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Abstract

Translating the timing of brain developmental events across mammalian species using suitable models has provided
unprecedented insights into neural development and evolution. More importantly, these models can prove to be useful
abstractions and predict unknown events across species from known empirical event timing data retrieved from published
literature. Such predictions can be especially useful since the distribution of the event timing data is skewed with a majority
of events documented only across a few selected species. The present study investigates the choice of single hidden layer
feed-forward neural networks (FFNN) for predicting the unknown events from the empirical data. A leave-one-out cross-
validation approach is used to determine the optimal number of units in the hidden layer and the decay parameter for the
FFNN. It is shown that unlike the present Finlay-Darlington (FD) model, FFNN does not impose any constraints on the
functional form of the model and falls under the class of semiparametric regression models that can approximate any
continuous function. The results from FFNN as well as FD model also indicate that a majority of events with large absolute
prediction errors correspond to those of primates and late events comprising the tail of event timing data distribution with
minimal representation in the empirical data. These results also indicate that accurate prediction of primate events may be
challenging.
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Introduction

The seminal work of Finlay and Darlington [1] established the

importance of cross-species comparisons and its nexus to

development and evolution of mammalian brains. They showed

the order of certain neurodevelopmental events, more specifically

that of neurogenesis, to be conserved across mammalian species.

The authors also proposed a regression model to translate the

timing of neurodevelopmental events across species. It is important

to appreciate that experimental validation of neurodevelopmental

event timing across a number of species may demand dedicated

and orchestrated efforts across multiple laboratories. The feasibil-

ity of such validations can also be challenged since experiments on

certain species during post-conceptional (PC) development (e.g.

humans) may violate ethical considerations. Existing empirical

neurodevelopmental data is skewed with a majority of events

documented across a few selected species (e.g. rodents) with

minimal knowledge across others (e.g. primates). A modeling

approach overcomes these caveats and can prove to be a suitable

alternative for obtaining preliminary insights into event timing

across a spectrum of mammalian species [1]. The merit of these

models especially lies in their ability to predict unknown

neurodevelopmental events from those empirically derived from

literature [1].

The original study [1] predicted the peak-day of neurogenesis

(PN) across 51 brain structures and across 7 mammalian species

[Table 2 in [1]]. Out of these possible 7651 events (i.e. occurrence

of peak neurogenesis), 174 (,50%) were retrieved from existing

literature. The authors predicted the occurrence of the remaining

events using a regression model, Y~ln(PN day{7) with dummy

variable predictors and log-transformed (PN day – 7) as response.

More formally, each species and event was represented by a binary

vector (i.e. predictor variables) in the regression. The length of the

binary vectors being identical to that of the response variable such

that each known PN day can be mapped uniquely to an event and

a species by inserting a one in the corresponding binary vectors.

One of the species and event were chosen as base-species and

base-event in order to avoid singularity in the regression

procedure. The constant 7 in the above model was attributed to

early organizational events post-conception (e.g. implantation,

blastulation and differentiation of basic germinal layers) assumed

to be roughly conserved across the species [1]. Subsequently, the

unknown events across species were estimated using a linear

combination of the corresponding optimal regression parameters.

A detailed explanation of the regression model can be found

elsewhere [1]. In a subsequent study [2] a modified version

Y~ln(PC day{k) of the original regression model was proposed

to predict post-conceptional day (PC day) across nine mammalian

species including humans. The data set in [2] included post-

conceptional events in addition to those of peak neurogenesis [1].

We shall refer to the revised model proposed by [2] as the FD

model in the present manuscript since it was a direct extension of

the original model [1]. In contrast to the original model, the
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dummy variable predictors in the FD model consisted of two

additional terms corresponding to primate-cortical and primate-

limbic interactions. These additional variables were argued to

alleviate what the authors termed as the bidirectional distribution

of variations in primates [2]. Also, the constant 7 days in the FD

model was replaced by a data-dependent parameter k estimated by

maximizing the linear correlation between the observed and

predicted event timing values for various regression parameters.

The authors also found the parameter k to vary considerably with

accumulation of the neurodevelopment data [2]. In order for the

log-transformation Y~ln(PC day{k) [2] to exist, parameter k

was constrained between zero and the minimum value of the

empirically derived event timing values. The log transformation in

the FD model was possibly used to support parametric regression

assumptions. We had recently implemented the FD model in the

open-source language R with detailed documentation along with

the data set as a part of the translating time package (ttime) [3].

