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Adaptive dynamics theory has been devised to account for feedbacks

between ecological and evolutionary processes. Doing so opens new

dimensions to and raises new challenges about evolutionary rescue. Adap-

tive dynamics theory predicts that successive trait substitutions driven by

eco-evolutionary feedbacks can gradually erode population size or growth

rate, thus potentially raising the extinction risk. Even a single trait substi-

tution can suffice to degrade population viability drastically at once and

cause ‘evolutionary suicide’. In a changing environment, a population

may track a viable evolutionary attractor that leads to evolutionary

suicide, a phenomenon called ‘evolutionary trapping’. Evolutionary trap-

ping and suicide are commonly observed in adaptive dynamics models

in which the smooth variation of traits causes catastrophic changes in eco-

logical state. In the face of trapping and suicide, evolutionary rescue

requires that the population overcome evolutionary threats generated by

the adaptive process itself. Evolutionary repellors play an important role

in determining how variation in environmental conditions correlates

with the occurrence of evolutionary trapping and suicide, and what

evolutionary pathways rescue may follow. In contrast with standard

predictions of evolutionary rescue theory, low genetic variation may

attenuate the threat of evolutionary suicide and small population sizes

may facilitate escape from evolutionary traps.
1. Introduction
Population viability is determined by the interplay of environmental influences

and individual phenotypic traits shaping life histories and behaviour. A long-

standing view in evolutionary ecology has been that adaptive evolution

would optimize a population’s phenotypic state in the sense of maximizing

some suitably chosen measure of fitness (such as its intrinsic growth rate, r,

or its basic reproduction ratio R0 [1–3]). On this basis, it was largely expected

that adaptive evolution would always improve the demographic balance of a

population, resulting in, e.g. higher population size, lower extinction risk or

larger geographical spread.

This picture is reflected in our current theory of evolutionary rescue. In the

most general terms, evolutionary rescue occurs when a population subject to

environmental change ‘performs better’ under the operation of evolutionary

processes than without these processes; typically, the currency of ‘population

performance’ is the population size or persistence time [1] (see also [4]). Historic-

ally, there have been two main theoretical approaches to evolutionary rescue.

One approach capitalizes on a well-established modelling tradition in popu-

lation genetics to investigate how mutations may reduce the extinction risk of

a population reaching low size or negative growth upon some abrupt change

in the environment [5–9]. The other approach uses quantitative genetics to

study the conditions under which selection enables a population to track

a moving evolutionary optimum as the environment changes gradually

[10–13]. These two theoretical views of evolutionary rescue show interesting

conceptual differences in (i) the type of environmental change (abrupt versus
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Figure 1. Eco-evolutionary feedback loop. Complex selective pressures on
individuals’ phenotypic traits emanate from the interaction of individuals (I)
with their local environment (E)—consisting of conspecifics, prey and
predators, mutualists and parasites, in their ecosystem context. Heritable
variation in adaptive traits responds to these pressures, and in turn affects
how these individuals impact their environment. This feedback loop—from
the environment to the individuals, and back—intimately links ecological
and evolutionary processes.
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gradual), (ii) threat (an actual demographic deficit versus

a risk of demographic deficit), and (iii) rescue pathway

(returning to demographic balance versus avoiding demo-

graphic imbalance). But they both are grounded in the

notion that adaptive evolution inherently tends to enhance

population viability.

Despite the long tradition of describing evolutionary pro-

cesses through concepts of progress and optimization, as

early as in 1932 J. B. S. Haldane pointed out that there was

no general principle preventing adaptive evolution from

harming population performance [14]. A verbal example

comes from considering overtopping growth in plants.

Taller trees get more sunlight while casting shade onto

their neighbours. As selection causes the average tree

height to increase, fecundity declines because more of the

tree’s energy budget is diverted from seed production to

wood production. Under these circumstances, it may also

take longer for the trees to reach maturity. Thus, arborescent

growth as an evolutionary response to selection for competi-

tive ability can cause population abundance and/or the

intrinsic rate of population growth to decline. The logical

conclusion of this process may even be population extinction,

as was first explained by Haldane [14].

The past two decades of research in theoretical evolu-

tionary ecology have done much to flesh out this picture.

The concept of the ‘eco-evolutionary feedback loop’ has

been introduced to link the joint operation of ecological and

evolutionary processes to the dynamics of populations

(figure 1). The selection pressures driving phenotypic evo-

lution should be derived from models that describe the

whole eco-evolutionary feedback loop [15–20]. The structure

of the loop determines whether an optimization principle can

be found in the first place, and, if so, what specific fitness

measure it ought to be based on [21–25]. Departure from

optimization occurs when selection is frequency-dependent

[1,23,26–28].

Frequency dependence is responsible for remarkable eco-

evolutionary dynamics such as rock–paper–scissor cycles in

allele frequencies (with well-studied examples in real life

[29,30]). But frequency dependence, broadly defined, per-

vades eco-evolutionary feedback loops way beyond those

causing non-equilibrium dynamics, such as cycles in allele
frequencies [23]. A necessary and sufficient condition for

selection not to be frequency-dependent is that the adaptive

traits affect fitness effectively in a one-dimensional monotone

manner; that is, fitness must be an increasing or decreasing

function of a single variable that compounds the effect of

all adaptive traits under consideration [26]. From a modelling

point of view, this combination of one-dimensionality and

monotony is quite special. Yet optimization arguments have

widely been used in evolutionary ecology. ‘It may well be

that our limited perception of the range of feedback scenarios

actually existing in nature biases our models toward the sim-

plest subset that conveniently obeys optimization principles’

( J. A. J. Metz 1996, personal communication).

