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Abstract
Prediction of protein structures from sequences is a fundamental problem in computational
biology. Algorithms that attempt to predict a structure from sequence primarily use two sources of
information. The first source is physical in nature: proteins fold into their lowest energy state.
Given an energy function that describes the interactions governing folding, a method for
constructing models of protein structures, and the amino acid sequence of a protein of interest, the
structure prediction problem becomes a search for the lowest energy structure. Evolution provides
an orthogonal source of information: proteins of similar sequences have similar structure, and
therefore proteins of known structure can guide modeling. The relatively successful Rosetta
approach takes advantage of the first, but not the second source of information during model
optimization. Following the classic work by Andrej Sali and colleagues, we develop a
probabilistic approach to derive spatial restraints from proteins of known structure using advances
in alignment technology and the growth in the number of structures in the Protein Data Bank.
These restraints define a region of conformational space that is high-probability, given the
template information, and we incorporate them into Rosetta’s comparative modeling protocol. The
combined approach performs considerably better on a benchmark based on previous CASP
experiments. Incorporating evolutionary information into Rosetta is analogous to incorporating
sparse experimental data: in both cases, the additional information eliminates large regions of
conformational space and increases the probability that energy-based refinement will hone in on
the deep energy minimum at the native state.

Introduction
There are two sources of information available for prediction of protein structure in the
absence of direct experimental data. The first source is based on physical chemistry, in
particular, our understanding of the energetics of interactions within macromolecules.
Folded protein structures are likely to be at global-free energy minimum, and, given a
sufficiently accurate description of the energetics, structures can be accurately predicted by
searching for very low energy conformations of the polypeptide chain. The second source is
evolutionary: evolutionarily related proteins nearly always have similar structures,1 and,
with the very large number of protein structures already solved, there is likely to be
information from structures of homologous proteins that can be used to predict the structure
of a protein of interest.2 The Rosetta program developed in our group primarily uses the first
source of information, and structure prediction is essentially a search for the lowest energy
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structure in a physically realistic all-atom force field. In contrast, the Modeller program,
developed by Andrej Sali and coworkers, uses primarily the second source of information;
structure prediction with Modeller focuses on the satisfaction of spatial restraints derived
from homologous protein structures.3 In this work, we combine the strengths of the two
approaches by incorporating spatial restraints derived from homologues into the Rosetta
high-resolution modeling protocol.

Methods
Structural databases

A nonredundant database of 7786 proteins solved by X-ray crystallography was selected
using the PISCES server.4 Alignments between all pairs of proteins were created using
HHSearch,5 and alignments with statistically insignificant similarities (HHSearch e-value
>1) were discarded. HHSearch was configured to compare predicted secondary structure of
the query sequence against a database of sequences with DSSP-assigned secondary
structure. All alignment pairs with significant e-values were considered, independent of
structural similarity between pairs in order to simulate a situation in which structural
templates are found for a protein of unknown structure. We used these sequence-based
alignments between proteins of known structure to estimate parameters for inferring spatial
restraints. A set of 250 proteins was excluded in order to benchmark different probabilistic
models for generating restraints (see Fig. 2 and Model Calibration on an Independent Test
Set). Any proteins involved in the CASP7 experiment6 were discarded from both the
training and testing sets, so that these proteins could be used to benchmark structural
prediction using the spatial restraints.

