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Abstract
We present a thermodynamical approach to identify changes in macromolecular structure and
dynamics in response to perturbations such as mutations or ligand binding, using an expansion of
the Kullback-Leibler Divergence that connects local population shifts in torsion angles to changes
in the free energy landscape of the protein. While the Kullback-Leibler Divergence is a known
formula from information theory, the novelty and power of our implementation lies in its formal
developments, connection to thermodynamics, statistical filtering, ease of visualization of results,
and extendability by adding higher-order terms. We present a formal derivation of the Kullback-
Leibler Divergence expansion and then apply our method at a first-order approximation to
molecular dynamics simulations of four protein systems where ligand binding or pH titration is
known to cause an effect at a distant site. Our results qualitatively agree with experimental
measurements of local changes in structure or dynamics, such as NMR chemical shift
perturbations and hydrogen-deuterium exchange mass spectrometry. The approach produces easy-
to-analyze results with low background, and as such has the potential to become a routine analysis
when molecular dynamics simulations in two or more conditions are available. Our method is
implemented in the MutInf code package and is available on the SimTK website at https://
simtk.org/home/mutinf.

1 Introduction
It is by now well understood that macromolecules, under biologically relevant conditions, do
not adopt single conformations but display varying degrees of conformational dynamics.
Equilibrium properties are thus characterized by an ensemble of conformations. Any
perturbation to the system can change the energy landscape and the associated
conformational ensembles; that is, both the ‘average’ or dominant conformation and the
dynamics can change. These perturbations can include environmental conditions such as the
solvent or temperature, ligand binding, mutations, or post-translational modifications, and
can have functional consequences. For example, mutations can modulate ligand binding in
this way, leading to drug resistance, and ligand binding or post-translational modification
can regulate enzyme activity. Changes in conformation and dynamics need not be confined
locally but can extend across the macromolecule, leading to allostery (in the broad, modern
use of the word). Molecular dynamics simulations and related computational methods
provide practical ways to generate macromolecular ensembles, although all such methods
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are limited by incomplete sampling. Many analysis methods are commonly employed to
characterize the resulting ensembles, and to compare ensembles. Although routine, such
analyses are fundamentally challenging because of the large number of degrees of freedom
and the complexity of the conformational ensembles, which are not always well
approximated by fluctuations around an ‘average’ structure. Approaches to compare
molecular conformational ensembles can focus on global phenomena or localized
phenomena. Approaches for capturing global differences between conformational ensembles
typically reduce the dimensionality by discretizing conformational space over a subset of
degrees of freedom (i.e. Cα atoms) into rapidly-converting “microstates” and slowly-
converting “macrostates”1, by changing basis into a subset of the most significant collective
coordinates by performing some variant of principal coordinates analysis2,3,4. Approaches
for capturing localized differences between conformational ensembles typically focus on
average structural changes, average flexibility changes, contact maps5, or correlated
motions6,7. In this work, we describe a computational approach for comparing
conformational ensembles, based on the Kullback-Leibler Divergence from information
theory, that captures both conformational changes and changes in entropy/dynamics. The
results are thermodynamically meaningful, easy-to-visualize, and filtered for statistical
significance so that significant perturbations are easy to identify. The approach is well suited
to such tasks as identifying, in an unbiased way, whether perturbations such as ligand or
protein binding or post-translational modification alter conformational ensembles at distant
sites, and whether two different ligands binding to the same site cause similar or different
effects.

2 Overview of Method
We analyze residues’ conformational distributions in torsion space, as torsions provide an
apt local description of biologically-relevant functional motions and do not have frame-
fitting issues inherent to Cartesian analysis3. Especially for protein side chains, the concept
of “average” positions is of limited use, as their distributions are often multimodal in
torsional or Cartesian space. To quantify “population shifts” in residues’ conformational
distributions, we use the Kullback-Leibler Divergence, a measure of the free energy
difference between two equilibrium ensembles, where one ensemble is the “reference”
ensemble and the other is the “perturbed” ensemble8,9. The Kullback-Leibler Divergence or
relative entropy is a fundamental quantity in information theory, and its differential version
is given by:

(1)