Thus, realistic eco-evolutionary feedbacks are expected

to generate frequency dependence, and under frequency

dependence there is no optimization principle to predict the

outcome of adaptive evolution. Even when the adaptive pro-

cess does optimize, phenotypic evolution maximizes the

population’s intrinsic growth rate (r or R0) or size (equilib-

rium or average) only if the eco-evolutionary feedback

loop possesses special features regarding how density

dependence affects transitions in the life cycle, and how

traits influence invasion fitness [21,23]. And in the rare

cases where adaptive evolution gradually tends to improve

population viability, one cannot exclude that the process

ends with the population’s sudden demise [1,31]. It has

thus become clear that the relationship between adaptive

evolution and population persistence is complex. How then

can we define and study evolutionary rescue? Adaptive

dynamics theory provides a mathematical framework to

design and analyse models of phenotypic evolution in

which all components of the eco-evolutionary feedback

loop are integrated. This article is a conceptual synthesis

intended to provide a brief introduction to the framework

and to show how the current theoretical approaches to evo-

lutionary rescue can be recast in that framework, and then

extended as part of a broader investigation of the influence

of adaptive evolution on ecological dynamics.
2. The adaptive dynamics framework
Adaptive dynamics is an extension of evolutionary game

theory to general models of ecological interactions between

individual organisms and their environment [32,33]. Adapt-

ive dynamics modelling typically starts with an abstract

description of the eco-evolutionary feedback loop (figure 1),

involving three ingredients [16,34,35]: (i) a description of

the individual phenotype by adaptive, quantitative traits of

interest; (ii) an ecological dynamic model that relates the indi-

vidual traits to population, community and/or ecosystem

properties (depending on the question of interest and

available empirical knowledge); and (iii) a model of trait

inheritance. Parameters are used to describe features of

the ‘external’ environment that may influence the eco-

evolutionary feedback loop but are not influenced by the

loop itself. For the given environmental conditions (i.e.

fixed parameters for the external environment), the eco-

evolutionary feedback loop drives the dynamics of the

distribution of trait values in the phenotype space. These

so-called ‘adaptive dynamics’ unfold within the set of feas-

ible phenotypes—the boundary of which is shaped by

physiological and genetic constraints and ecological viability.
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Figure 2. E3-diagram for current evolutionary rescue theory. E3-diagrams
(short for ecology-evolution-environment diagrams) describe the adaptive
dynamics of a population for viable combinations of phenotypes and
environmental conditions. The environmental and evolutionary components
of change are represented by the horizontal and vertical axes, plain thin
arrows show the direction of selection, line styles indicate the type of
evolutionary singularity (solid thick lines for attractors, dashed thick lines for
repellors), and shading shows the demographically non-viable region. Abrupt
environmental change (horizontal dotted arrow) from environmental
condition e1 to e2 (marked with vertical dotted lines) exposes the population
to the demographic threat of extinction (light grey star). Evolutionary rescue
may occur (light grey arrow), that would take the population out of the non-
viable region, from where it could converge to a safe evolutionary attractor.
With gradual environmental change, evolutionary rescue may occur (dark grey
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Adaptive dynamics are driven by the local selection

gradient, which depends on (and hence varies with) the phe-

notypic and ecological state of the current population (the

‘resident’ population). Phenotypes where the local fitness

gradient vanishes are called ‘evolutionary singularities’. The

central goal of adaptive dynamics theory is to identify and

classify the stability properties of evolutionary singularities

[16,32,36]. The classification is complete for one-dimensional

traits [16,37,38]; the multi-dimensional case is found in the

studies of Leimar [39,40]. In general, multiple evolutionary

singularities may occur, some attractive, some repelling.

Here, ‘attractive’ means that the singular phenotype can

be reached from nearby phenotypes by a sequence of

small mutation–selection steps; ‘repelling’ means that any

sequence of small mutation–selection steps initiated near

the singularity will move the population away from the

singularity. Alternatively, there may be no singularity at

all, in which case long-term evolution is predicted to

drive the population to the boundary of the set of

feasible phenotypes.

An important application of adaptive dynamics theory is

to provide joint predictions for the evolutionary response of a

population to new environments and how this evolutionary

response influences the ecological state of the population.

The ecological state is described by the population, com-

munity and ecosystem properties that are involved in the

eco-evolutionary feedback loop. This may include population

size and structure, diversity and abundance of interacting

species and ecosystem functions such as inorganic nutrient

flow or primary productivity; in the context of evolutionary

rescue studies, this may just be the demographic viability

(or lack thereof) of the evolving population.

arrow) or not (dark grey star) depending on whether the population can track
its safe evolutionary attractor fast enough.
3. Recasting current evolutionary rescue theory
in the adaptive dynamics framework

Dieckmann & Ferriere [1] introduced ecology–evolution–

environment diagrams, or E3-diagrams for short, as a

graphical way of presenting the eco-evolutionary predictions

made by adaptive dynamics models. Current theoretical

approaches to evolutionary rescue can be interpreted using

this graphical tool (figure 2). Environmental change is

assumed to degrade the species’ demographic viability, caus-

ing the expansion of the non-viable region. Initially, the

population experiences environmental conditions e1 and sits

at an evolutionary attractor residing at a safe phenotypic dis-

tance from the non-viable region. Environmental conditions

are assumed to change from e1 to e2, either abruptly or gradu-

ally. If environmental conditions change abruptly, the initial

trait value in the new environment e2 is assumed to be demo-

graphically non-viable, i.e. the corresponding point in the

E3-diagram lies in the non-viable region; while it is also

assumed (explicitly or implicitly) that there exists a safe evo-

lutionary attractor under the new environmental conditions

e2, corresponding to a point located outside the non-viable

region. Then the question that existing theory has tackled

is, what is the probability that the population evolves

between these two points and exits the non-viable region

before extinction actually occurs? This problem requires a

population (or quantitative) genetics approach, which has

been developed, in the wake of Gomulkiewicz & Holt [5],

by e.g. Boulding & Hay [6], Orr & Unckless [9] and
Gomulkiewicz et al. [41]. A population-genetics approach to

rescue is the focus of several articles in this special issue [42,43].

