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The irreversible nature of reactions catalysed by P450s makes these enzymes

landmarks in the evolution of plant metabolic pathways. Founding members

of P450 families are often associated with general (i.e. primary) metabolic

pathways, restricted to single copy or very few representatives, indicative

of purifying selection. Recruitment of those and subsequent blooms into

multi-member gene families generates genetic raw material for functional

diversification, which is an inherent characteristic of specialized (i.e. second-

ary) metabolism. However, a growing number of highly specialized P450s

from not only the CYP71 clan indicate substantial contribution of convergent

and divergent evolution to the observed general and specialized metabolite

diversity. We will discuss examples of how the genetic and functional diver-

sification of plant P450s drives chemical diversity in light of plant evolution.

Even though it is difficult to predict the function or substrate of a P450 based

on sequence similarity, grouping with a family or subfamily in phylogenetic

trees can indicate association with metabolism of particular classes of com-

pounds. Examples will be given that focus on multi-member gene families of

P450s involved in the metabolic routes of four classes of specialized metab-

olites: cyanogenic glucosides, glucosinolates, mono- to triterpenoids and

phenylpropanoids.
1. Introduction: emerging modes of evolution for P450s
in specialized metabolism

Plants are characterized by an astonishing diversity of low-molecular-weight

natural products that play essential roles in adaptation and defence. These struc-

turally diverse compounds are referred to as plant specialized compounds (i.e.

secondary metabolites or natural products). In contrast to general metabolites

(i.e. primary), which are prevalent in all plant species, plant specialized com-

pounds are typically found in only a limited number of species, a genus, a

single family or a few families. Biochemically, plant specialized compounds

can be grouped into three major classes: terpenoids, phenylpropanoids and

nitrogen-containing compounds, of which the latter can be further subdivided

into alkaloids, cyanogenic glucosides and glucosinolates. Plant specialized com-

pounds are pivotal to the success of a species, as their evolution has provided

selective advantages in adaptation and development, and are thus a driving

force in speciation. For example, phenylpropanoids show an increasing degree

of functional specialization: ranging from UV protectant and radical scavenging,

to vascularization, pigmentation, phytoalexins and signalling molecules. In an

analogous manner, terpenoids range from structural components of membranes

to phytohormones, chemical defence compounds and signalling molecules.

A common feature is that the vast majority of specialized metabolites are

oxygenated. It is well documented that cytochromes P450 are often recruited

as versatile catalysts in the biosynthesis of plant specialized compounds, and

are as such key to the structural diversity and the success of plant specialized

compounds [1,2]. It is, therefore, not surprising that plants hold the record in
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Figure 1. Relative distribution of angiosperm P450s across the clans from a selected taxonomically wide range of angiosperm genomes. The average number of
P450s is based on the sequenced and curated (David Nelson) genomes of a wide taxonomic range of angiosperm species: the core eudicotyledons Arabidopsis
(Arabidopsis thaliana), papaya (Carica papaya), grape vine (Vitis vinifera), poplar (Populus trichocarpa), castor bean (Ricinus communis), jatropha (Jatropha curcas),
soybean (Glycine max), and the monocotyledons rice (Oryza sativa) and Brachypodium (Brachypodium distachyon).
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number of P450s per genome. While animal genomes usually

contain fewer than 100 P450s, higher land plants typically

contain in excess of 250 P450s (e.g. Arabidopsis thaliana 245

genes, Oryza sativa 343 genes) [3]. Non-vascular bryophytes

contain a more limited set of P450s (e.g. Physcomitrella
patens 71 genes), while the vascular lycopod representative

Selaginella moellendorffii contains 227 P450s. These varying

numbers suggest that the quantity of P450s in plant genomes

has substantially increased through evolution, to a point in

angiosperms where they represent approximately 1 per cent

of the encoded genes. The advances in next-generation

sequencing technologies, combined with progressively

decreasing costs, have considerably amplified the number

of sequenced plant genomes. Consequently, as more evol-

utionary diverse aquatic and land species are sequenced,

new plant P450 families are being revealed, with the current

total standing at 127. Nevertheless, the number of P450

families in angiosperms seems to have plateaued at 59. In

the P450 nomenclature system, plants were initially assigned

family numbers from 71 to 99. But by 1996, it had already

become clear that the diversity of plant P450s was largely

underestimated, and new families had to be assigned from

701 to the latest addition of CYP805A (David Nelson’s web

page, http://drnelson.uthsc.edu/cytochromeP450.html).

Based on the available sequences, land plant P450s can be

grouped in 11 phylogenetically distinct clans [4,5]. However, it

is to be expected that new clans will emerge as older plant

lineages are sequenced, as seen when the genome of the

green algae Chlamydomonas was released. Plant clans are

named according to the lowest-numbered family member [5].

Originally, the view on plant P450s was more simplified and

they were grouped as either A-type or non-A-type [6,7]. The

idea behind this division was that the A-type P450s, based

on phylogenetic trees, constituted a monophyletic clade,

whereas the non-A-type were more diverse and did not form

a coherent group in a phylogenetic sense. The A-type P450s

are now in the CYP71 clan, whereas the non-A-type

P450s are in the remaining 10 clans. Based on the available

data at that time, the A-type P450s were involved in ‘plant-

specific metabolism’, now commonly referred to as plant

specialized metabolism, such as the synthesis of lignin, alka-

loids, flavonoids and cyanogenic glucosides. The non-A-types

on the other hand were thought to be involved in more basic
metabolism such as sterol and lipid oxygenation and hormone

metabolism. We know now that this simplified view is incor-

rect, and that there are several examples of non-A-type P450s

that have been recruited for plant specialized metabolism.

Particularly within the A-type/CYP71 clan, there are suc-

cessive gene duplication events, referred to as blooms [8,9],

that have generated often species-specific expanded families.

Some of these duplications are reminiscent of ancient whole-

genome duplication events in terrestrial plants that have led

to duplicated and triplicated polyploid progenitors [10],

and opened vast opportunities for neo- and subfunctionaliza-

tion for the evolution of new chemistries [11,12]. Other

duplicated P450s are derived from retroposition events or

unequal cross-over events during meiosis. Gene duplication

events derived from retroposition are intron-less by nature

and blooms of intron-less P450s are prevalent in Arabidopsis
CYP86 and CYP96 families in the CYP86 clan; CYP89,

CYP81 and CYP98 families in the CYP71 clan; and the

CYP710 clan (for a review see [4]). Duplication events from

unequal cross-over events result in characteristic tandem

arrays of P450s as exemplified by the species-specific bloom

of 37 CYP71B genes in Arabidopsis, of which 34 are located

in four tandem arrays [13].