where ρ* is the probability density function (p.d.f.) of the reference ensemble, and ρ is the
p.d.f. of the perturbed ensemble, and J indicates the Jacobian determinant. Torsion angles
(with fixed bond lengths and angles) or orthogonal Cartesian basis sets have a Jacobian of
unity, facilitating analysis. The Kullback-Leibler Divergence was previously derived to
second order for a harmonic Hamiltonian and applied to normal-modes models of
proteins10. It was applied to trypsinogen to not only refine a normal-mode model against
atomistic simulation data, but also to quantify coupling between trypsinogen’s active and
regulatory sites. To our knowledge, this study was the first to appy the Kullback-Leibler
Divergence to studying allostery. In a different study, this measure was applied to identify
functional sites in a large test set of proteins11. This approach to identify functional sites was
based on the observation that functional sites tended to co-localize with surface sites where
artificial perturbations caused a large change in the total Kullback-Leibler Divergence for
the protein. The Kullback-Leibler Divergence was also applied at second order in a
perturbational formulation of principal components analysis (PCA) to identify effective
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perturbations that contribute to differences between conformational ensembles3. In PCA of
Cα atoms, a common practice in molecular dynamics simulations, these perturbation
functions are identity operators on the Cartesian coordinates. The eigenvalues of the
perturbation functions’ covariance matrix (or that of the Cα coordinates in typical
applications of PCA) are related to the Kullback-Leibler Divergence between ensembles. To
calculate the Kullback-Leibler Divergence for macromolecular conformational ensembles
containing many degrees of freedom, we propose an expansion over increasing numbers of
degrees of freedom. We derive a novel expansion of the K-L divergence over single degrees
of freedom, pairs of degrees of freedom, etc, utilizing the Generalized Kirkwood
Superposition Approximation (GKSA), which has been previously used by Matsuda12 and
by Killian et al. for a configurational entropy expansion13. The most immediate application
is the use of first-order terms to calculate the Kullback-Leibler Divergence for protein
residues from sums of the Kullback-Leibler Divergences of their constituent torsions, which
could be readily refined by use of second-order terms within residues. We expect that
second- and higher-order terms will also be useful in future applications. Importantly, our
expansion connects such “local” Kullback-Leibler Divergences to the global Kullback-
Leibler Divergence for the conformational ensemble, which has connections to the free
energy; other measures of comparison such as r.m.s. deviation or chi-squared analysis lack
this strong connection to thermodynamics. Our method scales linearly with the number of
residues in the protein (neglecting inter-residue second-order and higher-order terms) and is
thus applicable to large macromolecules and complexes. The novelty of our work lies in: (1)
providing a thermodynamics-based comparison between conformational ensembles that
accounts for both changes in structure and in flexibilities, in contrast with commonly-used
methods such as root-mean-squared deviation (RMSD) or root-mean-squared fluctuation
(RMSF or B-factor analysis); (2) deriving an expansion that prescribes a way to compare
distributions of multiple degrees of freedom (e.g., the multiple torsions of a protein residue
or those of a group of residues), and a systematic way to improve the accuracy of such
comparisons; and (3) the introduction of a useful quantity, which we call the “mutual
divergence”—analogous to mutual information except that it uses relative entropy instead of
entropy—and its higher-order analog. In the numerical implementation, we also provide a
discretization correction to the Kullback-Leibler Divergence, and use bootstrap resampling
on the Kullback-Leibler Divergence for statistical filtering and correction of sampling bias.

2.1 Marginal probability distributions and the Generalized Kirkwood Superposition
Approximation

A protein’s geometry is most commonly described in Cartesian coordinates or in internal
bond-angle-torsion (BAT) coordinates. We use BAT coordinates, and focus our analysis on
φ, ψ, and χ torsion angles, as these are the most important to describe motions of
biophysical relevance. The distribution of the m torsion angles (x1,…,xm) of a protein’s
“perturbed” equilibrium conformational ensemble (perturbed by mutation, ligand binding,
post-translational modification, etc.) give rise to a probability distribution ρ(x1,…,xm) over
m degrees of freedom; these are compared with a “reference” conformational ensemble
having probability distribution ρ*. The number of snapshots of a protein’s geometry
required to adequately approximate this m-dimensional probability distribution function
(p.d.f.) grows exponentially with increasing m. For this reason, we wish to approximate the
m-dimensional p.d.f. using marginal distributions of ρ(x1,…,xm) involving only one and two
variables. Such marginal distributions of order n are defined as follows:

(2)
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(3)

(4)

where s denotes a set of degrees of freedom. In what follows, the subscript of probability
densities ρn,k will either have one index indicating the number of degrees of freedom and an
argument list, or be expressed in shortened notation using two indices: the first, n, indicating
the number of degrees of freedom in the probability density function, and the second, {k},
indicating a set of indices of degrees of freedom comprising the p.d.f. The Generalized
Kirkwood Superposition Approximation (GKSA) is of key importance for the foundation of
the present work. The GKSA at order m − 1 approximates a probability distribution with m
degrees of freedom using lower-order probability density functions consisting of a subset of
the degrees of freedom, up to m − 1 degrees of freedom for an order m − 1 GKSA, and is
perhaps easiest to express in log form:

(5)

where  indicates all  combinations of nth-order marginal probability density

functions of ρ, and  indicates the order m − 1 GKSA approximation of ρ. As it has been
noted that the terms in this superposition are not appropriately-normalized p.d.f.’s except for
the first-order terms14, it is not clear whether a GKSA-based expansion of the total
Kullback-Leibler Divergence would be expected to give quantitative measures of the total
free energy cost of remodeling the conformational distribution or free energy landscape of a
macromolecule. Nonetheless, the successes of the configurational entropy expansion and its
variants in computing configurational entropies suggests that the total Kullback-Leibler
Divergence under this approximation may still be of use beyond the relative values of its
terms applied in the Results section below.

3 Methods
3.1 Kullback-Leibler Divergence Expansion for three variables

To motivate the expansion of the Kullback-Leibler Divergence, consider a probability
distribution ρ(x1,…,xm) = ρ(φ,Ψ,χ) that is a function of a set τ of three variables,τ =
{φ,ψ,χ}. Suppose for example that these three variables denote the backbone and first
sidechain torsion angles of an amino acid in a peptide or protein. The Kirkwood expansion
for ρ is then:

(6)

where the notation  denotes all q-choose-p combinations of order-p marginal distributions,
and g and k denote two-member and one-member sets of degrees of freedom comprising a

particular combination of these  order-p marginals. Consider probability distributions ρ
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and ρ* over m degrees of freedom. Continuing with our example, inserting the Kirkwood
expansion for ρ and ρ* into the equation above yields:

(7)

Converting the log of a product into a sum of logs:

(8)

Due to linearity,

(9)

For each of these sums of  combinations of log terms, we can integrate out the m−n
degrees of freedom that are not part of each log term, and define dτn as the differential
volume element over the remaining n variables in each term.