If environmental conditions change smoothly, it is

assumed that the safe evolutionary attractor also changes

smoothly while remaining at a safe distance from the

(expanding) non-viable region. Thus, it is assumed that

the eco-evolutionary feedback loop is somehow shielding the

population from extinction. Then the question that existing

theory has addressed is, given the rate of environmental

change from e1 to e2, can evolution be fast enough to track

the safe evolutionary attractor closely enough and thus

avoid colliding with the non-viable region? Questions of

this kind are best analysed using techniques of quantitative

genetics [11,12].

This theory thus adheres to the conventional view that

adaptive evolution tends, by itself, to favour population vi-

ability; and that the question of evolutionary rescue boils

down to deciding the outcome of a temporal race between

the ‘bad’ pull of demographically lethal environmental

change and the ‘good’ pull of evolutionary change. Taking

the eco-evolutionary loop into account and using the adapt-

ive dynamics toolbox, however, alters the terms of the

problem. Population genetics and quantitative genetics do

not close the loop: they both ignore how evolution-driven

population changes that affect viability may feed back on

the very selection pressures that act on heritable variation

and drive these changes. Closing the loop has the important

consequence, adaptive dynamics theory tells us, that only
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under exceptional circumstances is population size or viabil-

ity maximized at an evolutionary attractor (see §1 and

references therein).
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4. Extending evolutionary rescue theory in the
adaptive dynamics framework

By accounting for the eco-evolutionary feedback loop, adapt-

ive dynamics theory predicts that, as the environment

changes, the evolutionary attractor may approach the non-

viable region and eventually collides with it, a phenomenon

called ‘evolutionary trapping’ [1,44]. Even under fixed

environmental conditions, successive trait substitutions

driven by the eco-evolutionary feedback loop can gradually

erode population size, thus potentially raising the popu-

lation’s extinction risk (this is ‘evolution to self-extinction’

in terms of Matsuda & Abrams’ [45]). An adaptive dynamics

model of such gradual effects of adaptation on population

size is studied in [46]. Furthermore, a single trait substitution

event can suffice to degrade population viability drastically at

once, by causing a crash in population size [47] or by putting

the population in a demographically non-viable state [48,49],

a phenomenon dubbed ‘evolutionary suicide’ [1,31,44,50] (for

the related notion of ‘Darwinian extinction’ see [51]).

Evolutionary suicide thus occurs when a trait substitution

sequence driven by mutation and selection in a constant

(external) environment takes a population towards and

across a boundary in the population’s trait space beyond

which the population cannot persist. Once the population’s

phenotypic traits have evolved close enough to this bound-

ary, ‘kamikaze’ mutants can invade that are viable as long

as the current resident trait value abounds, but that are not

viable on their own [48,49]. This means that crossing the

boundary causes a catastrophic shift of the population from

a stable positive equilibrium density to extinction, and

requires that the ecological system demonstrates positive den-

sity dependence at low density, i.e. an Allee effect [52,53].

More generally, for ecological systems with multiple stable

equilibria, an invading mutant may shift the population

catastrophically to a low-density population equilibrium

(rather than outright extinction), rendering the population

highly susceptible to extinction by stochastic causes [47].

Thus, evolutionary suicide extends into the notion of ‘evo-

lutionary collapse’ [1] which concerns an even wider class

of multistable ecological systems.

By confining adaptive evolution to the role of the Good

and environmental change to the Bad, current evolutionary

rescue theory is at risk of missing the Ugly: challenges to

population viability raised by the evolutionary process

itself. Even in the absence of negative effects of environ-

mental change on the species’ demography, evolutionary

trapping and suicide can, by themselves, be the driving

forces towards extinction. When environmental change does

degrade population demography (the usual assumption in

current models of evolutionary rescue), evolutionary trap-

ping and evolutionary suicide can suppress the potential

for evolutionary rescue altogether. The occurrence of evo-

lutionary repellors determines whether evolutionary rescue

remains possible, and how evolutionary trapping and suicide

influence the chance of rescue in response to, respectively,

gradual and abrupt demographic degradation.
(a) Evolutionary trapping and suicide as driving forces
to extinction

Evolutionary trapping occurs when an evolutionary attractor

collides with a non-viable region as environmental conditions

are changed. This may happen even if the non-viable region

does not expand in response to environmental change

(figure 3a). It is evolutionary suicide that ‘terminates’ the

population when its evolutionary attractor hits the non-

viability region. Hence, evolutionary trapping generally

implies evolutionary suicide, in the sense that evolutionary

trapping requires the existence of a region in the environ-

ment-trait (e, x) space where evolutionary suicide occurs.

Yet in contrast with evolutionary trapping, evolutionary

suicide per se can occur in the absence of any extrinsic

environmental change, as it is intrinsically driven by the

feedback between an evolving populations and its environ-

ment (figure 3a). The fingerprint of evolutionary suicide in

E3-diagrams is directional selection pointing towards a non-

viable region. Evolutionary suicide can be induced by

environmental change when an evolutionary attractor col-

lides with an evolutionary repellor, such that a population

that is tracking the attractor as environmental conditions

change suddenly becomes exposed to directional selection

towards the non-viable region. As in the case of evolutionary

trapping, this may occur while the non-viable region remains

unaffected by environmental change (figure 3b).

In the context of current evolutionary rescue theory,

where the changing environment does beget the non-viable

region to expand, evolutionary trapping and suicide can sup-
press the potential for rescue. This is illustrated in figure 3c. In

the case of gradual environmental change, owing to evo-

lutionary trapping there is no viable evolutionary attractor

that the population could track from environmental condition

e1 all the way to e2. In the case of abrupt environmental

change from e1 to e2, the positive density dependence (Allee

effect) responsible for evolutionary suicide opposes rescue:

owing to positive density dependence, mutants’ invasion

and fixation is very unlikely given their initial low density,

unless the mutation process, by its rate or its phenotypic

magnitude, could generate mutants that are phenotypically

distant enough from the non-viable region to escape the

Allee effect. Even if the population were to escape from

the non-viable region thanks to rapid arising and fixation

of ‘rescue mutants’, the selection gradient associated with

evolutionary suicide would pull it back to extinction.
(b) The key role of evolutionary repellors
Evolutionary trapping and suicide can compromise the

potential for evolutionary rescue, but the occurrence of

evolutionary repellors may restore it. Evolutionary repellors

typically separate regions in trait space with different

long-term evolutionary outcomes, such as convergence to

alternative evolutionary attractors, or convergence to an evo-

lutionary attractor in one region versus evolutionary suicide

in another. Thus, the occurrence of evolutionary repellors

opens the possibility that an evolutionary trap coexists with

a persistently viable evolutionary attractor (figure 4a).