Phylogenetic analyses of plant P450s clearly indicate that

the CYP71 clan is the youngest clan [3,4]. Yet, more than half

of the P450s found in moss are members of this clan, indicat-

ing the CYP71 clan was already dominant in early land

plants [3]. When analysing the relative number of angios-

perm P450s per clan, it is evident that some clans have

expanded more than others (figure 1), and, as a consequence,

allowed for their diversified function. For example, CYP51 is

the only P450 family in the CYP51 clan and it catalyses the

essential sterol 14a-demethylase reaction in sterol bio-

synthesis in eukaryotes. CYP710A is the only subfamily in

the CYP710 clan and it mediates biosynthesis of the

phytohormone brassinolide [14,15]. CYP711A is the only

family in the CYP711 clan and it is involved in strigolactone

signalling and, thereby, the regulation of root–shoot multi-

plication. Other examples include the CYP74 clan that

contains a limited number of subfamilies that are involved

in metabolizing oxygenated polyunsaturated C18 fatty acid

hydroperoxides to oxylipids in the octadecanoid pathway,

generating signalling molecules, such as jasmonates, essential
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for host immunity and plant development (for a recent

review see [16]). Characteristic of these single-family clans

is their involvement in essential functions, such as formation

of sterols for membranes, and phytohormones for plant

development and plant defence. In contrast, the CYP71

clan is highly proliferated and includes P450s involved

in metabolism of the majority of plant specialized com-

pounds. Similarly, the CYP85 clan and CYP86 clan are

proliferated multi-family clans involved in both general and

specialized metabolism. P450s in the CYP85 clan metabolize

terpenoid phytohormones and specialized metabolites.

Similarly, while P450s of the CYP86 clan are involved in

hydroxylation and epoxidation of fatty acids, fatty alcohols

or alkanes, a few family members have functionally

diversified in specialized metabolism.

In this review, we will highlight examples of how plant

P450s have been continuously recruited for biosynthesis of

new specialized compounds, either by divergence from gen-

eral metabolism after gene duplication, or from pre-existing

specialized compound pathways.
26
2. CYP98A bridges general and specialized
phenylpropanoid metabolism

Phenylpropanoids represent one class of metabolites with a

key role in the evolution of modern plants, as their diversifi-

cation led to a plethora of critical functions in development

and adaptation. Lignin, built from phenylpropanoid-derived

precursors is the second most abundant biopolymer on the

planet and has, due to its hydrophobic nature, enabled

plants to transport water, and ultimately to grow in height

and to colonize the land. Other, equally vital roles of

phenylpropanoids include, but are not limited to: protection,

as UV pigments, radical scavenging, preformed defence mol-

ecules and phytoalexins, as signalling molecules and in

reproduction. In all biosynthetic routes, P450s are located at

key regulatory positions. For example, three P450 families are

involved in biosynthesis of mono-lignols, the building blocks

for lignin production: CYP73 (cinnamate 4-hydroxylase),

CYP84 (coniferaldehyde and coniferylalcohol 5-hydroxylase)

and CYP98 as aromatic meta-hydroxylase (for a review see

[17]). The CYP98 family has received substantial attention, as

it represents a particularly illustrative example of evolutionary

mechanisms driving chemical diversification on the basis

of P450s.

The core enzymes of CYP98, which are ubiquitously rep-

resented in all land plants at low-gene count, are involved in

the general lignin biosynthetic route, where they catalyse

hydroxylation of the shikimate and quinate esters of

4-coumarate at the third position of the phenolic ring

(meta-hydroxylation) en route to chlorogenic acid and mono-

lignols [18]. A mechanistically similar hydroxylation was

suggested for the biosynthetic route to the phenylpropanoid

specialized metabolite rosmarinic acid, which proceeds via

3-hydroxylation of the 40-phenyllactic ester of 4-coumarate.

Two CYP98A enzymes from species accumulating rosmarinic

acid, one from Ocimum basilicum (sweet basil) of the Lamiaceae

family, and the other from Lithospermum erythrorhizon of the

Boraginaceae family, were suggested to catalyse the required

3-hydroxylation, albeit at a lower rate than with the shikimate

ester (O. basilicum) or without comparison to the shikimate

ester (L. erythrorhizon) [19,20]. The proof for a truly
neofunctionalized CYP98A in rosmarinic acid biosynthesis

came in 2009, when Eberle et al. [21] published their study on

Coleus blumei (Lamiaceae) CYP98A14. This enzyme efficiently

converted, through 3- and 30-hydroxylation, 4-coumaroyl-

and caffeoyl-phenyllactate into rosmarinic acid, without

accepting the corresponding shikimate- or quinate-linked

phenylpropanoids as alternative substrates. In hexaploid

wheat, two of eight detected CYP98A genes were shown to

meta-hydroxylate coumaroyl-tyramine to caffeoyl-tyramine, a

conjugated phenolic precursor of suberin, and with that

demonstrating substrate plasticity and beginning neofunctio-

nalization for members of an expanded CYP98A family [22].

Just 2 years later, members of the same research team fol-

lowed up on a striking phenomenon detected in Arabidopsis,

where gene duplication in the CYP98A family had led to two

additional copies that evolved at a highly accelerated rate:

CYP98A8 and CYP98A9. Matsuno and co-workers observed

that the young members showed, for this family, an unusual

lack of intronic sequence and were clustered on chromosome 1.

Consequently, it was suggested that the family’s expansion

was the result of a series of events starting with retro-

transposition and tandem duplication, concomitant with

neofuntionalization and subsequent further specialization,

or broadening of the function [23]. The positions of amino

acids under strong positive selection and structure homology

modelling indicated enlargement of the substrate access chan-

nel and active site cavity in comparison with the ancestral

CYP98A. Consistent with the gain of novel regulatory

elements upstream of the translational start, which were also

partially locally duplicated with the tandem duplication, tran-

script profiling showed reprogramming of the expression of

CYP98A8 and CYP98A9 in male reproductive organs. Metab-

olite profiling of transgenic plants and characterization of

heterologously expressed CYP98A8 and CYP98A9 was used

to demonstrate that both enzymes have a redundant activity

in the sequential 3-hydroxylation of a pollen-specific triphe-

nylpropanoid, conjugated through a polyamine, but that

CYP98A8 may also have an additional 5-hydroxylation

activity (figure 2). While it remains unclear whether this

specific activity represents the evolution of a novel function

in CYP98A8 (broadening), or whether this enzymatic activity

was lost in CYP98A9 (specialization), the expansion of the

CYP98A subfamily through tandem duplication and the

concomitant evolution of the novel phenolic pathway in

pollen development represents an illustrative example

of pathway elongation (see §8 for further elaboration of

this phenomenon).
3. Recurrent recruitments of P450s as catalysts
for diversification of mono- to triterpenoids

Terpenoids are the evolutionarily oldest and structurally

most diverse class of plant specialized metabolites. Inherently

linked with plant development and adaptation, it is not sur-

prising to detect in the most basal land plant lineages, such as

the Bryophytes, complex terpenoids that in higher plants

have further diversified into vital plant hormones. Chemical

diversification of terpenoids has dramatically expanded

their role in plant adaptation, protection and, in the broadest

sense, interaction of the plant with its biosphere. Derived from

C5 carbon building blocks, terpenoids are classified as mono-

(C10), sesqui- (C15), di- (C20), tri- (C30) or poly- (n units)
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Figure 2. Regio- and substrate-specificity of CYP98A family members. While duplicate members of the family have evolved from 4-coumaroyl shikimate to accept
and hydroxylate tyramine, 4-coumaroyl 4-hydroxyphenyllactate and polyphenylspermidine-conjugated 4-coumaroyl at the third position, Arabidopsis CYP98A8 has
gained in addition the capacity for 5-hydroxylation of polyphenylspermidine-conjugated ferulate.

