacing between pitches (facilitating hierarchical pitch
organization), and binary timing structures (see refs. 14 and 58 for
reviews). Infants are also sensitive to hierarchical pitch organiza-
tion (5) andmelodic transpositions (see ref. 59 for a review). These
auditory sensitivities may be the result of universal proclivities and
constraints with implications extending beyond music to other
dynamic domains, such as movement. Our goal was simply to use
a small set of dynamic features that describe the space well enough
to provide a test of cross-modal and cross-cultural similarity.
Furthermore, although these dynamic features describe the space
of emotional expression for music and movement, the present
study does not address whether these features describe the space
of emotional experience (60, 61).
Our model should not be understood as circumscribing the

limits of emotional expression in music. Imitation of movement is
just one way among many in which music may express emotion, as
cultural conventions may develop independently of evolved pro-
clivities. This explanation allows for cross-cultural consistency yet
preserves the tremendous diversity of musical traditions around
the world. Additionally, we speculate that, across cultures, mu-
sical forms will vary in terms of how emotions and their related
physical movements are treated differentially within each cultural
context. Similarly, the forms of musical instruments and the
substance of musical traditions may in turn influence differential
cultural treatment of emotions and their related physical move-
ments. This interesting direction for further research will require
close collaboration with ethnomusicologists and anthropologists.
By studying universal features of music we can begin to map its

evolutionary history (14). Specifically, understanding the cross-
modal nature ofmusical expressionmay in turn help us understand
why and how music came to exist. That is, if music and movement
have a deeply interwoven, shared structure, what does that shared
structure afford and how has it affected our evolutionary path? For
example, Homo sapiens is the only species that can follow precise
rhythmic patterns that afford synchronized group behaviors, such
as singing, drumming, and dancing (14). Homo sapiens is also the
only species that forms cooperative alliances between groups that
extend beyond consanguineal ties (62). One way to form and
strengthen these social bonds may be through music: specifically
the kind of temporal and affective entrainment that music evokes
from infancy (63). In turn, these musical entrainment-based bonds
may be the basis forHomo sapiens’ uniquely flexible sociality (64).
If this is the case, then our evolutionary understanding of music is
not simply reducible to the capacity for entrainment. Rather,
music is the arena in which this and other capacities participate in
determining evolutionary fitness.
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The shared structure of emotional music and movement must
be reflected in the organization of the brain. Consistent with this
view, music and movement appear to engage shared neural sub-
strates, such as those recruited by time-keeping and sequence
learning (31, 65, 66). Dehaene and Cohen (67) offer the term
“neuronal recycling” to describe how late-developing cultural
abilities, such as reading and arithmetic, come into existence by
repurposing brain areas evolved for older tasks. Dehaene and
Cohen suggest music “recycles” or makes use of premusical
representations of pitch, rhythm, and timbre. We hypothesize
that this explanation can be pushed a level deeper: neural rep-
resentations of pitch, rhythm, and timbre likely recycle brain
areas evolved to represent and engage with spatiotemporal per-

ception and action (movement, speech). Following this line of
thinking, music’s expressivity may ultimately be derived from the
evolutionary link between emotion and human dynamics (12).
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