Distance restraints from a single template
For deriving distance restraints, pairs of amino acids aligned by HHSearch5 were examined.
HHSearch aligns protein sequences with protein structures; therefore, the alignments of
pairs of proteins are not symmetric. Following standard procedure, we refer to the protein
used to search the database as the query and the structures found in the database search as
templates. We computed statistics over all pairs of aligned residues with Cα atoms less than
10 Å apart in the template structure that was separated by more than 10 residues along the
query sequence. For each of these pairs, the magnitude of the difference in distances
between the C atoms at the two positions in the aligned structures was computed (|R1ij –
R2i’j’| where R1ij is the distance between atoms i and j in structure 1, and R2i’j’ is the
distance between the equivalent atoms i’ and j’ in structure 2). These distance deviations
were placed in a bin based on the sequence similarity and structural context of the two
residues. The bins are defined by the global alignment quality (G—the negative log of the
HHSearch e-value), the residue-pair alignment quality (L—the BLOSUM627 score for
aligned residue pair), the average distance to an alignment gap (D—the distance in number
of residues from the aligned pair to the nearest gap in the sequence alignment), and the
burial in the template structure (B—number of Cβ atoms within 8 Å of the template residue
Cβ). The value for G is a constant for all residues from a given alignment, and values for L,
D, and B are averaged over the pairs of aligned residues, as there are two residues involved
in each distance calculation. These features are similar to the features used in the original
Modeller paper,3 which were sequence identity, average per-residue solvent accessibility,
local sequence similarity, and distance from an alignment gap. In our approach, we have
replaced solvent accessibility with burial and sequence identity with HHSearch e-value, in
addition to drastically increasing the database size. The dependence of the distance
deviations on each variable is shown in Figure 1.
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Following the tabulation of the distance deviations, pseudocounts were added to each bin in
order to reduce artifacts arising from small counts:

(1)

P(Δr | G, L, B, D) is the distribution of deviations between template and native Cα–Cα
distances given particular values of G, L, B, and D. F(Δr) is the observed distribution of
distance deviations across all values of G, L, B, and D. N is the total number of observations
in the bin, Nobs(Δr | G, L, B, D) is the number of observations with distance deviation Δr,
N(G, L, B, D) is the total number of observations with the given values of G, L, B, and D,
and C is the number of pseudocounts. Zero-mean Gaussians were fitted to the smoothed
distributions in each bin. The 10,000 fitted standard deviations, one for each bin, are the
parameters of our model.

Given this model, the prediction of restraints from a single alignment to a single input
template is straightforward:

1. Iterate over all pairs of query residues that are separated by more than 10 residues
along the linear sequence.

2. If a residue pair is unaligned to the template structure, or the distance between the
equivalent atoms in the template structure is >10 Å, assign to these atoms a
restraint given by the expected distance distribution given only sequence separation
in the linear chain.

3. Otherwise, calculate the values of four predictor variables based on the alignment
and the template structure. Assign a Gaussian restraint to these residues with mean
given by the distance between the equivalent atoms in the template structure and
standard deviation from the table based on the values of G, L, B, and D.

Combining predictions from multiple templates
More accurate distance predictions can potentially be obtained if the sequence of interest can
be aligned to more than one template. The procedure for deriving distance restraints can be
extended to incorporate predictions for multiple templates by combining predictions on the
same pair of atoms using a weighted mixture of Gaussians. The most straightforward
approach would be to weight the contributions equally. Alternatively, predictions can be
weighted based on the probability that the alignment is locally correct:

(2)

The second term is the single sequence model from the previous section. The first term is the
confidence in the alignment i compared to all other alignments. As in the Modeller
approach, we estimate the first term in (2) using:

(3)

where ri is the distance between the equivalent atoms in template i, and σi is the standard
deviation associated with that distance. The parameter k determines the extent to which
predictions with lower standard deviations dominate over those with higher standard
deviations, with a value of k = 0 giving all predictions equal weight. Experiments were
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performed on an independent set of data to find a value of k that maximized the probability
of observing the data (see Model Calibration on an Independent Test Set). This approach to
combining information from multiple templates is similar to the Modeller approach,3 but the
weights here are based on all predictor variables rather than just the local sequence
similarity, and the parameter k can be set using the independent data.

The restraint potential for a pair of positions, given a set of aligned templates, is then a
mixture of Gaussians with weights dependent on the standard deviation:

(4)

In the equation above, ri is the distance between the equivalent atoms in template i, and sdi is
the standard deviation associated with that distance. As the denominator of the Gaussian
term is constant with respect to ri, it can be ignored or precomputed to speed up
computation.

Model calibration on an independent test set
The models as currently defined have several free parameters, including the choice of which
predictor variables to use in deriving restraint potentials and how to combine predictions
from multiple templates. Before populating the histograms with data from the training set, a
random subset of 250 proteins was set aside. Alignments of the proteins in this independent
set to all proteins in the training set were generated. A random subset of 50,000 residue pairs
for which at least one template made a distance prediction was examined. Models were
evaluated using the log-likelihood of observing the independent data given each model
(Figures 2 and 3). This quantity avoids rounding error associated with multiplying many
small numbers, and will approach 0 as the predictions approach perfection.