Table 1. Currently known mono- to triterpenoids in plants. Dictionary of Natural Products (http://dnp.chemnetbase.com; accessed July 18, 2012; DNP 21.1
Taylor & Francis Group).

class of terpenoid number of terpenoids fraction oxygenated

C10 monoterpenoid 3816 0.998

C15 sesquiterpenoid 13 211 0.967

C20 diterpenoid 11 609 0.988

C30 triterpenoid 14 505 0.952

combined 43 141 0.970
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terpenoids. The initial biosynthetic step towards the

typically cyclic backbone of terpenoids is catalysed by

terpene synthases from the ubiquitous precursor molecules

geranyl-diphosphate, farnesyl-diphosphate, geranylgeranyl-

diphosphate and 2,3-epoxy-squalene (for a recent review
see [24,25]). Of the currently more than 43,000 known terpe-

noids, the majority are oxygenated at one or more carbon

positions (table 1). Oxygenation, typically catalysed by

P450s, not only modulates physico-chemical properties of the

terpenoids (e.g. increase in polarity, decrease in volatility),
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but also increases the structural diversity and introduces func-

tional groups for auxiliary modification such as glycosylation

or acylation.

P450s oxidizing terpenoids were among the first P450s

identified, characterized and cloned from plants. In addition,

they belong to the oldest existing plant P450 families and

their role in sterol metabolism or the metabolism of

phytohormones represent the most basal known functions,

conserved throughout all land plant lineages. Naturally,

P450s of general terpenoid metabolism are already distribu-

ted over eight of the currently known 11 plant clans, and

P450s of the evolutionarily younger terpenoid specialized

metabolism have started to proliferate in four of those, indi-

cating that recruitment from existing pathways (i.e. general

metabolism) is a key feature in the evolution of new functions

for P450s in terpenoid metabolism (table 2).

The evolution of genes involved in specialized metabolism

appears accelerated when compared with general metabolism,

with the above-mentioned Arabidopsis CYP98A8/9 versus

CYP98A representing a prime example. Hence, duplicated

genes and expanded families, for which the evolution of novel

specialized terpenoids can be traced back to individual progeni-

tor P450s of general terpenoid metabolism, indicate young

inventions. Examples, discussed more in detail below, are

found in the CYP51, CYP701 and CYP88 families. Extended

families involved in specialized metabolism which are either

detected in older land plant lineages, or which are more broadly

represented across the plant kingdom, imply an earlier timing of

their emergence with the identity of their ancestor remaining

uncertain. Examples are CYP725A, CYP720B and CYP716A

which are found as distinct families in the CYP85 clan, otherwise

consisting largely of families involved in general terpenoid

metabolism. Finally, the progenitor(s) for P450 families in

specialized metabolism in the CYP71 clan are unknown, and it

cannot be excluded that some are derived from CYP71 genes

already involved in specialized metabolism followed by further

rapid diversification. CYP701, found at the base of this clan,

and thereby likely being the oldest existing family in that clan,

is the only P450 known to be involved in terpenoid general

metabolism (phytohormone gibberellic acid (GA)), whereas 16

of the 17 families with functions in terpenoid metabolism

assigned play roles in specialized metabolism.
4. The CYP71 clan: cradle of monoterpenoid
and sesquiterpenoid diversity

Monoterpenoids represent the smallest fraction of known ter-

penoids and P450s involved in their metabolism are, with the

exception of Madagascar periwinkle CYP72A1, apparently

restricted to the CYP71 clan. CYP72A1 catalyses formation

of secologanin, the monoterpenoid moiety of the indole alka-

loid strictosidine, through a quite unusual reaction for P450s,

cleavage of C–C bonds [26]. Recruitment of CYP72A1 and

P450s specific to closely related species for monoterpenoid

metabolism may be a curiosity in this family in light of the

function of more distantly related members of this subfamily

(CYP72A154, Glycyrrhiza plants (liquorice) and CYP72A63,

Medicago truncatula) in the biosynthesis of triterpenoids. Con-

sistently, the four other functionally characterized families in

the CYP72 clan with involvement in terpenoid metabolism

are invariably involved in di- and triterpenoid phytohormone

catabolism (see section on triterpenoids for details).
In the CYP71 clan, members of the distantly related sub-

families CYP71A, CYP71D, CYP71AR and CYP76B are

involved, or have been suggested to play a role in the oxi-

dation of monoterpenoids. The lack of a shared functionally

characterized common ancestor prompts the speculation

that this is the result of convergent evolution in these families.

Avocado (Persea americana) CYP71A1 was the first plant P450

cloned [27], and is the founding member of the CYP71 family

and thus the CYP71 clan. Until this time, P450s with activity

towards monoterpenoids had been only identified, isolated

and functionally characterized from plant microsomal

fractions with activity towards geraniol and nerol from

Catharanthus roseus [28] and avocado mesocarp tissue [29].

It was later demonstrated that both the cloned CYP71A1, as

well as the P450 from plant microsomes, were capable of

oxidizing nerol and geraniol to the corresponding 2,3- and

6,7-epoxides. However, compounds of that class remained

undetectable in avocado tissue, hence the function of

CYP71A1 in the plant and the physiological substrate are

still unclear [30]. CYP71A13, a member of the largest and

most diverse family in Arabidopsis, was shown to be involved

in the formation of the indole alkaloid specialized metabolite

camalexin [31], suggesting that CYP71A family members

have acquired highly specific functions across and within

individual species. The elusive P450 with in planta geraniol

hydroxylase activity was finally discovered in C. roseus,

where CYP76B6 was shown to be involved in the route to

monoterpenoid indole alkaloids [32]. In both CYP76B and

CYP71A families, several reports describe the acceptance of

exogenous substrates as well as the capacity for heterolo-

gously expressed P450s to degrade xenobiotics [33,34], thus

indicating a high degree of functional promiscuity. Both

families have also undergone expansions, and at least in

Arabidopsis, four CYP76C members appear in a genomic

cluster on chromosome 2. For CYP76C1, a function was

suggested as geraniol/nerol 10-hydroxylase [35].

Similarly, highly divergent functional specialization is a

feature of the CYP71D subfamily, where functionally assigned

genes involved in isoprenoid metabolism have been described

for monoterpenoids, sesquiterpenoids and diterpenoids in, for

example, tobacco and mint species [36–38]. The most recent

CYP71D was assigned the name CYP71D353, reflecting the

extraordinary size of this subfamily.