In this case, the question of evolutionary rescue in

response to abrupt environmental change may be the same

as in current rescue theory (i.e. whether the population

under environmental condition e2 can escape the non-viable



environmental condition, e

ad
ap

tiv
e 

tr
ai

t, 
x

environmental condition, e

ad
ap

tiv
e 

tr
ai

t, 
x

environmental condition, e

ad
ap

tiv
e 

tr
ai

t, 
x

e
1

e
2

(a)

(b)

(c)

Figure 3. Evolutionary threats: trapping and suicide. Evolutionary trapping and
evolutionary suicide are generated by eco-evolutionary feedbacks and predicted
by adaptive dynamics theory. (a) Evolutionary trapping and suicide. As the
environment changes, the evolutionary attractor collides with the non-viable
region. The plot shows a case where beyond the environmental condition for
which the collision happens, selection uniformly presses towards the non-viable
region, causing inevitable evolutionary suicide. (b) Evolutionary suicide induced
by environmental change without evolutionary trapping. As the environment
changes, the safe evolutionary attractor collides with an evolutionary repellor,
subjecting the population to selection towards extinction, hence evolutionary
suicide. (c) Potential for evolutionary rescue suppressed by evolutionary
trapping and suicide. The plot depicts a simple and general scenario whereby,
as the environment changes from e1 to e2, evolutionary rescue could not occur,
neither by tracking the attractor (owing to evolutionary trapping) nor by
escaping the non-viability region (owing to evolutionary suicide).
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Figure 4. Evolutionary threats and evolutionary rescue: The key role of
evolutionary repellors. The geometry of repellor lines determines whether
evolutionary rescue is possible. (a) Here the problem of rescue after abrupt
environmental change from e1 to e2 conforms to current evolutionary rescue
theory. In contrast, rescue from gradual environmental change requires that
the population switches to a different evolutionary attractor by evolving
across the evolutionary repellor. (b) Here the problem of rescue under gradual
environmental change from e1 to e2 conforms to current evolutionary rescue
theory. In contrast, rescue from abrupt environmental change requires that
the population escapes from the non-viable region and overcomes the pull of
evolutionary suicide by evolving across a repellor. (c) Combining geometric
features of (a) and (b): the problem of rescue departs from current theory in
both cases of abrupt and gradual environmental change. See figure 2 for
graphical details.
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region while selection acts directionally towards a safe

evolutionary attractor), but the problem of rescue is funda-

mentally different in the case of gradual environmental

change. It becomes whether or not the population may drift

away from the evolutionary trap and across the evolutionary

repellor fast enough, so that from there selection could drive

it to the safe evolutionary attractor. Evaluating the likelihood

of rescue and its determinants then relates to an exercise in

population genetics, on the effect of mutation, selection and

drift on the genotypic distribution of a population across a

fitness valley (the evolutionary repellor) under directional

environmental change [54]. Population genetics then tell us

that population size, rate and fitness effects of mutations

and the pace and fitness effects of environmental change

will be critical factors (see [42,43,55] in this special issue). In

particular, lower population size, by making genetic drift

more effective, might facilitate this route to rescue.

Alternatively, an evolutionary repellor can arise without

altering the problem of evolutionary rescue in gradually

changing environments (i.e. whether the population can

evolve fast enough so as to track a safe but changing evo-

lutionary attractor) while introducing a new evolutionary

hurdle to populations subject to abruptly changing environ-

ments. This is the case when evolutionary rescue is so

perilous as to require that the population both escapes extinc-

tion while in the non-viable region and then drifts against the

opposing selective force of evolutionary suicide so as to cross

the repellor (figure 4b). Figure 4c depicts the combined case

where both gradual and abrupt environmental change exact

those new requirements for evolutionary rescue to take place.

This happens when the range of environmental condition

e over which the evolutionary repellor exists is broad enough.
5. Examples: theoretical and empirical
Evolutionary suicide occurs for a rich variety of ecological

systems which set the stage for some form of a ‘tragedy of

the commons’ [56] whereby new phenotypes that are demo-

graphically advantageous against the rest of the population

turn out to be demographically lethal when dominating

the population. This accounts for the fact that models of evo-

lutionary suicide often involve traits related to cooperation

that begets Allee effects, such as positively density-dependent

dispersal [49,57], group effects against enemies such as preda-

tors [47], altruism [58,59], mutualism [50,60,61] and facilitation

[62]. These traits shape ecological interactions and generate

Allee effects. For example, a population of altruists may only

be viable if the population density is above some threshold,

such that on average an individual receives enough altruistic

benefits from others to compensate for its own cost of altruism.

In all these models, evolutionary trapping and induced evo-

lutionary suicide are generic outcomes. In the rest of this

section, we elaborate on two theoretical examples and end

with an empirical prospectus.