(10)

Expanding, we see that this is merely the sum of Kullback-Leibler Divergences of pairwise
p.d.f.’s (with respect to their equilibrium values) minus the Kullback-Leibler Divergences of
individual p.d.f.’s:

(11)

3.2 General derivation of Kullback-Leibler Divergence Expansion
Now that we have illustrated the Kullback-Leibler Divergence Expansion for three degrees
of freedom, we next provide a general derivation of the expansion to m degrees of freedom,
following similar procedures used in the entropy expansion in Killian et. al. 13 and in
Matsuda 12. Applying the GKSA approximation to ρ and ρ* inside the logarithm of 1,
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(12)

The superscript above KL denotes the order of the approximation to the Kullback-Leibler

Divergence. Again,  indicates all  combinations of nth-order marginal probability

density functions of ρ, and  indicates the order m-1 GKSA approximation of ρ. As
before, k denotes n-member sets of degrees of freedom comprising a particular combination
of these  order-n marginals. Converting the log of the product into a sum over logs and
taking the sum outside the integral,

(13)

We then integrate over the m - n dimensions that are independent of the log terms; these
each integrate to unity. Next, define dτn as the differential element of volume corresponding
to the n dimensions that remain (including the remaining portions of the Jacobian
determinant):

(14)

As the term in braces in just an n-th order joint K-L divergence associated with each subset
k of n degrees of freedom chosen from (x1,…,xm), which we denote as KLn,k, this simplifies
to:

(15)

To calculate the requisite integrals, we can partition m-dimensional continuous torsional
space into a discrete space of histogram bins. Each degree of freedom’s marginal p.d.f. is
discretized into histogram bin probabilities pi (with reference counts ), and joint
histograms for marginal p.d.f.’s involving pairs of degrees of freedom are given by bin

probabilities pij (with reference counts ). These probabilities each must sum to unity: Σipi
= 1, Σijpij = 1. This partitioning leads to the following expansion over contributions from
single degrees of freedom, pairs, triples, etc. for m degrees of freedom:

(16)

Note that the signs of the terms depend on the number of terms: this is not ideal for an
expansion. Thus, we need to introduce a term for the Kullback-Leibler Divergence that will
play the same role as the mutual information in the entropy expansion of Matsuda 12. We
call this the Mutual Divergence, M, between two degrees of freedom, with marginal p.d.f.’s
specified by pi and pj and joint histogram pij in one ensemble (the “target” ensemble), and
with marginal p.d.f.’s specified by pi and pj and joint histogram pij in another ensemble (the
“reference” ensemble):
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(17)

This can be equivalently expressed by combining terms into a single argument in the
logarithm:

(18)

Here, the sums over i, j, and i j refer to one- and two-dimensional p.d.f.’s from a given pair
of degrees of freedom. Alternatively, we can view this mutual divergence M2 as a cross-
information minus the mutual information of the target state:

(19)

where  indicates the mutual information between these p.d.f.’s. Mutual divergence
can be generalized to higher order to provide a mutual divergence between n degrees of
freedom:

(20)

Moreover, the mutual divergence satisfies a recursion relation analogous to Matsuda’s
recursion relation for higher-order mutual information 12:

(21)

Here, xn-1xn indicates the joint distribution of these n degrees of freedom, as in the third
term of Eq. 17. In terms of probability densities, the higher-order mutual divergence
between n degrees of freedom is given by:

(22)

where pn is the target distribution for these n degrees of freedom,  is the reference

distribution, and  and  are their Generalized Kirkwood Superposition
Approximations, which consist of up to order m − 1 probability densities. It is worth noting
that the argument of the log is inverted with respect to an analogous expression for the
mutual information since there is a sign change that comes from the fact that entropies are
based on − pln p terms while Kullback-Leibler Divergences are based on pln(p/p*) terms.
Applying this relation to the Kullback-Leibler Divergence, we obtain the desired expansion
over m degrees of freedom:
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(23)

Though this expansion and the previous expansion, Eq.16, agree when all terms are present,
in practice this expansion in Eq. 23 is far more useful as it provides a well-defined way to
truncate the expansion at a given complexity.

3.3 Local Kullback-Leibler Divergence
We are interested in population shifts caused by perturbations that reflect subtle changes in
structure and/or dynamics in particular protein residues. We can visualize these most readily
using the first-order terms from our expansion. Consider the terms in the Kullback-Leibler
Divergence arising from a particular degree of freedom. These we will denote the “local”
Kullback-Leibler Divergence and provide an information-theoretic, quantitative measure of
the extent to which the p.d.f. for a given degree of freedom deviates from the equilibrium
p.d.f. This quantifies changes in probability density with fewer assumptions and a better
connection to thermodynamics than the more familiar chi-squared statistic.

(24)

To calculate the local Kullback-Leibler Divergence for a single protein residue, we simply
sum the Kullback-Leibler Divergences between the reference and target ensemble for each
of the residue’s φ, ψ, and χ torsion angles:

(25)

While this expression is very similar to the well-known pln p expression for entropy, with
the non-uniform reference state  making this the relative entropy, it is thermodynamically
distinct—it is a measure of dissimilarity of two probability density functions, rather than the
disorder of a particular probability density function. While presently we focus on
applications of this first-order term, which has been used to compare Markov models of
conformational ensembles 1 from molecular dynamics simulations but has not been widely
applied on a per-residue level, the full derivation presented here establishes a systematic
approach to improve our method. At the per-residue level or at the groups-of-residues level,
we could improve our method by considering pairs of torsions within a residue or set of
residues, etc. Furthermore, application of our method at the pairs-of-residues level or at
higher order could identify changes in correlated motions, though these require substantially
more sampling than first-order terms 15. This could be a promising direction for future
research, but is beyond the scope of the present work. Here, however, we focus on first-
order terms, as these are most readily, rapidly, and robustly calculated, and the
computational cost scales linearly with system size.