Even more limited than for monoterpenoids, P450s

involved in sesquiterpenoids metabolism have so far spawned

exclusively in five families of the CYP71 clan (table 2). Recent

work in the Asteraceae family has yielded highly illustrative

insights into the evolution of sesquiterpenoid chemical diver-

sity. Fuelled by the finding that Artemisia annua CYP71AV1

catalyses a three-step oxidation of amorphadiene to arte-

misinic acid [39,40], a detailed analysis of evolutionarily

conserved sesquiterpene lactone biosynthetic routes was per-

formed across a range of Asteraceae [41]. The authors

hypothesized that the biosynthesis of commonly occurring

germacrene A acid, a transient intermediate in the routes to

highly diverse sesquiterpene lactones, represents the evol-

utionary origin for the biosynthesis of artemisininc acid.

Several members of the CYP71AV family from divergent

Asteraceae species have consistently been functionally charac-

terized as germacrene A oxidases, but interestingly also accept

the non-natural substrate amorphadiene, whereas Artemisia
CYP71AV1 displayed no significant activity towards germa-

crene A [41]. Hence, CYP71AV1 represents an example of



Table 2. Distribution of functionally characterized P450s in terpenoid metabolism (see electronic supplementary material, supplementary table for specific
biochemical function, species and references).

clan subfamily metabolism function, class of metabolites

CYP51 CYP51G general triterpenoid sterols

CYP51H specialized triterpenoid

CYP71 CYP71A specialized monoterpenoid

CYP71AR specialized monoterpenoid

CYP71AV specialized sesquiterpenoid

CYP76B specialized iridoid monoterpenoid, xenobiotics detoxification

CYP71BA specialized sesquiterpenoid

CYP71BL specialized sesquiterpenoid

CYP71D specialized mixed, including: monoterpenoid, sesquiterpenoid, diterpenoid, indole alkaloid, flavonoid

CYP71Z specialized diterpenoid

CYP76M specialized diterpenoid

CYP82G specialized terpenoid-derived

CYP93E specialized triterpenoid

CYP99A specialized diterpenoid

CYP701A general diterpenoid phytohormone GA

CYP701A specialized diterpenoid

CYP705A specialized triterpenoid

CYP706B specialized sesquiterpenoid

CYP710 CYP710A general triterpenoid phytohormone brassinolide

CYP711 CYP711A general terpenoid signal molecule

CYP72 CYP72A specialized monoterpene indole alkaloid, triterpenoid

CYP72C general triterpenoid phytohormone brassinolide

CYP714A general diterpenoid phytohormone GA

CYP714D general diterpenoid phytohormone GA

CYP734A general triterpenoid phytohormone brassinolide

CYP85 CYP85A general triterpenoid phytohormone brassinolide

CYP88A general diterpenoid phytohormone GA

CYP88D specialized triterpenoid

CYP90A general triterpenoid phytohormone brassinolide

CYP90B general triterpenoid phytohormone brassinolide

CYP90C general triterpenoid phytohormone brassinolide

CYP90D general triterpenoid phytohormone brassinolide

CYP707A general terpenoid phytohormone ABA

CYP708A specialized triterpenoid

CYP716A specialized triterpenoid

CYP720B specialized diterpenoid

CYP725A specialized diterpenoid

CYP86 CYP724B general triterpenoid phytohormone brassinolide

CYP97 CYP97A general carotenoids

CYP97B general carotenoids

CYP97C general carotenoids
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biochemical neofunctionalization. The same group of Dae-

Kyun Ro identified the subsequent biosynthetic steps in the

routes to lettuce (Lactuca sativa) and sunflower (Helianthus
annus) sesquiterpene lactones, catalysed by the founding

members of the CYP71BL subfamily. It was shown that lettuce
CYP71BL1 and its sunflower homologue CYP71BL2 catalyse

the distinct 6a - and 8b-hydroxylation of germacrene A acid,

and the authors suggest that the sunflower P450 has evolved

from an ancestral 6a-hydroxylase in certain Asteraceae

lineages [42] (figure 3).
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5. From phytohormone to specialized
metabolites: P450s oxidizing diterpenes are
driving chemical diversity

The first P450 function to be detected in plants was described

in Echinocystis macrocalpa (Cucurbitaceae), where the succes-

sive oxidative conversion of (2)-kaur-16-ene (ent-kaurene)

to the corresponding 19-alcohol, 19-aldehyde and 19-acid

was observed, which required oxygen and NADPH, and

showed inhibition by carbon monoxide [43]. The gene

encoding the P450, CYP701A, remains to date the only repre-

sentative of the general metabolism in the CYP71 clan, and is

found ubiquitously in all land plants, typically encoded by a

single-copy gene. With the exception of the moss Physcomi-
trella, which lacks GA phytohormones, the product of

CYP701A is further oxidized in higher land plants by a

second P450 to GA12. In the genome of rice (O. sativa), five

CYP701A subfamily members are found, while only one,

CYP701A6, fulfils the vital function of ent-kaurene oxidation

en route to GA phytohormones [44]. Additionally, the five

P450s are organized in one genomic cluster of 115 kb on

chromosome 6. Two of the clustered P450s, which are direct

neighbours, are also transcriptionally co-regulated in

response to elicitation. Rice contains a broad range of lab-

dane-type diterpenoids with phytoalexin activity against

microbial pathogens, and the group of Reuben Peters has pio-

neered the discovery of the genetic diversity underlying the

chemical diversity in rice labdane-type diterpenoids (for a

review on the formation of the diterpene backbones see

[45]). Expansion of genes typically involved in the formation

of ent-kaurene in rice has led to functional divergence and

the evolution of the backbone of the phytoalexin diterpenoids.

Wang and co-workers demonstrated that one of the extra

copies, CYP701A8, has neofunctionalized, and has, in essence,

lost the ancestral capacity to oxidize C-19 of ent-kaurene and

acquired, with a changed regiospecificity, C-3-hydroxylation

activity, not only of ent-kaurene, but also the specialized

diterpenoid intermediates ent-sandaracopimaradiene and
ent-cassadiene, indicating a broadening of substrate specificity

[44]. It remains to be shown whether the observed expansion

and clustering of CYP701A in rice has provided the genetic

basis for evolution of completely novel routes, or for pathway

elongation (see §8 for further elaboration of this phenomenon).

Members of the family CYP88A in the CYP85 clan cata-

lyse the second step in the biosynthetic route to GA

phytohormones. In a scenario similar to rice, family expan-

sion in liquorice has been the foundation for evolution of

novel functions in triterpenoid metabolism (CYP88D,

see below).

The oldest evolutionary families constituting the core of

the CYP85 clan are involved in terpenoid phytohormone

metabolism. Here, several families, specific to certain plant

lineages have greatly expanded, indicating involvement in

specialized metabolism. The specialized metabolism of

diterpene resin acids in conifers, constitutive and de novo
formed defence compounds, shares striking similarities

with the biosynthesis of the GA intermediate ent-kaurenoic

acid. Substantial research has addressed the genetic basis

underlying the phenomenal diversity of defence-related ter-

penoids in conifers and the involvement of P450s in their

biosynthesis (for a recent review see [46]). Mechanistically,

both pathways leading from geranylgeranyl-diphosphate to

structurally similar multi-cyclic diterpene acids are the

same, catalysed by diterpene synthases and P450s [47,48].