(a) Adaptive dynamics of altruism in social networks
The role of evolutionary repellors in shaping patterns of

evolutionary trapping and suicide and determining the

requirements for evolutionary rescue is well exemplified by

Le Galliard et al.’s model of altruism adaptive dynamics in

heterogeneous populations [58,59] (see also [25]). Figure 5

displays E3-diagrams for this model. Here, heterogeneity
means that each individual interacts with others within its

‘social network’. Altruism, by definition, contributes to the

demographic success of connected individuals at a demo-

graphic cost for the altruist. Individuals quit their current

social network and join new ones at a given rate that quan-

tifies the degree of social mixing in the population. The

cost function of altruism and degree of mixing are strong

influences of both the population’s demographic viability

and the adaptive dynamics of altruism (figure 5), and can

be impacted by environmental change via physiological fac-

tors and physical or cultural factors, respectively. Because

mixing has a cost (due, e.g. to delays in re-establishing

one’s social network), the population is not demographically

sustainable at high mixing rates without a substantial degree

of altruism between individuals (figure 5b,c). When the cost

of strong altruism is very large, high levels of altruism may

also preclude demographic viability irrespective of mixing

rates (figure 5b). For slowly accelerating cost of altruism, an

evolutionary repellor appears over a range of intermediate

mixing rates, and comes to separate a high-altruism evolu-

tionary attractor from a ‘quasi-selfish’ evolutionary attractor

at very low altruism (figure 5a,c).

The model exemplifies the evolutionary threats of suicide

and trapping, features the classical routes to rescue in

abruptly or gradually changing environments and also

reveals more complex pathways evolution may have to

take in to rescue the population. As predicted by general

theory, the risk of evolutionary suicide may be averted by

rescue that takes the population through a non-viable

region and eventually exposes it to selection towards

a viable attractor. In an abruptly changing environment, a

population driven out of a non-viable region (see figure 5a,

phase (1)) by rescue may only find itself exposed to

selection towards another non-viable region (figure 5a,

phase (2)). Moreover, evolutionary rescue in a gradually

changing environment may be seriously impeded when it

involves switching to a new attractor (figure 5c, phases (1)

and (3)), for a non-viability zone may lie in between (figure 5c,

phase (2)).

(b) Adaptive dynamics of the maturation reaction
norm in fisheries

In the study of Bürger [54] and other previously cited adapt-

ive dynamics models, the evolving trait is defined as

unconditional. The (common) assumption is thus made that

there is initially no plasticity in the trait, and no plasticity

can evolve. How plasticity and genetic adaptation interact

and jointly shape a population’s evolutionary trajectory is a

fundamental issue in evolutionary biology [63–65], yet one

for which our theoretical understanding is still limited [66].

Perhaps even more so is our appreciation of how plasticity

and genetic adaptation together influence the ecological

properties of a population. Using the quantitative genetics

approach, the question was tackled by Chevin & Lande [67]

and is addressed in this special issue by Chevin et al. [68]

and Kovach-Orr & Fussmann [69].

In the adaptive dynamics framework, the mathematical

toolbox to deal with plastic traits, and plasticity as a trait, has

been assembled [70–72]. A remarkable application has been

developed to understand the eco-evolutionary consequence

of overharvesting fisheries [73–75]. Here, the maturation

reaction norm (the function describing maturation size in
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narrow if environmental change is gradual, but maximally large if the change is abrupt ( phase (2)). See [57] for detail about the model, and fig. 5 therein for
parameter values corresponding to this figure.
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dependence of maturation age) is the (plastic) trait around

which the eco-evolutionary feedback loop revolves. Ernande

et al. [73,74] show that when the evolving population is

exposed to harvesting, the maturation reaction norm evolves

such as to allow individuals to mature at younger ages and

smaller sizes. At a certain point, this adaptation may cause

the entire population to go extinct, thus showing that plasticity

and its evolution do not make the population proof against

evolution-driven extinction.
(c) Empirical prospectus
On the empirical side, case studies of evolutionary suicide

and evolutionary trapping remain more suggestive than
demonstrative. Early examples were discussed in Ferriere

et al. [76] and Dieckmann & Ferriere [1]. Delgado et al. [77]

discussed evolutionary suicide and rescue when individual

dispersal is the target of the adaptive process. They used pre-

dictions from general theory [48,49,78] and from more

organism-specific models [79] to show (theoretically) that

evolution tends to favour dispersal rates that are considerably

lower than the rates that would maximize ‘population

performance’ (e.g. patch occupancy, metapopulation persist-

ence). Then they examined empirical evidence for such

discrepancy: vertebrates and insects form well-studied taxa

for dispersal in relation to habitat fragmentation and local

population size. In these data, Delgado et al. [77] found

tangential support for the predictions, but no direct evidence.
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Figure 6. Example of evolutionary suicide in sexual populations (from [1]).
The ecology of the system involves asymmetrical competition and an Allee
effect. The adaptive trait x is a measure of competitive ability, e.g. body size.
There is an optimal value of the trait but the greater the difference in trait
values between any two individuals, the lesser competition they experience.
The death rate captures the direct fitness effect of the trait and the ecological
effect of asymmetrical competition, as in [87]; the birth rate bears the Allee
effect and is trait-independent. See box 11.6 in [1] for detail. In their
simulations, the adaptive trait x is polygenic, determined by 10 diploid loci
with free recombination and additive effects. Loci are diallelic, with allelic
values þ1 and 21 and the set of trait values is scaled to 22 ,

x , þ 2. Mutations occur with probability 1023 per locus. The polymorphic
distribution of adaptive trait values, depicted by grey scales, starts out on one
side of the optimum at x ¼ 0. Owing to asymmetric competition, the
evolutionary process drives the distribution towards and then beyond the
optimum, until it reaches the non-viable boundary (near x ¼ 1.5). The
model has two viability boundaries, depicted by dashed lines. The black solid
curve shows the changes in actual population size resulting from the trait’s
evolution. The genetic architecture of trait x results in large phenotypic
variance that maintains through time. The loss of individuals in the tail of the
phenotypic distribution that extends beyond the viability boundary enhances
reproductive success in the remainder of the poupulation. As a result, the
population lingers at the brink of extinction, before perishing eventually.
Adapted from [1] (Cambridge University Press).
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Specifically, experimental evidence that individual fitness

would not increase if dispersal rates were higher, whereas

population performance would, is lacking [77]. We suggest

that the common lizard (Lacerta vivipara) offers a promising

model, for which long-term observations on individual

traits and environmental conditions are available, alongside

experimental data and population mathematical models.