Comparative modeling with spatial restraints
In previous work,8 our group previously described an approach to homology modeling that
uses an input protein sequence, a template protein structure, and an alignment relating the
two. This approach has the following steps:

1. Generation of incomplete models by copying coordinates over aligned regions.

2. Completion of the models by building unaligned regions using the Rosetta
fragment-based loop-modeling protocol.9 This step uses a centroid representation
of the protein side chains and explicit backbone atoms, a low-resolution energy
function, fragments from known protein structures, and kinematics that allow
rebuilding of the unaligned regions without perturbing coordinates in the aligned
regions.

3. Refinement of the Rosetta full-atom energy function using discrete optimization of
side-chain rotamers, small perturbations to the local backbone followed by
gradient-based minimization, and a ramping repulsive function to allow atomic
clashes to be resolved smoothly.10

4. Iterative rebuilds of randomly selected sections of the chain, followed by
refinement. Model selection at each stage alternates between diversification and
intensification.
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Here, a single iteration (steps 1–3) is carried out for computational efficiency. The restraints
are combined with the Rosetta energy function during optimization by adding to the
calculated energy:

(5)

The subscript pair i,j denotes a pair of residues i and j, di,j is the distance between the Cα
atoms of residues i and j, and ri,j is the restraint operating on those atoms. The probability of
this distance given the restraint is estimated using the Gaussian mixture from Eq. (4). A
weight on the restraint term of 0.1 gives the restraints approximately half the contribution of
the Rosetta full-atom energy. Restraints with mean distance > 10 Å were discarded in order
to speed up evaluation of the restraint score. The restraint potential was also shifted
downward by subtracting the value of the potential at 10 Å in order to make the scores
negative for structures that agree well with the restraints.

To test the modified version of the Rosetta rebuild and refine protocol that incorporates
restraints, a set of 20 proteins from the CASP7 experiment was used as a test set; these were
excluded from both the original training set and the independent test set. Alignments were
generated to template structures using HHSearch, considering a maximum of 10 alignments
with e-values less than 1 and used the approach outlined above to derive distance restraints.
We tested protocols that incorporated restraints into the rebuilding and model refinement
portions of the protocol, and, as a control, performed the same procedure without restraints.
An ensemble of 10,000 models was generated for each protocol.

Results
Modeller-style distance restraints were derived using the procedure outlined earlier, which
takes advantage of several developments since the approach was first described.3 Two
modifications to the original approach take advantage of the large increase in the number of
known structures, which results in a massive increase in the number of residue pairs in
homologous proteins that can be structurally aligned.2, 11 First, a fraction of the aligned
pairs was held out as an independent test set. This data was used to make choices on model
structure and parameters based on the log-probability of observing the independent test data.
Second, data-intensive nearest neighbor methods were used to obtain the residue distance
probability distributions, given a set of observables rather than parametric models, which
assume a specific functional form unlikely to hold exactly throughout the range of possible
observable values. Finally, the powerful HHSearch remote homologue detection software
was used to generate alignments between proteins with more distant evolutionary
relationships compared to the alignments used in the original Modeller paper.3, 5, 6

As described in Methods, the differences in distances for over 150 million pairs of aligned
residues were classified into one of 104 bins based on the global sequence similarity, burial,
local sequence similarity, and sequence distance to the nearest gap, and standard deviations
were computed for each bin. The original Modeller approach used a parametric fit to such a
table to extract relationships from sparse training data, while we use a nonparametric
approach to estimating deviations that should in general fit the data better. The model with
104 bins is difficult to visualize; instead the influence of each variable on the expected
deviation from the template structure is illustrated in Figure 1, which shows the expected
deviation from templates, given the value of a single predictor feature. The lines within each
panel show the extent to which knowledge of individual variables influences the expected
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divergence between query and template structures. For example, the most confident
predictions were from those with very low e-values (Fig. 1, panel A).