In both pathways, a methyl-group situated on the A-ring

(C-18, diterpene resin olefins; C-19, ent-kaurene) of the

diterpene backbone is sequentially oxygenated by P450

activity, resulting in the corresponding acid [47,49]. What

sets general and conifer specialized diterpenoid metabolism

apart is the level of structural diversity of the conifer

resin acids. The genetic basis for this diversity is founded

through two lines of evolutionary events. Duplication, reten-

tion and neofunctionalization of a small family of diterpene

synthases, sharing common ancestry with the genes of

the GA phytohormone metabolism, leads to a range of diter-

pene backbones [48,50]. In contrast to this divergent

evolution, the emergence of a large family in the CYP85

clan, CYP720B, encoding P450s catalysing the three-step

oxidation of diterpene olefins, indicates convergent evolution

of this function in the CYP85 and CYP71 clan [47,51].

Additionally, members of this family have acquired a certain

degree of promiscuity, accepting with varying affinity a range

of structurally related diterpene olefins, alcohols and alde-

hydes, which is in stark contrast to the known activities of the

enzymes of general phytohormone metabolism (figure 4)

[47,52]. While the plasticity of individual P450s of the

CYP720B family contributes to chemical diversity in the

defence-related diterpene resin acids, functional characteriz-

ation of divergent members of the family encompassing at

least a dozen P450s will shed light on the evolutionary

advantage of the observed genetic diversity.
6. Recruitment of P450s for
triterpenoid biosynthesis

Triterpenoids constitute a large and structurally diverse group

derived from cyclization of 2,3- oxidosqualene by oxidosqua-

lene cyclases, and to a lesser extent directly from squalene

[25,53,54]. The majority of them fall into three classes: sterols,

steroids and saponins. The ability to synthesize sterols is
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vital for eukaryotes as sterols are integrated in eukaryotic

membranes and modulate membrane fluidity, and are con-

stituents of lipid rafts. As other eukaryotes that are not sterol

heterotrophs, plant genomes contain the orthologous sterol

14a-demethylase CYP51 which catalyses formation of the

D14–15 double bond in sterols [55]. Saponins can be further

divided to triterpenoid saponins and steroidal saponins,

depending on if they are derived from 2,3-oxidosqualene
directly or via sterols. In sterol biosynthesis, 2,3-oxidosqualene

is cyclized to tetracyclic cycloartenol or lanosterol, which is the

first committed step in membrane sterol and steroid hormone

synthesis. Substantial labelling experiments support that

cycloartenol is the major plant sterol precursor, whereas

lanosterol biosynthesis has been shown only in a few species.

In plants containing triterpenes other than membrane sterols

and steroid hormones, 2,3-oxidosqualene is cyclized to

http://www.plantphysiol.org
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typically tetra- or pentacyclic compounds by neofunctiona-

lized cyclases phylogenetically related to the cycloartenol

cyclases. Acylic, monocyclic, bicyclic, tricyclic and hexacyclic

triterpenes are to a lesser extent also known to occur.

There are a number of conserved P450s involved in the bio-

synthesis of sterols and steroids. The sterol 14a-demethylase

CYP51 catalyses three consecutive oxygen- and NADPH-

requiring steps at the C14 position which, via the 14a-alcohol

and 14a-aldehyde followed by elimination of formic acid,

forms a D14–15 double bond [55–57]. Members of the

CYP710 family catalyse C-22 saturation [14]. Sterols are precur-

sors of brassinosteroids/brassinolides, which are steroid

hormones that promote plant growth and cell division, and

of steroidal triterpenoids such as the glycoalkaloids in Solanum
species [58]. Four P450 families act downstream of CYP51 and

CYP710 in brassinosteroid metabolism: CYP85 catalyses C-6

oxidations, whereas CYP90A, CYP90B, CYP90C and CYP90D

subfamily members catalyse C-22 and C-23 hydroxylations

[59]. Two P450 families are involved in inactivation of brassi-

nosteroids. CYP734s catalyse C-26 hydroxylations, whereas

the precise function of CYP72C1, a subfamily which seems to

be restricted to Brassicaceae, is not known [60–63]. The

CYP734 family originally belonged to the CYP72B family,

but this family has been renamed based on its position in the

phylogenetic trees.

Of the P450s listed above, CYP51 belongs to the CYP51 clan

and CYP710 to the CYP710 clan, two clans that are character-

ized by containing only one P450 family. CYP85 and CYP90

belong to the CYP85 clan, and CYP72 and CYP734 fall into

the CYP72 clan; these two clans are characterized by containing

multiple P450 families and subfamilies [3]. P450s from the

CYP51, CYP72 and CYP85 clans are known to be recruited

for biosynthesis of triterpenes.

Members of the genus Avena (oat) synthesize and

accumulate anti-fungal b-amyrin-derived triterpene saponins

known as avenacins in the epidermal cells of young roots

[64,65]. This is a novel trait, as monocotyledons generally

lack the ability to produce triterpenoid saponins. Based on

the structure, avenacins are oxygenated at five positions of

b-amyrin, but the genes encoding the P450s responsible for

these oxygenations have not been fully documented. How-

ever, based on genetic and biochemical analysis of mutants,

CYP51H10 acts immediately downstream of b-amyrin [66],

and preliminary biochemical analysis of recombinant

CYP51H10 confirms that CYP51H10 is a b-amyrin oxidase

[67]. In oat, there are three CYP51s known: CYP51G1 which

is the orthologous 14a-demethylase, and CYP51H10 and

CYP51H11 [66]. CYP51H10 and CYP51H11 are 62 per cent

identical at the amino acid level, whereas they are 46–47%

identical to CYP51G1. Because the intron position is con-

served between CYP51G1, CYP51H10 and CYP51H11, the

CYP51H paralogues cannot have arisen via retrotransposi-

tion. CYP51H10 transcripts are detected in roots where the

avenacins accumulate, whereas CYP51H11 is expressed in

flowers. The function of CYP51H11 is currently not known.

Interestingly, other monocotyledons such as rice and Brachy-
podium also contain CYP51H genes although these species are

not known to accumulate saponins. Brachypodium has three

CYP51H genes and two CYP51H pseudogenes, whereas rice

has six CYP51Hs that are likely to be functional and three

CYP51H pseudogenes [68], indicating that the CYP51Hs para-

logues in these two monocotyledons are not stable. The oat

CYP51H10 enzyme is the only example known so far of a
CYP51 that has been duplicated and neofunctionalized to

produce a specialized compound.

CYP90s and CYP85 in the CYP85 clan act on sterols. It is,

therefore, not surprising that this clan has been used for recruit-

ment of P450s for biosynthesis of saponins. Recently, a number

of papers have been published on the roles of CYP716As in

particular saponin biosynthesis [69–71]. Medicago truncatula
CYP716A12 catalyses three sequential oxidation of b-amyrin

at the C-28 position, yielding oleanolic acid in biosynthesis

of haemolytic, but not soyasaponins, in M. truncatula [69].