It is important to note that the empirically derived neurodevel-

opmental event timing data is sparse by its very nature with a

majority of the events documented only across a few selected

species (e.g. rodents). This in turn renders the prediction problem

challenging while encouraging the choice of alternative approach-

es. The neurodevelopment data has also grown and refined

considerably since the original work [1]. Thus the presence of new

patterns in the data unaccounted by the earlier models cannot be

ruled out. The present study investigates the prediction of

occurrence of unknown events using a feed-forward neural

network (FFNN) with a single hidden layer [4–8]. A leave-one-

out cross-validation approach is proposed to determine the

optimal parameters of the neural network. Subsequently, it is

shown that a single-layer FFNN with one hidden unit can yield

predictions comparable to that of the FD model without any

constraints on the functional form of the model such as the

inclusion of the constant k and the primate-cortical/primate-limbic

interaction terms. FFNN in contrast to FD also falls under the class

of semiparametric statistical models such as generalized additive

models and can approximate any continuous function [9,10,4].

The activation function in the hidden layer of the FFNN has the

potential to model linear as well as nonlinear relationships between

the predictor and response variables. These characteristics make

FFNN useful for possible generalizations as the neurodevelop-

mental event database grows. The present study also elucidates

those events with large absolute prediction errors consisted

primarily of primate events that have minimal representation

and comprise the tail of the event data distribution. These results

were confirmed using FFNN as well as the FD models and in turn

may possibly reflect inherent challenges in using cross-species

approaches for predicting the occurrence of primate neurodevel-

opmental events.

Methods and Results

Neurodevelopmental event data
The original implementation of the FD model along with the

neurodevelopment event timing data set is available through the

web-service www.translatingtime.net [11]. This has been accessed

widely by researchers across a spectrum of disciplines and cited

widely across a number of manuscripts. The site had also been

included in the Neuroscience Information Network (http://www.

neuinfo.org/nif/registry/nif-0000-00533). Recently, we imple-

mented the FD model in the open-source language R (R Core

Development Team) as a part of the translating time package

(ttime) [3] for enhanced transparency, reproducibility and

sustainability. A complete documentation of the functions in the

ttime package and their working mechanism can found in [3] and

http://cran.r-project.org/web/packages/ttime/index.html (Com-

prehensive R Archive Network). The neurodevelopmental event

timing data set used in the present study consisted of 106 events

across 10 species (8 non-primates, 2 primates) is available publicly

through the ttime package. Since the present study uses a leave-

one-out approach for comparing the performance of the FFNN

and the FD models, we consider only events from the (ttime)

package [3] that have been documented at least across two

different species and those species that have at least two

documented events. This in turn reduced the number of events

from 106 to 95 events while retaining all the species. Therefore, all

subsequent discussions will be restricted to these 95 events across

the 10 species. Out of the possible 95610 = 950 events, 372 were

empirically derived from literature and available through the ttime

package [3].

Our earlier investigation [12] of the empirically derived event

data common across three mammalian species (Mouse, Rat,

Macaque) revealed positively-skewed decaying trend that reflected

possible phylogenetic proximity between them. The skewness and

kurtosis of the event data (PC day) in the present study were

characteristic of positively-skewed distributions(s*2:4,k*10:9),
see Fig. 1a. The corresponding quantile-quantile (Q-Q) plot also

exhibited considerable deviation from the standard normal

quantiles as expected, Fig. 1b. Positively skewed distributions of

empirical data from real-world phenomena are not uncommon

and accompanied by decreasing frequency of occurrence with

increasing magnitude. Such a behavior has also been attributed to

interesting underlying mechanisms [13]. Within the context of the

present study, positive skew may be attributed to the fact that

empirically derived events with large magnitude comprising the

tail of the distribution is negligible relative to those with small

magnitude. The events in the tail especially included those from

primates (e.g. macaque, humans) with minimal representation in

the data. Box-Cox transformations [14] (e.g.(xl{1)=l) are

routinely used to minimize the skew and argue in support of

normality assumptions as well as minimize the effect of non-

constant variance in the residuals of regression analysis [15].

However, in the present study, we used log-transformation where

log(x) = liml?0(xl{1)=l, solely to reduce the dynamic range,

Figs. 1c–1d, of the event timing values since FFNN imposes no

constraints on normality or parametric assumptions as the FD

model. As expected, the skewness and kurtosis of the log-

transformed event data(s*0:7,k*2:6), Figs. 1c–1d, were con-

siderably lower than that of the raw data, Figs. 1a–1b.