Using such a combination of observation, experiment and

modelling, Massot et al. [80] concluded that dispersal has

been decreasing across years in response to climate warming,

that such decrease could cause extinction through an Allee

effect, and that higher values of dispersal would ensure

longer population persistence under continued climate

change. Although this could be an example of evolutionary

suicide or trapping in action, the data at hand could not

reveal whether the lizards’ dispersal response was genetic

or plastic.

The same system (common lizard) seems also prone to

evolutionary suicide and trapping through sexual selection

[81]. Le Galliard et al. [82] showed that male–male compe-

tition can reduce the availability of females, owing to

harassment that elevates female mortality, and hence turn

sexual conflict over mating into a tragedy of the commons

[83,84]. Combining data with population models, Le Galliard

et al. [82] concluded that exacerbating the conflict can lead to

extinction via an Allee effect. Rankin et al. [81] took the mod-

elling work one step further to show that evolutionary

suicide could ensue, driven by selection acting on male har-

assment behaviour. Interestingly, they also showed that

the coevolution of female resistance could avert the risk of

evolutionary suicide.

Micro-organisms may offer the best bet for direct

experimental evidence. Using experimental populations of a

bacterium (Pseudomonas fluorescens) and a bacteriophage,

Zhang & Buckling [85] studied how bacterium–virus coevo-

lution impacts viral population persistence in the face of

gradually increasing temperature. They garnered evidence

that the virus persisted much longer when its infectivity

evolved in the presence of an evolutionarily constant host

genotype. This suggests a case of ‘coevolutionary trapping’:

in response to increasing temperature, a consumer (phage)

tracks an evolutionary attractor that reaches extinction as

the resource (bacterium) coevolves, but over the same temp-

erature range the consumer’s evolutionary attractor remains

viable if coevolution is blocked in the resource (see the elec-

tronic supplementary material, figure S1). Further progress

in understanding the underlying ecological and evolutionary

mechanisms involved in this and the previous examples is

likely to benefit from a stronger integration of experimental

data and mathematical models.
6. Further perspectives on adaptive dynamics
and evolutionary rescue theory

(a) New questions for population and
quantitative genetics

The theoretical example presented in §5a shows how adapt-

ive dynamics further broaden the problem of evolutionary

rescue as currently addressed by quantitative genetics and

population genetics. When evolutionary rescue requires that

a population tracking a due-to-disappear evolutionary
attractor switches to another, safe evolutionary attractor, grad-

ual evolutionary change towards the safe attractor may, by

itself, take the population into the non-viable region (see

figure 5c, phase (1)–(2) under environment e3). Furthermore,

rescue out of the non-viable region may take the population

to an evolutionary trap (see figure 5c, phase (3) under environ-

ment e3), or expose the population to selection towards another

non-viable region (figure 5a, phase (2) after the environment

has changed from e1 to e3).

In §4a, we pointed out that when the population is pul-

led into a non-viable region around which selection drives

evolutionary suicide, the probability of exit from that

region is seriously compromised. What about the extinction

risk of an ecologically viable population undergoing evol-

utionary suicide—for example, taking the case depicted in

figure 5c, when abrupt environmental change occurs between

e1 or e2 and e4? As shown in [1], this is an open problem

for sexually reproducing organisms. In populations charac-

terized by small genetic variation, evolution towards the

boundary of the viability region may further reduce genetic

variation, thus slowing down the evolutionary trajectory

and perhaps bringing it to a halt before hitting the viability

boundary [45,86]. Another mechanism whereby evolutio-

nary suicide might be delayed was described in [1] for
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populations that have large genetic variation (figure 6). When

a broad phenotypic distribution approaches the non-viable

region, it extends its head tail beyond the viability boundary.

The loss of individuals in this tail will then affect the selective

pressures acting on the rest of the population. In particular,

the release of density dependence through very low repro-

ductive success in the head tail may boost the reproductive

success of individuals in the rear tail. This source–sink

dynamics across the viability boundary may lead to a

stable phenotypic distribution hovering at the brink of

extinction. The smaller the population’s phenotypic variance,

the closer it gets to extinction. Achieving a general, quanti-

tative description of this phenomenon is a problem for

population and quantitative genetics, but one in which eco-

evolutionary feedbacks lay at the core and must be fully

accounted for.
 B
368:20120081
(b) Evolutionary trapping, suicide and rescue in
polymorphic populations

The case of sexually reproducing organisms that we just

broached addresses the phenomenon of evolutionary suicide

in populations that are polymorphic yet phenotypically

unimodal. Does the threat of evolutionary suicide extend

to polymorphic populations distributed around multiple

phenotypic modes? Such multimodal polymorphism may

provide a form of ‘evolutionary insurance’ [44] since evo-

lutionary suicide would require the rather unlikely event

that all phenotypic modes hit the viability boundary of

their (now multi-dimensional) phenotype space at once.

The phenomenon of evolutionary branching, as predicted

by adaptive dynamics theory, can turn a monomorphic

population into a multi-morphic one. The simplest case is

that of a one-dimensional trait driven to an evolutionary

singularity where selection turns from directional to disrupt-

ive; two phenotypic branches result and diverge as

evolution proceeds. The population now evolves in a two-

dimensional phenotype space, which possesses its own

non-viable region. Evolutionary suicide in this case would

require that the (dimorphic) population hitting the boundary

of this (new) non-viable region would go extinct. But non-

viability of a dimorphic population does not necessarily mean

extinction of the whole population; it may simply entail that

the population collapses back to a viable but monomorphic

state [36,88]. Evolutionary cycles of branching–extinction may

result [89,90].

To our knowledge, all adaptive dynamics models in

which branching was followed by collision with the non-

viable boundary have been of that kind: loss of one type

and return to a monomorphic population (or in the case of

larger degrees of polymorphism, loss of p types among

p þ q, p � 1, hence return to a viable, q-morphic population).