Erythrodiol (C-28 hydroxylated b-amyrin) is similarly con-

verted to oleanolic acid by CYP716A12 catalysing sequential

hydroxylations from the alcohol to the aldehyde and further

on to the carboxylic acid. An elaborate biochemical analysis

of M. truncatula CYP716A12 showed, that in addition to

b-amyrin, a-amyrin and lupeol, two other 2,3-oxidosqualene

cyclized products were also 28-oxidized to the corresponding

carboxylic acids, ursolic acid and betulinic acid (figure 5).

CYP716A15 and CYP716A17 from grape were included in

the same study and were shown to be involved in saponin

biosynthesis by oxidizing b-amyrin to oleanolic acid [70].

CYP716 family members are widespread in terrestrial

plants. More than 150 are listed on David Nelson’s web-

page (http://drnelson.uthsc.edu/cytochromeP450.html), and

a phylogenetic analysis of 56 CYP716s ranging from moss to

Selaginella to gymnosperms and angiosperms shows that

CYP716 is an ancient family, consistent with the widespread

presence of triterpenes such as oleanolic acid in plants [70].

Interestingly, Panax ginseng CYP716A47 catalyses C-12

hydroxylation of dammarenediol-II to protopanaxadiol, fol-

lowed by C-6 oxidation to protopanaxatriol by CYP716A53v2

in biosynthesis of ginsenoside saponins, showing that

CYP716As are not restricted to C-28 oxidation [71,72].

CYP88As are omnipresent in terrestrial plants, and are, as

discussed in the section on diterpenes, involved in biosyn-

thesis of GA. CYP88s have also been recruited for

triterpenoid biosynthesis. In biosynthesis of the triterpenoid

http://drnelson.uthsc.edu/cytochromeP450.html
http://drnelson.uthsc.edu/cytochromeP450.html
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saponin sweetener glycyrrizin in Glycyrrhiza (liquorice)

plants, CYP88D6 catalyses two sequential hydroxylations of

b-amyrin to 11-oxo-b-amyrin and to a lesser extent hydroxy-

lation of b-amyrin to 11-a-hydroxy-b-amyrin. CYP88D6 is

rather substrate unspecific by catalysing also single oxi-

dations of the b-amyrin derivative 30-hydroxy-b-amyrin

to 11a,30-dihydroxy-b-amyrin and 30-hydroxy-11-oxo-b-

amyrin in vitro. The functions of the other CYP88 subfamilies

are not known, but based on the currently available P450

sequences, CYP88Ds, recruited from CYP88s in gibberellin

biosynthesis, are restricted to legumes and catalyse C-11

oxidation of triterpenes.

Originally there were four CYP72 subfamilies, but

CYP72Bs have been reclassified as CYP734As. The CYP72A

subfamily is highly expanded across higher plants, and

often the genes are arranged in tandem arrays as seen with

the nine CYP72As in Arabidopsis, which are clustered on

chromosome 3. Arabidopsis contains a single CYP72C,

which, based on mutant analysis, is involved in deactivation

of brassinolides, although the precise biochemical function

and substrate is not known [62,73,74]. CYP72C appear to be

Brassicaceae-specific, arguing that involvement in brassino-

lide inactivation is not the original in planta function of

CYP72s. Catharanthus roseus CYP72A1 was the first CYP72A

to be biochemically fully elucidated, but it catalyses a

peculiar reaction en route to monoterpenoid compounds

(see section on monoterpenoids for details). In Glycyrrhiza
(liquorice), CYP72A154 catalyses three sequential C-30

hydroxylations of 11-oxo-b-amyrin to glycyrrhetic acid and

also C-30 hydroxylation of b-amyrin to 30-hydroxy-b-

amyrin [75]. Medicago truncatula CYP72A63 catalyses C-30

hydroxylation of b-amyrin to 30-hydroxy-b-amyrin and in

contrast to Glycyrrhiza CYP72A154, also catalyses three

sequential C-30 hydroxylation of b-amyrin to the corres-

ponding C-30 carboxylic acid 11-deoxoglycyrrhetic acid.

Accordingly, CYP72As work in sequence with CYP88Ds in

triterpenoid biosynthesis in legumes, and the CYP72 family

appears to be a family with a high potential for catalysing a

range of specific oxygenations of terpenoids and thus a deter-

minant for the species-specific terpenoid profile as well as in

phytohormone homeostasis.

CYP93s belong to the CYP71 clan and are widespread in

angiosperms. CYP93As, CYP93Bs, CYP93Cs and CYP93Gs are

involved in flavonoid biosynthesis particularly in plant microbe

interactions [76–81]. In legumes, CYP93s are involved in isofla-

vonoid biosynthesis and thus involved in nodulation. But

CYP93s have also been recruited for triterpenoid biosynthesis.

In legumes, CYP93E1, CYP93E2 and CYP93E3 are involved in

biosynthesis of triterpenoid saponins and oxidize b-amyrin at

C-24 producing 24-OH-b-amyrin [70,75,82]. Accordingly,

CYP93Es appear to be recruited from flavonoid biosynthesis

and neofunctionalized for triterpenoid biosynthesis.
7. Recurrent recruitment of CYP79s for amino
acid-derived specialized compounds

The CYP79 family is an old angiosperm family present in both

monocotyledons and dicotyledons. In phylogenetic trees,

CYP79s branch off deep in the CYP71 clan, close to the

CYP73 and CYP98 families involved in biosynthesis of lignin

and other early phenylpropanoids, and CYP701 in the biosyn-

thesis of gibberellins [3,4,83]. CYP79s are unique P450s as they
do not have hydrophobic substrates, but have amino acids as

substrates. In all examined cases, CYP79s catalyse the conver-

sion of protein amino acids, or chain elongated amino acids,

to their corresponding oximes. They are multi-functional N-

hydroxylases that catalyse two consecutive N-hydroxylations,

followed by a dehydration and decarboxylation reaction to

release the corresponding Z-oxime. Originally, CYP79s were

only known to be involved in the biosynthesis of cyanogenic

glucosides in angiosperms [83,84]. Cyanogenic glucosides are

amino acid-derived b-glycosides of a-hydroxynitriles, and are

stored as inactive glucosides in the vacuole. When the tissues

they are stored in are damaged, they come into contact with

b-glucosidases and release toxic hydrogen cyanide. The

sequencing of the Arabidopsis genome and PCR-based strategies

revealed CYP79s in species that do not contain cyanogenic glu-

cosides, but instead contain glucosinolates. This was the first

indication of how CYP79 homologues in glucosinolate-

producing plants show evolutionary conservation of enzymes

in conversion of amino acid to aldoxime in the biosynthesis

of cyanogenic glucosides and glucosinolates [85,86]. While cya-

nogenic glucosides are prevalent and occur in angiosperms,

gymnosperms and pteridophytes (ferns) [83,87], glucosinolates

are almost exclusively found in the Brassicales, and to a lesser

extent in the evolutionarily distant genus Drypetes in the order

Euphorbiales [88]. As no genes have been isolated from the

glucosinolate biosynthetic pathway of Drypetes, it cannot be

resolved if there has been a parallel evolution of glucosinolate

biosynthesis in rosids. Glucosinolates are sulphur-containing

amino acid-derived b-thio-glucosides [88] and are, such as cya-

nogenic glucosides, stored in vacuoles in an inactive form and

activated through hydrolysis by thioglucosidases to a range of

volatile nitriles and isothiocyanates. The substrates for CYP79s

in biosynthesis of cyanogenic glucosides and glucosinolates

partly overlap: cyanogenic glucosides are derived from the

protein amino acid tyrosine, phenylalanine, isoleucine, leucine

and valine, whereas glucosinolates are derived from tyrosine,

phenylalanine, tryptophan, alanine, leucine, isoleucine, valine

and methionine and from their chain elongated derivatives.