3.4 Statistical corrections to the Kullback-Leibler Divergence
If the “target” ensemble is the same as the equilibrium ensemble, the Kullback-Leibler
Divergence will be zero. However, in practice, when applied to ensembles generated by
methods such as molecular dynamics, this is not often the case due to sample variability. In
order to improve the signal-to-noise ratio in our calculation of the Kullback-Leibler
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Divergence, and thereby distinguish meaningful differences between conformational
ensembles from artefactual population shifts due to sample variability, we calculate the K-L
divergence expected from sample variability in the “reference” ensemble and use it for a
significance test and to correct the calculated values. To generate a realistic measure of
sample variability, we use a statistical bootstrapping approach. We split the full reference
ensembles into nsims blocks (usually corresponding to clones of the same system with
different random number seeds, or large continuous blocks from long simulations), and take
half of the blocks at a time as a surrogate target ensemble and the complementary half as a
surrogate reference ensemble. We aggregate the counts for the torsions to construct
probability distributions and calculate the K-L divergence between all combinations of
surrogate distributions. Any non-zero average K-L divergence between these distributions is
a measure of average bias that we can later subtract from the total K-L divergence between
the full “reference” ensemble and the full “target” ensemble, when it is significant. The K-L
divergence under the null hypothesis that the average K-L divergence is no greater than that
expected from sample variability in the reference ensemble is then given by:

(26)

where S denotes subsamples and SC are their complements. To test for statistical
significance of the obseved Kullback-Leibler Divergence, we use the distribution of these
surrogate Kullback-Leibler Divergence values to obtain a p-value for the null hypothesis
that the average Kullback-Leibler Divergence is no greater than that expected from sample
variability in the reference ensemble. If this p-value for a particular torsion is less than the
significance level (in this case, set at a permissive α = 0.1), then the Kullback-Leibler
Divergence is set to zero; if not, then the average Kullback-Leibler Divergence between the
surrogate distributions described above is subtracted from the total, in a manner similar to
corrections to mutual information 16, 7:

(27)

3.5 Truncation of Kullback-Leibler Divergence
Given the expansion in Eq. 23, one may wonder why truncation at a particular order might
be appropriate, especially as the number of terms at each order increases combinatorially
before contracting towards the tail of the expansion. In the analogous configurational
entropy expansion 13, small molecule systems achieved remarkable agreement with
entropies from rigorous free energy calculations by only including first and second-order
terms in the expansion, with the highly-correlated cyclohexane requiring up to third-order
terms. We note that the pairwise mutual divergence between two degrees of freedom is less
than or equal to the sum of the corresponding first-order Kullback-Leibler Divergence terms.
Thus, for the mutual divergence to be significantly greater than zero, at least one of the
constituent degrees of freedom must be statistically significant. It is important to note that
higher-order terms in Eq. 23 capture only changes in distributions missed by lower-order
terms. For example, the mutual divergence captures population shifts in pairs of degrees of
freedom that are missed by the first-order Kullback-Leibler Divergence. The key parameter
governing the maximal order needed for convergence of the expansion is the maximum
number of coupled independent components or modes (i.e. effective dimensionality) in the
system. A recent study used a novel approach to partition molecular dynamics trajectories
into independent subspaces of coupled modes17, and found a block-like pattern where
groups of pairwise correlated modes had minimal couplings with other blocks of correlated
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modes in a 100 ns simulation of lysozyme. Specifically, there was a maximum of 6 modes
per block, with most blocks only containing a few modes. Thus, the maximum number of
coupled independent components in this study was six, so the Kullback-Leibler Divgence
expansion should only require terms up to sixth order. Even though the number of terms at
each order might increase, the sparsity of the matrix of mode couplings at second order
suggests that a lower fraction of higher-order terms would have significant values. Other
studies have also taken advantage of the sparsity of second-order couplings to more
efficiently diagonalize the Hamiltonian for the protein 18, 19. To obtain better convergence of
the Kullback-Leibler Divergence expansion, we could take a subset of the terms along a
minimal spanning tree (treating terms as nodes), as in the MIST approach 20. Importantly,
MIST avoids the combinatorial explosion in number of terms at higher orders. Practically,
higher-order mutual divergences will require exponentially more data points sampled to give
a robust estimate, as the volume of space increases exponentially with the number of degrees
of freedom. Currently, only calculations up to third order might be practical with
microseconds of simulation data 15. Neglecting high-order terms shouldn’t affect our
qualitative interpretation of the pattern of local, per-residue Kullback-Leibler Divergences
since there are only a small number of torsions per residue.

3.6 Jensen-Shannon Divergence
The Jensen-Shannon Divergence is a slight variation of the Kullback-Leibler Divergence,
and has the added benefit of treating both “reference” and “target” ensembles symmetrically,
albeit at a cost of possibly providing lower signal-to-noise due to averaging (see Eq. 28).
Furthermore, the Jensen-Shannon Divergence is related to thermodynamic length, an
asymptotic bound on energy dissipated in a finite-time transformation from one state to
another 21. Since the Kullback-Leibler Divergence expansion is general for any “reference”
distribution, we can take the new reference distribution to be merely the superposition of the
former “reference” distributions, and calculate the Jensen-Shannon divergence as the mean
of the Kullback-Leibler Divergences between either ensemble and this new reference
distribution:

(28)

To apply the same statistical test and filtering as above, we take the distribution of the
Jensen-Shannon Divergence under the null hypothesis as the average of the null hypothesis
distributions of the Jensen-Shannon Divergences within the separate “reference” and
“target” ensembles. We construct the null hypothesis distribution in this way because we
want the null hypothesis to only be a function of variation within the “reference” and
“target” ensembles, and not depend on their superposition, which comes into play in
computing the observed Jensen-Shannon Divergence between the ensembles in Eq. 28.