To measure the effectiveness of the different statistical models for estimating restraints,
given the input alignment data, the likelihood of an independent test set of data was
calculated. In this work, likelihood denotes the probability of observing a set of data under a
given statistical model. To avoid rounding error associated with multiplying many small
numbers, the sum of the negative log-probabilities for each distance was tabulated. A
schematic of this approach is shown in Figure 2(A)—the likelihood is maximized when
sharply peaked distributions are assigned to predictions with small distance deviations, and
wide distributions are assigned to predictions with large distance deviations. The log-
likelihood of the independent dataset for models conditioned on different features is shown
in Figure 2(B). The leftmost bar shows the likelihood of the native distances under a
Gaussian model conditioned only on sequence separation in the polypeptide chain. The next
four bars show the log-likelihood associated with the single-variable predictors (shown in
Fig. 1). Each single variable predictor improves on the first model by a wide margin, with
the HHSearch e-value being the most informative feature and burial being the least
informative. The next three panels show the performance of predictors conditioned on two,
three, and four features, each of which improves the probability of sampling the independent
test set. The likelihood test suggests that the variables are all informative individually, and
the most effective model uses all four variables.

Next, we investigated different ways of combining information from multiple templates.
Different models for combining information from multiple templates were compared using
the likelihood of the independent test data under each model. One free parameter in the
construction of these models is the weight on the Gaussian mixture term (Methods section),
and different approaches for setting this parameter were investigated (Fig. 2, Methods). A
model in which predictions were weighted equally was compared to models in which the
weight was a function of the standard deviation. The number of templates used in prediction
was varied along with the degree to which high-confidence (low-standard deviation)
predictions dominated over low-confidence (high-standard deviation) predictions. The
importance of preferentially up-weighting high-confidence predictions from different
templates is illustrated in Figure 3 (panel A). For each aligned residue pair in the test set, the
aligned templates were sorted based on their HHSearch e-values, and the top scoring
alignments (x-axis) were selected for restraint derivation. If all alignments are considered as
independent and equally likely (hatched bars), the joint probability of observing the test set
becomes worse with increasing numbers of templates as poorer alignments contribute more
and more noise. However, if the feature-dependent weighting described in Methods section
is used to weight the contributions from different alignments (open bars), the likelihood of
the test data improves as the number of alignments is increased. Beyond 10 alignments,
there is little further improvement as the relative contribution from the poorer templates
becomes very small.

Use of the same set of features to determine both the weighting of the component Gaussians
and their variances may appear to count these features twice. However, the two
contributions are distinct: the weighting reflects the probability that a particular alignment is
correct at the aligned pair of positions, while the variance reflects the breadth of the
distributions expected for the residue pair if that alignment is correct. On the other hand, the
mutual exclusivity assumption is obviously false, and weighting methods that take into
account relatedness between template structures could perhaps yield improved predictions.

The importance of basing both the shape of the individual distributions and their overall
weights on the available indicators of local alignment accuracy is further demonstrated in
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Figure 3 (panel B). The likelihood of a model with fixed-width Gaussians and no weighting
of the component Gaussians is clearly worse than a model with variable-width Gaussians,
which is in turn worse than a model with both variable-width Gaussians and weighting. For
comparison, Figure 3 (panel B) also shows the results with a perfect classifier model that re-
weights the template-inferred Gaussians and the prior Gaussian in order to maximize the
probability of sampling the native. The perfect knowledge model describes the query
distance using a Gaussian with mean set to the query distance and a standard deviation of
1.0. The perfect knowledge and perfect classifier models give upper bounds for the
performance of any inferential method in the benchmark. The two models are distinct,
because some parts of proteins are never aligned to any templates, and the difference in
likelihood for two models illustrates the dependence of our models on the completeness and
accuracy of the input alignments to template structures.

Rosetta modeling and refinement using distance restraints
The incorporation of the restraint potential into Rosetta is straightforward and outlined in
Methods. A set of 20 proteins from the CASP7 experiment was selected, and alignments to
templates were made to pre-CASP7 databases using HHSearch.5, 6 Restraints were derived
from these alignments using the multitemplate Gaussian mixture model outlined in Methods
section. For each protein, 10,000 models were made using the Rosetta rebuild and refine
protocol8, 9 both with and without restraints. The GDTMM distribution of models
constructed with restraints improved in most cases, and the lowest energy models were more
accurate in the restrained runs compared to the unrestrained runs (Table I, Supporting
Information Text 4).