It is now evident that CYP79 homologues have also been

recruited for biosynthesis of other specialized classes and

subclasses of plant specialized compounds. The indole phy-

toalexin camalexin is derived from tryptophan. As in indole

glucosinolate biosynthesis, a CYP79 catalyses conversion of

tryptophan to indole-3-acetaldoxime, which is the branching

point between camalexin and indole glucosinolates biosyn-

thesis [89,90]. A number of cyanogenic glucoside-containing

plants also contain so-called non-cyanogenic hydroxynitrile

glucosides [91]. While cyanogenic glucosides are a-hydroxy-

nitrile glucosides, non-cyanogenic hydroxynitrile glucosides

such as the rhodiocyanosides A and D in Lotus japonicus are

g- and b-hydroxynitrile glucosides, respectively. Rhodiocya-

nosides do not release hydrogen cyanide when hydrolysed

by b-glycosidases because they are not a-hydroxynitrile glu-

cosides. The rhodiocyanosides in L. japonicus are derived

from isoleucine as is the cyanogenic glucoside lotaustralin.

The two pathways branch at the oxime, and share a CYP79

for the first step in their biosynthesis [92,93].

The sequencing of the poplar genome [94] revealed four

CYP79 paralogues. The identification of CYP79 sequences

was surprising as poplar species were not known to syn-

thesize cyanogenic glucosides. Very recent work from the

group of Dr Tobias Köllner (http://www.ice.mpg.de/ext/

782.html) has shown that at least two CYP79s in poplar are

http://www.ice.mpg.de/ext/782.html
http://www.ice.mpg.de/ext/782.html
http://www.ice.mpg.de/ext/782.html
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transcribed and the encoded enzymes produce a mixture of

different volatile aldoximes from amino acids (T Köllner

and S Irmisch 2012, personal communication). This is in

line with the proposal that the cyanogenic glucoside metabo-

lome is dynamic, and may toggle between synthesizing

cyanogenic glucosides and oximes by assembly and disas-

sembly of the metabolome in a function-dependent manner

[95]. The fact that oximes are the metabolic branch point,

and the flexibility of the metabolome to assemble in

the above-mentioned pathways, has been used in biotechno-

logical approaches to genetically engineer new glucosinolate

profiles in Arabidopsis through the introduction of CYP79s

from the cyanogenic glucoside pathway to establish meta-

bolic crosstalk between the two pathways [96,97].

The proposed evolution of glucosinolates, camalexin, non-

cyanogenic hydroxynitrile glucosides and volatile oximes

from cyanogenic glucosides illustrates how an ancient pathway

for cyanogenic glucoside synthesis has given rise to new classes

and subclasses of plant specialized compounds for new biologi-

cal functions (figure 6). The dynamics of CYP79s for evolving

novel pathways is reflected in the Arabidopsis and L. japonicus
genomes. There are seven CYP79 genes and four pseudogenes

in Arabidopsis. The presence of multiple CYP79 genes and a

high ratio of pseudogenes, is indicative of recent evolution of

the glucosinolate pathway. The involvement of CYP79F1 and

CYP79F2 in the biosynthesis of glucosinolates is a typical

scenario where two gene copies have both neo- and subfunctio-

nalized to expand the profile of a specialized metabolite.

CYP79F1 and CYP79F2 are 88 per cent identical on amino

acid level and are positioned in tandem on Arabidopsis chromo-

some 1 in the same orientation. They are both involved

in biosynthesis of homo- to hexahomo-methionine-derived

aliphatic glucosinolates, and display overlapping but dis-

tinguishable substrate specificity. While CYP79F1 metabolizes

homo- to hexahomo-methionine with a preference for short

chain glucosinolates, CYP79F2 metabolizes exclusively long-

chained penta- and hexahomo-methionine. Their expression

patterns overlap slightly but clearly differ both developmentally
and tissue-wise, with a preference for CYP79F1 expression in

hypocotyledons and roots, and CYP79F2 in rosettes, stems and

siliques [98].

In the L. japonicus genome, there are two highly similar

CYP79D paralogues with a sequence identity of 95 per cent at

the amino acid level. Lotus japonicus CYP79D3 and CYP79D4
are not adjacent as the Arabidopsis CYP79F1 and CYP79F2 are,

but they are spaced 240 kbp apart, and separated by two

genes [99]. In contrast to Arabidopsis CYP79F1 and CYP79F2,

they catalyse the same reaction and display the same kinetics,

but their promoter sequences have diverged, resulting in differ-

ential expression, with transcripts of CYP79D3 accumulating

preferentially in aerial tissues and CYP79D4 in the root [92].

This indicates that the two CYP79D paralogues have originated

from a gene or whole-genome duplication event and that

subsequent subfunctionalization has led to differences in

expression patterns, while catalysis has been maintained. The

fact that L. japonicus is a paleopolyploid, whereas the most

recent autopolyploidy event happened more than 40 Ma

[100], is in support of this assumption.
8. Evolution and elongation of pathways
by tandem gene duplications

The recent availability of fully sequenced plant genomes

has revealed that some pathways for plant specialized

metabolites are located in operon-like clusters (review in

e.g. [101,102]). Some of these clusters contain multiple P450

paralogues that, after duplication, most likely by unequal

cross-over events, diverged to elongate the pathway and to

increase metabolic diversity. Even though these represent

specific cases, tandem P450 gene duplications may reveal

how a pathway can gain diversity and complexity.

In maize, four CYP71Cs are clustered on chromosome

four and are part of a functional gene cluster in the grasses

for indole-derived benzoxazinoids biosynthesis. They cata-

lyse four consecutive hydroxylations in the pathway of
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benzoxanoids [103]. Benzoxazinoids are protective and allelo-

phatic metabolites widely found in species of the Poaceae.