Neural network modeling
Artificial neural networks have been widely used to investigate

patterns in complex biological data sets. Recent studies have

demonstrated their usefulness for classification and regression

problems [5–8]. FFNN are unidirectional networks and map the

input variables (input layer) to the output variables (output layer)

through the units in the hidden layer(s). It has been shown that

FFNN with a single hidden layer can be sufficient to approximate

any arbitrary continuous function [9,10,4]. Therefore, in the

present study we shall consider only FFNN with a single hidden

layer. The mapping between the input x and output variables y of

an FFNN with a single hidden layer and identical activations

function across hidden(Yh) as well as the output (Wo) layers is

given by

yk~Wo½bkzf
X

i?k
wikxigz

X
j?k

wjkYh(bjz
X

i?j
wijxi)� ð1Þ
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A diagrammatic representation of the single-layer FFNN corre-

sponding to the functional form (1) can be found in (Fig. 5.1 in [6]).

As discussed earlier and inspired by the original study [1], we

follow a dummy variable regression procedure. In (1), the response

variable y in the output layer of the FFNN is given by the log-

transformed post-conceptional days (yk, k = 1…n), i.e. ln(PC day)

across n events whose values are known. Let these n events

correspond to s unique species and e unique events. The predictor

variables in the input layer of the FFNN are n-dimensional binary

vectors xi corresponding to the s species and e events (i.e. xi, i = 1…

s+e). For each known neurodevelopmental event, we insert a 1 in

the corresponding species and event binary vectors. The above

process is repeated for each of the n neurodevelopmental events to

generate the binary predictor variables xi, i = 1… s+e in the input

layer. The logistic activation function, Yh(u)~ eu

1zeu, is a nonlinear

function and was chosen for the units in the hidden layer. The

logistic activation function can be thought of as a continuous

approximation to the discontinuous step function inspired by the

all-or-none principle [16]. A linear activation function of the form

Wo(v)~avzb was chosen for the output layer. These activation

functions are commonly used in neural network regression analysis

[6], hence their choice. The parameters b and w correspond to the

bias and weights of the FFNN to be determined. Of interest is to

note that the functional form (1) also incorporates a skip-layer

(shown in {}) that maps input linearly to the output. The skip-layer

represents a traditional linear regression. For transparency and

reproducibility, the results presented were generated using the

FFNN package (nnet) [17] implemented in the open-source R

language available publicly (http://cran.r-project.org/web/

packages/nnet/index.html) through the CRAN.

Determining neural network parameters using a leave-
one-out approach

Prior to predicting the unknown events, we propose a cross-

validation approach to determine the optimal number of units (h�)
in the hidden layer and the weight decay parameter (d�) [6] for the

FFNN with a single hidden layer (1). Cross-validation techniques

[7] such as leave-p-out are commonly used in predictive modeling

to address issues such as overfitting where the estimated model

parameters bias themselves to the given samples and fail to

generalize across new samples. We address these concerns by using

a use a leave-one-out (LOO, p = 1) approach for determining the

optimal parameters (d�,h�) and assessing the performance of the

FFNN. LOO is justified since the number of known events is

considerably small. In the present study, we have m = 95

neurodevelopmental events across n = 10 species. Out of (95610)

events p = 372 are known with p%m6n. The LOO procedure is

described below.

Store the p known events (PC days) identified under in the

vector yo(k),k~1:::p. Initialize the number of units in the hidden

layer to h?0, the weight decay parameter to d?0.

Step 1. Set h?hz1.

Step 2. Set d?dz10{2.

Step 3. Set the event index k?0.

Step 4. Set k?kz1 (i.e. leave the kth event out, LOO).

Construct the predictor and response variables similar to the

original FD regression model [1] using the remaining p-1 known

events across m species. Estimate the optimal weights of the single-

layer feed-forward neural network (1) with parameters h and d
from Steps 1 and 2 using least-squares optimization [6].

Step 4. Predict the kth event using the weights estimated in Step

4.

Figure 1. Distribution of neurodevelopmental event timing data. Positively-skewed distribution of the raw event timing data (post-
conceptional days, PC day) consisting of 372 events across ten species (8 non-primates, 2 primates) is shown in (a). The quantile-quantile plot of PC
day and those of standard normal quantiles is shown in (b). Distribution of the log-transformed PC day and its quantile-quantile plot are shown in (c)
and (d) respectively. The skewness and kurtosis of the raw and log-transformed PC day is enclosed in (a) and (c) respectively.
doi:10.1371/journal.pone.0053225.g001
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Step 5. Repeat Steps 4 and 5 till kwp. Transform the predicted

values to the original scale from the log-scale and store in

ŷy(k),k~1:::p.