3.7 Molecular dynamics simulations
We illustrate the K-L method using examples of previously-published molecular dynamics
studies on human interleukin-27 and talin22 and new molecular dynamics trajectories on a
kinase, PDK1. These examples highlight the role of dynamics in protein function,
particularly allostery. For the new molecular dynamics simulations of PDK1, we prepared
the protein and ligand with Maestro’s Protein Preparation Wizard (Schrodinger, 2009), with
protonation states of histidine and Asn/Gln flips assigned by ProtAssign (Schrodinger, 2009)
in the preparation wizard. Each model was solvated in SPC water23 in a cubic simulation
box, and Na+ and Cl− ions were added to neutralize the system and then an additional 0.1 M
NaCl was added. The full simulation system was energy-minimized using Desmond24 in
two stages: (1) all protein and ligand atoms restrained with a force constant of 50.0 kcal/
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mol/Å−2, (2) no restraints. Minimizations were performed with no less than 10 steps of
Steepest Descent minimization followed by L-BFGS optimization after a gradient of 50.0
kcal mol−1 Å−1 is reached up to a total of 2,000 steps or a gradient of 50.0 kcal mol−1 Å−1 in
step 1 or 5.0 kcal mol−1 Å−1 in step 2. After full minimization of the system, an
equilibration was performed. First, the systems were run at constant temperature and volume
at a temperature of 10 K for 12 ps using the Berendsen thermostat25 with a relaxation time
of 0.1 ps, half-sized timesteps (see below), and all protein and ligand atoms restrained with a
force constant of 50.0 kcal/mol/Å−2, and velocities randomized every 1.0 ps. Subsequently,
molecular dynamics at constant temperature and pressure at 10K was performed using the
Berendsen thermostat and barostat 25, with all protein and ligand atoms restrained, time
constants of 0.1 ps and 50.0 ps for the thermostat and barostat respectively, and velocities
randomized every 1.0 ps. Then, molecular dynamics at the target temperature and pressure
of 300 K and 1 atm were performed using the Berendsen thermostat and barostat with all
protein and ligand atoms restrained for 12 ps using time constants of 0.1 ps and 50.0 ps for
the thermostat and barostat respectively, randomizing velocities every 1.0 ps, and finally for
another 24 ps without restraints and with time constants of 0.1 ps and 2.0 ps for the
thermostat and barostat respectively. Production runs of 10 ns were performed on each
system using the Martyna-Tobias-Klein integrator26 with a reference temperature of 300 K
and a reference pressure of 1 atm. Snapshots were output every 1.002 ps. The thermostat
used an equilibrium temperature of 300 K, a relaxation time of 1 ps, chain length of 2, and
update frequency of 2 steps for the system and for the barostat. The barostat featured a
relaxation time of 2 ps, a reference pressure of 1 atm, isotropic coupling, and a
compressibility of 4.5×10−5 bar−1. Both the equilibration and production molecular
dynamics simulations were performed with all bonds involving hydrogens constrained, a 2
fs time step for the bonded and short-range nonbonded interactions, and updating of long-
range nonbonded interactions every 6 fs using the RESPA multiple time step approach27.
For the first NVT equilibration step, 1 fs and 3 fs timesteps were used, respectively. Short-
range Coulombic and van der Waals nonbonded interactions were cutoff at 9.0, and long-
range electrostatics were computed using the smooth particle mesh Ewald method. Pairlists
were constructed using a distance of 10.0 Å and a migration interval of 12 fs.

4 Results
4.1 An allosteric small molecule activator of PDK1

PDK1 is a member of the AGC family of kinases, which includes protein kinases A (PKA),
B (AKT), and C (multiple isozymes). In recent years, small molecules have been discovered
that bind outside the active site and promote or inhibit activity. Precisely how these small
moleules alter PDK1’s activity is not known. The mechanism of one previously-reported
noncovalent small molecule activator, PS48, was studied using hydrogen-deuterium
exchange mass spectrometry experiments to determine which peptide regions of the kinase
have amide protons that are protected from exchange with solvent deuterons28. In these
experiments, amide protons both near the binding site and distant from the binding site (Fig.
1) showed protection from solvent exchange, indicating more stable backbone hydrogen
bonds and hence reduced flexibility. Interestingly, some of these protected regions include
the DFG-loop (cyan) and activation loop (teal), whose proper positioning is essential for
activity. Mutation of Thr226, adjacent to the DFG sequence, to alanine abolishes the ability
of PS48 to activate the kinase. We used our Kullback-Leibler Divergence method to
investigate the allosteric activation mechanism. We performed a series of 10 ns molecular
dynamics simulations on PDK1 with and without PS48 bound (PDB: 3HRF), saving the
conformations every 1 ps. We then calculated the first-order Kullback-Leibler Divergence
between apo and PS48-bound conformational ensembles from the MD simulations. The
results indicate that PS48 binding caused significant population shifts in the torsion angles
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of residues around the compound’s binding site: the αC-helix, the beta strands 145–149 and
154–159, and the αB-helix. Furthermore, there were significant population shifts in torsion
angle populations distant from the PS48 binding site, for example in the activation loop, the
F-helix, and the “G” in the DFG-loop,. Though the timescale of the simulations is short
relative to the timescale probed by the hydrogen-deuterium exchange experiments, the local
Kullback-Leibler Divergence values and hydrogen-deuterium exchange results show
compound-induced changes in the regions protected from H/D exchange. The major
discrepancy is that the experiments did not show substantial protection for C-lobe residues
outsdide of the DFG motif and activation loop (possibly since backbone amides here are
largely protected within stable alpha-helices), whereas in the simulations a number of these
residues experienced significant population shifts upon ligand binding. Nonetheless, these
results serve as a powerful demonstration of how our method can identify potential allosteric
effects of ligand binding or mutation.