They are stored as glucosides in the vacuoles and analogous

to cyanogenic glucosides and glucosinolates, and are bio-

activated through hydrolysis by b-glucosidases stored in

separate compartments. In maize the four P450 genes are

known as BX2 (CYP71C1) to BX5 (CYP71C4). The availability

of other Poaceae genomes has revealed that the pathway has

evolved monophyletically in the grasses ([104] and references

therein). An evolutionary sequence leading to benzoxazi-

noids was suggested based on phylogenetic relationship of

the P450s involved and by the specific reaction catalysed by

each. The ‘founding event’ of the pathway was suggested

to be the clustering of duplicated tryptophan synthase

a-subunit (TSA) and an ancestral CYP71C gene, followed

by neofunctionalization of both into Bx1 and Bx2, respect-

ively, and yielding biosynthetic access to indole and the

oxidized indolin-2-one, derived from the primary metabolite

indole-3-glyceraldehyde. The elongation of this cluster

through duplication of Bx2 (CYP71C1) giving rise to Bx3
(CYP71C2) was followed by two subsequent duplications of

Bx3 resulting in Bx4 (CYP71C3) and Bx5 (CYP71C4), and gen-

erated the material that, after neofunctionalization, resulted

in a series of successive oxidations from indolin-2-one via

3-hydroxy indolin-2-one and 2-hydroxy-1,4(2H)-benzoxazin-

3(4H)-one (HBOA) to 2,4-dihydroxy-2H-1,4-benzoxazin-3

(4H)-one (DIBOA) [104,105]. Both HBOA and DIBOA are

subsequently glycosylated by Bx8/Bx9, further hydroxylated

by Bx6 (a 2-oxogluterate-dependent dioxygenase) to 2,4,7-

trihydroxy-2H-1,4-benzoxazin-3(4H)-one (TRIBOA)-glc and

methoxylated by Bx7 to 2,4-dihydroxy-7-methoxy-2H-1,4-

benzoxazin-3(4H)-one (DIMBOA)-glc ([104] and references

therein). A few species of dicotyledons also synthesize ben-

zoxazinoids. Analysis of the first gene in the pathway in

grasses and benzoxazinoid-producing dicots revealed an

evolution of repeated independent duplications and neo-

functionalizations of the TSA gene [106]. Similarly, the

UDP-dependent glycosyl transferases (UGTs) have evolved

independently [107]. The P450s in benzoxazinoid biosyn-

thesis in dicotyledonous species are not known, and as the

CYP71C family appears to be restricted to monocotyledons,

the pathway in monocotyledons and dicotyledons apparently

evolved convergently.

Recent work has shed light on the assembly and continu-

ous evolution of P450 carrying gene clusters in rice for

diterpene biosynthesis [108]. Specifically, four CYP76M para-

logues, CYP76M5–8, are situated in a 245 kb gene cluster on

chromosome 2, together with three diterpene synthases

involved in the biosynthesis of specialized diterpene olefins

with ent-configuration. The first of those P450s functionally

characterized, CYP76M7, was shown to specifically catalyse

C11a hydroxylation of ent-cassadiene [109], the product of

two diterpene synthases of that cluster. In contrast, the closest

paralogue, CYP76M8, shows very high-substrate promis-

cuity, hydroxylating several positions of not only diterpene

olefin precursors of the ent-, but also the syn-configuration,

indicating a function in other pathways. The fact that this

P450 showed the capacity to hydroxylate structurally related

diterpenes not found in rice could represent latent metabolic

capacity for rapid evolution of diterpenoid diversity. The

other P450s in this cluster, CYP76M5 and CYP76M6, had par-

tially overlapping and additional specific activities. Thus, the

CYP76M5–8 cluster illustrates how subsequent local
duplications of P450s involved in one pathway may lead to

chemical diversification within the pathway, but also drive

diversification of other pathways [108,109].

Arabidopsis produces nearly 40 different glucosinolates

derived from methionine, phenylalanine and tryptophan

[110]. The core structure of all glucosinolates is synthesized by

a similar set of enzymes [88]. Structural diversity arises from

subsequent modifications such as oxidation, hydroxylation

and methoxylation. Arabidopsis contains four different

indole glucosinolates derived from tryptophan. The core

indole glucosinolates indol-3-yl-methyl (I3M) is hydroxylated

and methoxylated by a set of P450s and methyl-transferases

[111]. There are four CYP82s in Arabidopsis: CYP81F3 and

CYP81F4 are situated in tandem, spaced from CYP81F1 by

genes with unknown function, on chromosome 4, whereas

CYP81F2 is positioned on chromosome five. The

four CYP81Fs have partly overlapping product specificity:

CYP81F1, CYP81F2 and CYP81F3 catalyse hydroxylation of

I3M to 4OH-I3M while all four CYP81Fs catalyse the conversion

of I3M to 1-OH-I3M, when tested in the transient expression

system in Nicotiana benthamiana. Mutant analysis partly con-

firms the biochemical analysis and, combined with expression

analysis based on DNA microarrays, suggests that the

CYP81Fs are expressed in an organ- or tissue-specific manner,

thus representing both neo- and subfunctionalization [111].
9. Conclusions and perspectives
P450s control key steps in the biosynthetic routes of plant

specialized metabolites and are consequently essential dri-

vers in the evolution of chemical diversity. Here, genome

and gene duplications leading to family expansion, followed

by fixation of the genes in the genome, owing to positive

selection of sub- and neofunctionalized paralogues provides

the fundamental genetic material for plant adaptation and

species radiation. But what are the mechanisms driving this

diversification? Arguably the best understood examples may

be specialized compounds acting as defence molecules in

plant–herbivore and plant–pathogen interactions. Reciprocal

evolution of adaptation is, according to macroevolutionary

hypotheses for coevolution, followed by surges of speciation

giving rise to biodiversity. This progressive diversification

is intrinsically connected with diversification of defence

metabolites and consistent with coevolution in an arms race.

In this review, we have discussed evolutionary impli-

cations of genetic diversity of the P450 multi-gene family,

where numerous examples highlight the critical role P450s

play in driving chemical diversification. Overall, a common

theme appears to be specialization and diversification for

production of sophisticated defence molecules in plants,

whereas herbivores and pathogens have evolved P450s for

detoxification as part of counter-adaptation strategies.

From the biochemist’s perspective: the range of reaction

mechanisms catalysed by P450s is extremely diverse, but

the most commonly found types are oxygenation reactions

such as hydroxylation, invariably linked with a gain of bioac-

tivity or ‘activation’ of plant specialized metabolites. At the

same time, the catalytic flexibility of P450s makes this class

of enzymes ideally suited for the evolution of novel functions.

The first examples are emerging, demonstrating that novel

P450s involved in specialized metabolism evolve at a much

accelerated pace, and taken into account that a considerable
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fraction of plant genes are P450s, it can be hypothesized that

these enzymes will become increasingly instrumental for

future plant adaptation and speciation.

From the human perspective: initially evolved as traits linked

with an adaptive advantage, plant species accumulating special-

ized metabolites have been selected and bred by humans for

thousands of years. Often considered defence molecules, these

particular and often complex traits are what have attracted

human interest for nutritional value, flavour and use in tra-

ditional medicine, as stimulants, narcotics and poisons.

Evidently human selection is linked with an increase in chemical

diversity, but in a few species breeding aimed at reduction of

specialized metabolites or their chemical complexity. Two

cases of this scenario are harmful glycoalkaloids accumulating

in wild, but not the modern potato (Solanum commersonii and
Solanum tuberosum, respectively), and cyanogenic glucosides

determining the bitterness of almond (Prunus dulcis). Further

examples with major impacts on human civilization and with

key biosynthetic steps catalyzed by diverse P450s include, but

are not limited to, flavonoids (grape vine, cocoa (Theobroma
cacao), green tea (Camellia sinensis)), terpenes (mint family,

Ginkgo biloba) and alkaloids (opium poppy (Papaver somniferum)).
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