Step 6. Determine the prediction error given by

g~
1

p

Xp

k~1

½ŷy(k){yo(k)�2 ð2Þ

for that choice of parameters (h, d).

Step 7. Repeat Steps 5–7 till dw0:50.

Step 10. Repeat Steps 5–8 till hw4.

The prediction error g as a function of the decay parameter

0ƒdƒ0:50 and units in the hidden layer h~1:::4 is shown in

Fig. 2. Only a single realization is shown for each choice of (d,h) in

Fig. 2. The optimal parameters (d�,h�) ideally are those that result

in a minimum prediction error. Of interest is to note a prominent

decrease in the prediction error g around d*0:05 with a

monotonic increasing trend after d*0:15. Interestingly, the

variation in the prediction error exhibited a similar trend with

increasing h, Fig. 2. Thus increasing the number of hidden units h

in the hidden layer did not seem to have a pronounced impact on

the prediction error. Based on the above observations, we set the

optimal weight decay and the number of hidden units for the

single layer FFNN as (d�~0:05) and (h�~1) respectively.

Prediction using FFNN and its comparison to FD model
The performance of the single layer FFNN, Sec. 2.2, with the

optimal parameters(d�,h�), was investigated using LOO predic-

tion. Subsequently, the LOO predictions of the FFNN were

compared to those obtained using the FD model. It is important to

note that the number of parameters in the FFNN increases

considerably with the complexity of the FFNN architecture. Since

estimating the degrees of freedom as function of the FFNN

architecture is involved and beyond the scope of the present study,

we use the total number of parameters of the FFNN as a useful

surrogate to the degrees of freedom. Although, it has been shown

[18] that such an estimate may in fact overestimate the degrees of

freedom of a FFNN. For the LOO predictions, the regression

parameters estimated from the k-1 known events were used to

predict the kth event. Subsequently, the prediction error (2) was

computed from the given data yo and its predicted counterpart ŷy.

Since neural networks can converge to local optima, the prediction

error was averaged across ten independent realizations with

random initializations of the weights. These independent realiza-

tions can also be useful in assessing the uncertainty in the predicted

event values to random restarts and were inspired by more

traditional confidence intervals [19] reported widely in regression

analysis. The variation in the average prediction error with the

number of hidden units (h = 1…4) as well as those estimated from

the original FD model [2] are shown in Fig. 3a. As noted earlier,

Fig. 2, the choice of the number of hidden units did not seem to

have an appreciable effect on the prediction error (2). In order to

keep the model complexity comparable we investigated a single-

hidden layer, single node FFNN with and without a skip layer. For

the FD model, the linear regression part has 106 parameters (i.e.

95 events+10 species+1 intercept terms+2 interaction terms = 108).

Two of the parameters corresponding to base species and base

event are dropped from estimation in order to avoid regression

singularity resulting in (108–2 = 106 parameters). Since estimation

of the parameter ‘k’ in Y~ln(PC day{k) is done separately, the

total number of parameters is effectively (106+1 = 107). In order to

keep the total number of parameters comparable across FD and

FFNN we chose to investigate FFNN with a single hidden node in

the presence (i.e. h = 1, S = T) and absence of the skip-layer (h = 1,

S = F). Eliminating the skip-layer considerably reduces the total

number of parameters without having a profound impact on the

mean-squared error, Fig. 3a. The total number of parameters

Figure 2. Optimal parameters of the feed-forward neural network. Variation of the prediction error g as a function of the decay parameter
0ƒdƒ0:50 and units 1ƒhƒ4 for a single realization of the single layer feed-forward neural network. The shaded area represents the region
d[ 0:04, 0:10ð Þ where the prediction error exhibits a prominent decrease.
doi:10.1371/journal.pone.0053225.g002
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(108) of a single-layer FFNN with a one-hidden node and without

a skip layer is comparable to the number of parameters of the FD

model (107). Therefore, all subsequent discussions are restricted to

this FFNN architecture. Investigating the residuals of the FFNN

(h = 1, S = F) predictions, Fig. 3d, revealed no apparent trends

similar to that of the FD predictions, Fig. 3b. The scatter plot of

the original values against the predicted values of the log-

transformed also revealed a high correlation for the FFNN

predictions (r,0.98), Fig. 3e, as well as the FD predictions

(r,0.98), Fig. 3c.