4.2 Allosteric inhibition by lysine acetylation in mitochondrial 3-hydroxy-3-methylglutaryl
CoA synthase 2

Mitochondrial 3-hydroxy-3-methylglutaryl CoA synthase 2 (HMGCS2) is the rate-limiting
enzyme in the synthesis of β-hydroxybutyrate and is normally acetylated at Lys310, Lys447,
and Lys473, which inhibit its activity29. Both Lys447 and Lys473 are distant from the
acetyl-CoA bound at the active site (Fig. 2, gray spheres). Thus, the effects of these
acetylations at Lys447 and Lys443 are allosteric in nature since they inhibit activity over a
distance. For each construct, wildtype and mutant, we used five molecular simulations of
11–20 ns each (started with different random number seeds) on HMGCS2 in the
deacetylated (activated) form and with acetylations at various lysine residues. These MD
simulations showed that acetylation of specific lysines produced significant conformational
and dynamical changes in HMGCS230. As negative controls, two lysine residues whose
acetylations do not inhibit activity were studied. In contrast to the other lysines, these did not
show similar marked changes in structure and dynamics at the active site. The local
Kullback-Leibler Divergence results showed a marked difference between the control lysine
acetylations and those that inhibited enzyme activity (acetylations at Lys447 and Lys473)
(Fig. 2). The control lysine acetylations did not show the pronounced divergences seen with
the natural inhibitory lysine acetylations at positions 447 and 473. Importantly, acetylation
at Lys447 or Lys443 causes significant population shifts in the catalytic residues: in the loop
containing the active site cysteine (Cys166), and in His301. Furthermore, these acetylations
both cause substantial population shifts in a turn (239–241) near the acetyl-CoA tail, in
Lys83 at the other end of the acetyl-CoA near the nucleotide ring, and in a helix-turn
containing residues 380–385, which buttress the loop containing the active site cysteine
(residues 163–168). In summary, the local Kullback-Leibler Divergence highlighted
residues showing significant perturbations upon acetylation at Lys residues distant from the
active site.

4.3 Communication between small molecule binding sites in in interleukin-2
Interleukin-2 (IL-2) is a small cytokine that has been studied extensively as a model system
for small molecules inhibiting protein-protein interactions. Binding of ligand to one site in
IL-2 facilitates binding of a small molecule fragment to a cryptic, transient pocket, which is
gated by a loop on the opposite face from the four-helix bundle32. X-ray structures were
unable to show how binding to one side affected binding at the other side, making it an
interesting model system for studying small-molecule cooperativity; in prior work, we
identified a putative allosteric network of residues coupling the binding sites using our
MutInf method7. This putative allosteric network consisted of residues from the “bottom” of
IL-2 in the orientation shown to the top (where IL-2Rα binds) along a “greasy core”
consisting of Leu85, Phe78, Leu80, Tyr31, Met39, and Phe42, and a “polar network”

McClendon et al. Page 12

J Chem Theory Comput. Author manuscript; available in PMC 2013 July 12.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text



consisting of Arg81, Gln74, Lys35, and Arg38 (which is then proximal to Met39 and Phe42
in the “greasy core”). We hypothesized that the Kullback-Leibler Divergence analysis would
show significant population shifts in torsion angle distributions of residues implicated in the
allosteric network by our previous mutual information analysis. We calculated the local,
residue by-residue Kullback-Leibler Divergence between apo (PDB: 1M47) and ligand-
bound conformational ensembles from five 10-ns molecular dynamics simulations (Fig. 3).
Ligand-bound conformational ensembles analyzed here include a micromolar IL-2Rα-
competitive inhibitor (PDB: 1M48), a nanomolar IL-2Rα-competitive inhibitor (PDB:
1PY2), and a weak fragment that only would bind in the presence of the micromolar
inhibitor at the IL-2Rα-competitive site; cooperative binding of this fragment with the
nanomolar inhibitor was not tested. The smaller inhibitor (left) but not the larger one
(center) shows a substantial population shift on the helix-turn-helix at the fragment’s
binding site. Furthermore, the allosteric fragment (right) gives population shifts not only at
its binding site but also in the helix containing hotspot residue Phe42 behind the IL-2Rα site
ligands, as would be expected from thermodynamic linkage—indicating that the sampling
was sufficient to observe an allosteric effect. As can be seen in Fig. 3, population shifts are
seen along this structurally-contiguous network of residues upon binding of ligand at either
site. In particular, Tyr31 seems to be an important mediator of allostery, as it is highlighted
in both the left and right panels, whose respective ligands bind with positive cooperativity.
Although this tyrosine does not directly contact the IL-2Rα-competitive inhibitor, the
methionine in cyan located above it does contact the IL-2Rα-competitive inhibitor, and also
contacts the allosteric fragment in the simulations. There are a number of polar residues
proximal to Tyr31 that also show population shifts upon binding of allosteric fragment but
that do contact the competitive inhibitor. Comparing these results to our previous study7, we
find that all but two of the residues (all but Gln74 and Phe78) that were thought to be
implicated in the putative allosteric network linking compound binding sites in our previous
study showed statistically significant population shifts upon binding either an IL-2Rα-
competitive inhibitor or an allosteric small-molecule fragment, and more specifically 5/6
“greasy core” residues and 3/5 “polar core” residues had Kullback-Leibler Divergence
values in the top 25% of all residues’ divergence values. We also wondered whether our
Kullback-Leibler Divergence values would highlight regions showing significant
perturbations in experiments. In the case of IL-2, NMR chemical shift perturbations were
available for the micromolar IL-2Rα-competitive inhibitor33, so we wondered whether
regions of IL-2 showing chemical shift perturbations would also show significant Kullback-
Leibler Divergence values. Such a comparison is complicated by the fact that the ligand
itself, and especially its aromatic end that digs into a small pocket near a hotspot residue
Phe42, will cause chemical shift perturbations in the protein residues apart from causing any
shift in the protein dihedral distributions due to electronic effects and ring current effects
involving aromatic residues. Nonetheless, we found in Fig. 4 that most of the regions
highlighted by the NMR chemical shift perturbations also showed significant Kullback-
Leibler Divergences, with the notable exceptions being large Kullback-Leibler Divergence
values in residues 4-5 and 97-102 where no significant NMR chemical shift perturbations
were observed, and in residues 97-116 where the two signals do not overlap well. While we
do not expect Kullback-Leibler Divergences to correlate with NMR chemical shift
perturbations, it is interesting that these different and complementary measures seem to be
picking up on regions distant from the active site that show perturbation upon ligand
binding.