However, recent models of mutualism evolution hint at

evolutionary suicide (and trapping) in polymorphic multimo-

dal populations. For example, Jones et al. [61] focused on

mutualism in plant–insect interactions. In their model, two

seed–parasite insects can coevolve; one is a pure parasite of

the plant and the other is mutualistic. Evolutionary suicide

of the two-type community is a generic outcome, and

environmental change that affects the competitive asymmetry

between insect types can cause evolutionary trapping and

induce evolutionary suicide of both types.
In figure 7, we report what may be the first example of

induced evolutionary suicide in a population shaped orig-

inally by evolutionary branching. The model (derived from

[50]) describes the adaptive dynamics and diversification of

a cooperation trait. Starting with a monomorphic ancestral

population, seven phenotypic branches evolve in a constant

environment. An episode of gradual environmental change

is then imposed. The effect of environmental change on

two different parameters was considered. The first led

to evolutionary suicide (figure 7a,b). Without evolution

(figure 7a), five out of seven phenotypic branches survived

the environmental change and the remaining five-branch

community persisted in the long run. With adaptive evo-

lution (figure 7b), the community responded to the period

of environmental change with the loss of one branch. Inter-

rupting the environmental change exposed the remaining

six-branch polymorphism to a strong regime of directional

selection, which led to the loss of one more branch and the

eventual collapse of the entire population. With the second

kind of environmental change, a form of evolutionary

rescue was discovered (figure 7c,d). Without evolution

(figure 7c), all seven branches went successively extinct and

the whole population was lost. With evolution (figure 7d ),

the six upper branches were lost as the environment changes

but the lowest branch could survive and spring a new

episode of diversification, leading to a new polymor-

phism complement, in a (within-species) process akin to

(between-species) classical ‘incumbent replacement’ [91].

This evolutionary rescue happens with a certain probability

which can be estimated by Monte-Carlo simulations.

It is interesting to look at the pattern exemplified in

figure 7c,d in the light of the results of Geritz et al. [36] and

Kisdi [88] (see fig. 6 therein) on the extinction of evolution-

ary branches. In these studies, a population first evolves

into a dimorphic state by evolutionary branching; one of its

branches then evolves to extinction; this is followed by the

remaining branch converging towards the population’s final

(monomorphic) evolutionary state. Thus, for some ancestral

phenotypes far from the evolutionary attractor, branching

and dimorphism can be a necessary but transient phase on

the way to the monomorphic attractor. Given such findings,

simulations as in figure 7 make us wonder whether in poly-

morphic multimodal populations, the loss of branches during

gradual environmental change might facilitate switching

to and tracking an alternative, safe evolutionary attractor

(which may or may not be polymorphic too).
(c) Evolutionary rescue theory at the community level
The question of evolutionary rescue, as posed by current

theory, can be carried over to the community level (see also

[69]): the threat may be direct demographic imperilment of

individual species, and rescue may be the persistence of all

species initially present. But the threat may also act indirectly,

by altering interactions between species, or even more

indirectly by impacting basic ecosystem functions and flows

of matter and energy between guilds. Rescue may be defined

in new ways, e.g. by the persistence of a fraction of the species

originally present simply greater that the proportion that

would remain in the absence of evolution; or by no diversity

loss, but accepting that the species composition of the

community could be different [92,93].
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A remarkable example has been provided along these

lines by Tilman & Lehman [94] who modelled the exposure

of a formerly nitrogen-poor community of terrestrial plants

to a large increase in the rate of nitrogen deposition, and

examined the community’s response both at the ecological

and the evolutionary time-scale. Unsurprisingly, the model

predicts that the short-term effect of the environmental

change is the take-over of a few formerly rare, but now

fast-growing and rapidly dispersing species. The differen-

tial success of these plants is enhanced by asymmetric

competition for light. After the initial ecological response,

evolutionary processes come into play and reshape the

entire community. On the basis of a trade-off between com-

petitive ability and dispersal, the model predicts that

the winners of the short-term round gradually reduce
their capacity for dispersing and evolve into better

local competitors.

Under such conditions, evolution first establishes two dis-

tinct morphs: a good disperser that is a poor competitor and a

good competitor that is a poor disperser. Afterwards, the

former morph again evolves towards better competitive abil-

ity and thus allows a well dispersing third morph to invade

with traits similar to those the first and second morph had

both expressed initially. Thus, the range between the two

extreme strategies successively fills up with a collection of

intermediate species. Tilman & Lehman describe this pattern

as the result of a speciation process that eventually yields

a local flora that is as species-rich as the one present before

the environmental change. The far-reaching conclusion from

this theoretical study is that rapid speciation processes
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can drive evolutionary rescue of community diversity by con-

ferring high long-term resilience to the diversity of natural

communities against the immediate negative impacts of

ecosystem degradation.

Stegen et al. [95–97] have combined such eco-evolutionary

models with eco-physiology theory to predict the evolution

of species richness in trophic networks as environmental

temperature increases globally. As this happens, evolution

changes the network’s species complement but yields a

net gain in species richness, up to a threshold beyond

which the balance between the (temperature-increasing)

speciation rate and extinction rate tilts in favour of the

latter. Such developments will contribute to a theoretical

underpinning for the empirical investigation, as undertaken

by Lavergne et al. [98], of how species’ eco-evolutionary

history shapes the impact of current environmental change

on contemporary communities.
8:20120081
7. Implications for conservation
and management

Such an adaptive dynamics approach to evolutionary threats

and rescue raises important challenges for conservation and

ecosystem management. First, what systems are more at

risk? The key ecological mechanism underlying evolutionary

suicide and, more generally, evolutionary collapse, is the

existence of alternative stable states. Positive ecological feed-

backs (e.g. positive density dependence) are often necessary

for alternative stable states [99,100], and play key roles in

the organization and function of various important ecosys-

tems [101]. When shifts between alternative stable states

can be triggered by adaptive traits or by some ecological par-

ameters which they influence, then the stage is set for

evolutionary suicide or collapse [62]. Can we then diagnose

the evolutionary threats? This may not be easy when the

environment changes gradually. Monitoring the direct effect

of environmental change on population demography will

be of little value. Indeed, environmental change can drive a

population to extinction through evolutionary trapping

while shrinking, rather than expanding, the hazardous

region of demographic non-viability [61]. And as evolution-

ary trapping occurs, there may be very little change in the

phenotypic or ecological state of the population, rendering

the diagnosis difficult. Close to evolutionary suicide, how-

ever, the population is expected to show the early warning

signals of systems approaching a ‘tipping point’ in ecological

state [100,102]. There is increasing evidence [103,104] that

generic statistical indicators, based on ‘critical slowing

down’ [105–107], can provide advance warning of cata-

strophic collapse. These tests could be adapted to detect the

risk of evolutionary suicide as well.