Predicting non-primate and primate events
As noted earlier, the positively-skewed distribution of the event

data can be attributed to the minimal representation of events

across certain species and events with large magnitude. In order to

obtain a better insight into this issue we chose to investigate the

number of events whose absolute prediction error ([) was greater than

a pre-defined threshold (t days) across non-primates and primates

given by the expression

[(t)~
Xp

k~1

h(Dŷy(k){yo(k)D) ð3Þ

where h(x)~1,if DxDwt and h(x)~0,if DxDƒt. As noted earlier, ŷy

represents the LOO prediction with yo representing the known

empirical event data. Subsequently, the contribution of the events

from non-primate and primate species to [(t) for t~4, 6, 8, 10, 12
was determined, Figs. 4a–4c using the FFNN and FD models. As

expected, [(t) was inversely proportional to the threshold t, i.e.

[(t2)v[(t1) for t2wt1. From Figs. 4a–4c, it is clear that the

proportion of primate events contributing to [(t) is relatively

higher than that of the non-primate events. More importantly, this

behavior was found to persist across various choices of threshold

t~4, 6, 8, 10, 12, Figs. 4a–4c. It is also of interest to note that

there was significant overlap in the events contributing to [(t),
identified independently by FFNN and FD. Therefore, irrespective

of the prediction methods certain events are unanimously

predicted with large errors for a given choice of the threshold t
by both the approaches. These events consisted of events with

large magnitude comprising the tail of the distribution and those

from primates with minimal representation in the empirical data.

The results in Figs. 4a–4c might also reflect inherent challenges in

predicting primate events.

Discussion

Understanding the timing and occurrence of neurodevelop-

mental events across species has been shown to provide insight into

their brain development and evolution. While a number of events

have been documented across a few selected species only a handful

of them are known across others. A rigorous experimental

validation of these events across a spectrum of species may involve

dedicated efforts across multiple laboratories. Feasibility of such a

rigorous validation during post-conceptional development may

also be challenged due to ethical reasons. Recent studies

demonstrated the choice of regression models for predicting the

unknown event occurrences across species from known event data

derived empirically from literature under certain implicit assump-

tions and constraints. The original regression model predicted the

Figure 3. Comparison of the results from FFNN and FD models. The prediction error g as a function of the number of units 1ƒhƒ4h~1 . . . 4
and optimal decay parameterd�~0:05d� = 0.05 for the FFNN in the presence (S = T) and absence (S = F) of the skip-layer is shown in (a). The prediction
error for the FD regression model obtained using the LOO approach is also shown for comparison in (a). The residuals as a function of the predicted
values obtained using the LOO approach in the log-scale for the FD model and FFNN (d�~0:05, h�~1,S~F ) are shown in (b) and (d) respectively.
The corresponding scatter plots are shown in (c) and (e) respectively.
doi:10.1371/journal.pone.0053225.g003
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peak-day of neurogenesis across a number of species including

those of a primate using parametric dummy variable regression.

One of the model parameters, representing the early events

conserved across the species was kept as a constant (7 days) in the

model. However, a modified version (FD model) was proposed

subsequently to predict post-conceptional events in addition to

peak-neurogenesis. In this revised model, the constant was

estimated from the data and was found to be data-dependent. In

addition, interaction terms corresponding to primate-cortical and

primate-limbic events were also incorporated. The present study

investigated the choice of a semiparametric regression approach

such as FFNN for predicting neurodevelopmental event timing

without imposing any constraint on the functional form and

parameters in the model. While there are several choices of FFNN

architecture, we chose one that resembles that of the FD model

from the perspective of the total number of parameters estimated.

Subsequently, a leave-one-out approach was proposed to deter-

mine the optimal parameters of the neural network model. It was

shown that a FFNN with a single-hidden layer and a single hidden

node may be sufficient to generate predictions comparable to the

FD model. FFNN by its very nature may also have the potential to

accommodate more complex patterns as the neurodevelopmental

event database grows. The results presented also indicate that

events with large absolute prediction errors correspond to those of

primates and late events with minimal representation in the data.

These results were confirmed across the FFNN as well as FD

predictions and may be an outcome of peculiarities in primates or

due to minimal representation of primates in the current

neurodevelopmental data. These results may also indicate possible

challenges in translating the event timing from non-primates to

primates with skewed representations across these species. The

present study also elucidates the possibility of arriving at

comparable predictions using distinct models and the persistence

of certain characteristics irrespective of the model choice.
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