4.4 pH Regulation of Talin
Talin is an integrin-associated focal adhesion protein that binds actin with lower affinity at
high pH and higher affinity at low pH. To investigate the mechanism by which pH change
alters talin’s structure, dynamics, and actin-binding ability, constant-pH molecular dynamics
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simulations of the I/LWEQ domain of talin1 without the C-terminal dimerization domain
(PDB 2JSW) were performed at pH 8.0 and pH 6.0 for 10 ns22. A histidine and nearby
acidic residues with upshifted predicted pKa values were hypothesized to constitute the pH
sensor, and their protonation states were sampled during the constant-pH simulation. To test
the importance of His2418, it was mutated to Phe. In NMR pH titrations, this mutant
showed altered chemical shift perturbations, relative to wild type, and showed decreased F-
actin binding in vitro and altered focal adhesion turnover in migrating cells. In this work, we
apply the local Kullback-Leibler Divergence method to compare the conformational
ensembles at these two different pH values for both wildtype and H2418F talin, using the
pH 8.0 as the reference ensemble. We also wanted to compare the Kullback-Leibler
Divergence and Jensen-Shannon Divergence values for this case, since our choice of
reference state is somewhat arbitrary, and since the Jensen-Shannon Divergence is more
robust to non-overlap of the dihedral distributions, at a cost of being less sensitive due to the
reference state being an average of the two ensembles. Since the H2418F mutant showed
decreased F-actin binding at lower pH, we wondered whether this mutant would show less
substantial population shifts at the actin binding site relative to wildtype talin. We found
(Fig. 5) that pH change caused substantial population shifts distant from the pH sensor in
both cases, but that wildtype and H2418F talin in fact showed different patterns of
population shifts in these actin binding site residues. The wildtype typically showed larger
population shifts than the mutant in residues in the actin-binding site (boxed in red). The
bottom of helices 1 and 3 in the wildtype show substantial local Kullback-Leibler
Divergences; in the NMR titration experiments22, both these regions showed either chemical
shift changes or line broadening. Given the population shifts in the putative pH sensor and
actin binding site upon pH change in wildtype and H2418F talin, we wondered how
protonation state changes in the pH sensor are propagated to the actin binding site. We
suspect that a combination of correlated motions of charged residues and subtle rigid-body
motions of the helices are responsible for coupling the pH sensor to the actin binding site.
We observed subtle yet significant population shifts in the helices connecting the sites,
which are qualitatively consistent with NMR chemical shift perturbations (Fig. 6), which
generally did not show large chemical shift perturbations in these residues, except in amides
proximal to the pH sensor. Both the Kullback-Leibler Divergence and Jensen-Shannon
Divergence highlighted regions showing either chemical shift perturbations or line
broadening in the titration, except proximal to the titrating His2418, where chemical shift
perturbations would manifest direct electrostatic effects and not necessarily reflect
substantial changes in the dihedral distributions.

5 Discussion
We have developed a novel approach to comparing conformational ensembles that is
grounded in thermodynamics, information theory, and statistics. We use the Kullback-
Leibler Divergence to quantify changes in torsion angle probability distributions, which
reflect biologically-relevant processes such as side chain rotamer flips, changes in local
secondary structure, etc. Inspired by previous work, we developed the Kullback-Leibler
Divergence expansion, which provides an approximation the Kullback-Leibler Divergence
of whole molecules (proteins in this work) in terms of marginal probability density functions
involving far fewer degrees of freedom. In this work, we have found that even the first-order
terms can give considerable qualitative insight into which residues are most affected by
perturbations such as ligand binding or pH change (i.e. proton binding). The expansion
presented here to approximate the Kullback-Leibler Divergence for a macro-molecule can
include couplings beyond the pairwise level. In contrast, an exact expression for the
Kullback-Leibler Divergence at second order for a harmonic system was previously
presented by Ming and Wall10. While Ming and Wall’s exact second-order method was
based on a normal mode model, the present approach leverages data from molecular
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dynamics simulations that sample the free energy landscape and then account for
anharmonicities in the analysis through a distribution-free measure of changes to probability
densities. While the method presented here is approximate rather than exact, the use of
molecular dynamics simulations provides more realistic dynamics that might reveal linkages
between sites separated by long distances and through mechanisms other than vibrational
couplings through semi-rigid elements, which normal mode models can often detect. In the
initial applications considered here, we see evidence for allosteric communication
propagating through helices, acting as semi-rigid elements. In these cases, the
conformational ensembles of residues on opposite ends of the helix (or sheet) are perturbed
by the same ligand or mutation, but the residues in the semi-rigid element can be minimally
perturbed. We also observe many significant divergences in surface polar residues; this
suggests that these residues may play a role in coupling binding at one site to a change in
structure and/or dynamics at another site. As these surface polar side-chains are often not
part of evolutionarily-conserved networks 34, their ability to propagate these kinds of
perturbations may lie in the sum effects of multiple residues working in a parallel fashion.
We speculate that, in such cases, the specific amino acid identity is less important than their
physical properties, such as holding a charge or strong dipole that can reorient with the help
of a flexible linker. A similar role for correlated protein side chain motions in mediating
long-range couplings was suggested by DuBay and Geissler 35. There are several
algorithmic improvements that could be made to our approach. Multiple calculations at
different histogram bin sizes could be used, and an optimal histogram size chosen for each
degree of freedom; such an approach has been shown to lead to more accurate entropy
calculations 36. A k-Nearest Neighbor (KNN) approach could also be used to calculate the
Kullback-Leibler Divergence37. Our residue-level analysis of the local Kullback-Leibler
Divergence could be augmented by including second-order terms (i.e., the mutual
divergence) within residues, which could benefit from adaptive partitioning, as in our
previous work on mutual information 7.
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6 Appendix