What factors may attenuate (or worsen) evolutionary

threats, and can we predict important influences of the likeli-

hood of rescue? According to current evolutionary rescue

theory for gradually changing environments, rescue should

be more likely under slower environmental change. In con-

trast, evolutionary rescue from the threat of trapping may

be more likely under faster environmental change. Rapid

environmental change may leave the population lagging so

much behind its dangerous evolutionary attractor that the

population may end up under selection towards an alterna-

tive, safe evolutionary attractor. Reduced genetic variation,
which would impede rescue under current theory, may simi-

larly be advantageous. As discussed in §6a, very small

genetic variation can delay the extinction outcome of evol-

utionary suicide; in sexual organisms, large genetic variance

will have the same effect (figure 6). The findings of Rankin

et al. [81] also suggest that the structure of genetic covariance

between adaptive traits could radically alter the likelihood

of evolutionary suicide. Evolutionary rescue essentially

amounts to crossing a fitness valley (evolutionary repellor)

to escape an evolutionary trap or an immediate suicide.

Somewhat paradoxically, small population size, by amplify-

ing genetic drift, may facilitate evolution to an alternative

evolutionary attractor and thus foster evolutionary rescue.

Realizing that genetic variance, population size and the

direction of selection are variables and outputs of eco-

evolutionary feedbacks, rather than parameters or external

inputs, should encourage future research to use insights into

the eco-evolutionary feedback loop to design unconventional

conservation or restoration methods.
8. Concluding remarks
The question of the potential for evolutionary adaptation to

rescue populations from deleterious effects of environ-

mental change is usually asked under the (oft-implicit)

assumption that adaptive evolution is, if anything, bound

to improve the demographic fate of the population. But

this conventional view ignores eco-evolutionary feedbacks.

The eco-evolutionary feedback loop is responsible for fre-

quency-dependent selection, broadly defined [23], and

this has important consequences for our understanding of

the interaction between evolutionary adaptation and

population persistence.

Adaptive dynamics theory provides a framework to

model phenotypic evolution driven by eco-evolutionary feed-

backs and investigate the resulting ecological changes in

population dynamics. This framework shows that the ques-

tion of evolutionary rescue does not reduce to whether or

not a population can track a moving evolutionary attractor

fast and closely enough, or whether or not demographically

viable mutants can arise and invade soon enough to pre-

vent extinction of an otherwise non-viable population. The

operation of eco-evolutionary feedbacks readily generates

evolutionary repellors that can delineate conditions on the

environment and the population’s phenotypic composi-

tion under which the population is either safe or at risk of

evolutionary trapping and suicide. In the face of trapping

and suicide, evolutionary rescue is not only a matter of a

population taking advantage of the evolutionary process

to survive or avoid demographic threats; it requires that

the population overcomes evolutionary threats generated

by the process of adaptive evolution itself.

By being explicit about ecological processes, adaptive

dynamics theory makes it possible to investigate the effect

of different types of environmental change (differing in

how they impact the various ecological processes that drive

population dynamics and generate selective pressures;

whether they affect one and not the other, directly or

indirectly) and discover and address evolutionary rescue

phenomena that may differ in the mechanisms of threats

(e.g. demographic versus evolutionary), the manifestation of

these threats at different levels of ecological organization
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(e.g. population demography, community structure, eco-

system function), and the evolutionary path away from

those threats. The emerging picture of evolutionary rescue

is one of a complex, multi-faceted process, the study

of which raises the challenging but exciting task of

bridging and unifying important areas of ecological and

evolutionary theory.
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APPENDIX A. A model of suicide and
rescue in populations undergoing
evolutionary branching
Ferriere et al. [50] studied evolutionary branching in a model

of two-species mutualism adaptive dynamics. We simplified

their system into a one-species model of cooperation. The

adaptive trait now measures the individual investment in

some public goods that benefit the entire population.
Dependence on the public goods causes an Allee effect and

raises asymmetrical competition. For a resident population

with trait x and density n, the ecological model is given by

1

n
dn
dt
¼ �rðxÞ � c nþ x n

1þ a0 nþ u x n
ðA 1Þ

and for a rare mutant with trait x‘ and density n‘, per capita
population growth is

1

n0
dn0

dt
¼ �rðx0Þ � c nþ x n

1þ aðx0 � xÞnþ u x n
: ðA 2Þ

Here, c and u are positive constants, r is the constant func-

tion of the trait. Function a has a sigmoid shape accounting

for the assumption that investing more in public goods

gives a competitive advantage; aðx0 � xÞ is the intensity of

asymmetrical competition experienced by an individual

with trait x‘ interacting with a population of individuals

with trait x, and a0 ¼ að0Þ. Functions a and r and their par-

ameters are chosen as in [50]: rðxÞ ¼ 0:001 x ðxþ 1Þ,
aðzÞ ¼ 2hð1� ð1=1þ e�wðzþaÞÞÞ. Parameter values used in

figure 7 are: c ¼ 2, h ¼ 2.05, w ¼ 0.4, a ¼ 2 9.16 and u ¼

0.01. Simulations were performed using ZEN software

(http://www.biologie.ens.fr/~legendre/zen/zen.html) with

initial trait value ¼ 100, initial population size ¼ 3000,

mutation rate ¼ 0.001, mutation standard deviation ¼ 1,

carrying capacity ¼ 1000 and integration step ¼ 0.01.
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