6.1 Robust Histogram Estimate of Kullback-Leibler Divergence using Renyi
Generalized divergence

To obtain a finite-sample size correction to the Kullback-Leibler Divergence, we adapt the
derivation presented by Grassberger38. Though this was not used in the applications shown
here, it is provided as an option in the program, and is provided here for completeness and
for possible inclusion in other code packages. We consider the Kullback-Leibler Divergence
as a limit of the Renyi Generalized Divergence,

(29)

where
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(30)

For finite sample sizes there will be some uncertainty in the pi. Considering the actual
histogram counts, we write:

(31)

To obtain < n >α, we assume a Poisson distribution for ni in successive realizations (i.e.
assuming we are using a fine enough discretization such that pi ⪡ 1). For a positive integer
α, we would then have

(32)

However, in the limit as α approaches 1, we need a continuous analog using Γ functions.
Grass-berger found an asymptotic expansion for < ni >α and showed that two terms gave
numerically robust results for Shannon entropies.

(33)

This same approximation is used in our previously-published MutInf method7. Then, we use
this expression for < n > and evaluate the Renyi Generalized divergence in the α→ 1limit to
give us the Kullback-Leibler Divergence. Invoking L’Hopital’s Rule, we obtain:

(34)

(35)

However, this expression is not numerically robust in practice, so we truncate the expression
for < n >α at the first term:

(36)

which then provides a more robust estimate for Dα (P||Q):

(37)

Using a series approximation of the digamma function, , it can be readily
seen that the Kullback-Leibler Divergence in Eq. 23 is recovered along with a correction
term that decreases in size as histogram counts increase.
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Figure 1. Kullback-Leibler Divergence highlights PDK1 regions that show protection in
hydrogen-deuterium exchange experiments upon addition of an allosteric small molecule
activator
(Left) A small molecule activator of PDK1 was previously shown to protect various peptide
regions (each shown in a different color) from hydrogen-deuterium exchange. Note that the
resolution of the HDX experiments is at the peptide-level, and reflect both fast and slow
motions, up to the minute time-scale. (Right) Local Kullback-Leibler Divergence values
between the apo and allosteric activator-bound ensembles are mapped onto the structure
using PyMOL’s “β-factor putty” preset. White indicates statistically insignificant
divergence, and significant divergence values increase from blue to red. Most of the regions
showing protection upon ligand binding also show statistically significant K-L divergence
values.
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Figure 2. Kullback-Leibler Divergences show position-specific effects of lysine acetylation in
HMGCS2
Local Kullback-Leibler Divergences between deacetylated and acetylated HMGCS2
conformational ensembles are given for different lysine acetylations (all are on the same
scale). The lysine acetylated in each case is shown in purple spheres. (Top) Acetylation of
Lys306 or Lys437 does not yield significant changes in structure and dynamics near the
acetyl-CoA binding site (gray spheres) as assessed by the local Kullback-Leibler
Divergence. (Bottom) In contrast to these negative controls, acetylation at lysine 447 or 443
causes substantial divergences proximal to the active site and the tail of the acetyl-CoA, and
some background of divergences across the whole protein.
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Figure 3. Kullback-Leibler Divergences between apo and ligand-bound IL-2 ensembles show
differential allosteric effects
The local Kullback-Leibler Divergence between the apo IL-2 ensemble and various ligand-
bound ensembles was calculated and mapped onto the apo structure. All panels are on the
same scale, and ligands are superimposed for reference. These two binding sites were
previously shown to be coupled through significant correlated torsional motions. 7 (Left)
IL-2 with a micromolar ligand at the IL-2Rα site. (Center) IL-2 with an optimized
nanomolar inhibitor at the IL-2Rα site featuring receptor-mimicking electrostatics31. (Right)
IL-2 with an allosteric small molecule fragment at a cryptic site.
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Figure 4. Kullback-Leibler Divergences highlight most regions showing NMR chemical shift
perturbations in IL-2
Kullback-Leibler Divergences (blue) and NMR chemical shift perturbations over 5ppm (red)
are shown for each IL-2 residue for binding of the micromolar IL-2Rα-competitive
inhibitor. Though quantitatively there is no significant residue-by-residue correlation
between the magnitudes of these different measures of perturbation to the protein, we note
that the two signals often highlight similar regions.
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Figure 5. Wildtype and pH-sensor mutant talin show different population shifts upon pH change
Kullback-Leibler Divergences (top) and Jensen-Shannon Divergences (bottom) between the
pH 8.0 ensemble and the pH 6.0 ensemble for Talin are shown for wildtype (left) and
H2148F Talin (right). The actin-binding site region22 is shown with a red box. These
divergences highlight the region proximal to the pH sensor (at the top of the structure, with
His2418 labeled) and the actin-binding site.
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Figure 6. Kullback-Leibler Divergences and Jensen-Shannon Divergences between the pH 8.0
ensemble and the pH 6.0 ensemble highlight regions distant from the protonation sensor that
show substantial NMR chemical shift perturbations or lineshape broadening
(Top) Kullback-Leibler Divergence values and (Bottom) Jensen-Shannon Divergence values
for Talin are compared to NMR chemical shift perturbations and line broadening in a pH
titration. Amides whose normalized peak intensity ratio IpH8/IpH6 were less than 51% are
indicated with a purple bar below the x-axis. Chemical shift perturbations in ppm are given
as abs(δω15N + 0.2δω 1 H). Generally, both divergence measures highlight regions showing
substantial chemical shift pertrubations or line broadening, with the notable exception of the
region proximal to the titrating His2418.
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