Although the restraints improved sampling, they provide poor discrimination near the native
state as the native structure generally violates a number of restraints due to structural
differences within the various templates. To investigate the contribution of the spatial
restraints more thoroughly, blind predictions were made for target T0569 in the CASP9
structure prediction experiment. Figure 4 shows the average values of the Rosetta full-atom
energy and the restraints described in this work as a function of the GDTMM, which varies
from 0 to 1 as model quality increases (Supporting Information Text 4). Panel A shows that
the Rosetta full-atom energy is very flat until the GDTMM values are in the 0.6–0.7 range,
and hence the Rosetta full-atom energy function has difficulty distinguishing between
medium (GDTMM between 0.5 and 0.3) and low-quality (GDTMM between 0.3 and 0.1)
models. However, the average energy of models with GDTMM > 0.7 drops sharply, and if
samples are generated close enough to the native structure, the Rosetta energy is very
effective at selecting these high-quality models. The spatial restraints are qualitatively
different in behavior—they are very effective at discriminating between low-quality and
medium-quality models, but they are quite poor at discriminating high-quality from
medium-quality models. These scores solve different model discrimination problems; and, a
combination of the scores decreases almost monotonically as models become more
nativelike (Panel C). Thus, the joint optimization of the Rosetta energy and the spatial
restraints should be effective across the conformational landscape, even though the native
structure violates some restraints, and the Rosetta energy has little ability to discriminate
conformations that are far from native.

Discussion
Derivation of probabilistic restraint models

This work describes incorporation of homologous structure-derived restraints into the
Rosetta structural modeling methodology. The restraint derivation follows the approach
taken by Modeller,3 with modifications to take advantage of more recent advances in
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database growth and sequence alignment software. A similar set of features was used, but
probability estimates used a non-parametric estimation method. This method should in
general fit the data more closely as it makes no underlying assumptions about dependencies
between the features. This is possible because of the recent growth of the protein structural
databases—thousands of proteins of known structures were used here, while Modeller used
less than 100 structures due to the size of the database at the time.3 Also, the sensitive
HHSearch method used to generate alignments for this work will allow structural models to
be constructed based on more distant evolutionary relationships.5, 6

A probabilistic benchmark was used to assess alternate formulations of the comparative
modeling restraints. This benchmark shows that the features used in the models are useful
both individually and jointly, and the best models investigated are parameterized on a
combination of these features (Fig. 2, panel B). The same benchmark demonstrates that
improved performance can be achieved by combining predictions from multiple templates
using weights dependent on the confidence of each prediction (Fig. 3). This treatment of the
problem formulates restraint derivation as an exercise in statistical inference and decouples
restraint derivation from computationally expensive structure prediction benchmarks.
Progress in this area is thus not restricted to those with access and expertise in structural
modeling tools.

Our approach models each restraint as the mixture of two Gaussians, one short-range with
mean given by the template distance and a long-range Gaussian with mean dependent only
on the sequence separation between the two restrained atoms. The weight on the first
component represents our confidence that the alignment is locally correct. Explicitly
accounting for the case represented by the long-range Gaussian in which the template-based
distance predictions are incorrect allows the optimization process to become more robust to
alignment errors. The quadratic penalty associated with a short-range Gaussian becomes
extremely large at high distances (Supporting Information Fig. 1, panel B) and would
present an inappropriately strong force during model optimization. Incorporating the long-
range Gaussian into the mixture model prevents this penalty from dominating structure
optimization and refinement (Supporting Information Fig. 1, panel D), allowing Rosetta to
disregard inaccurate restraints if they disagree strongly with the current low-energy model.

Joint optimization of energy and evolutionary information
The restraints as outlined earlier were incorporated into the refinement portion of the Rosetta
rebuild and refine protocol. The restraint potential for the entire protein was formulated as
the negative log-probability of the structure given the restraints. As this term is
differentiable with respect to the backbone torsion angles, it can be combined with the
Rosetta all-atom energy function and used during full-atom refinement. On a benchmark set
of 20 proteins from the CASP7 experiment, inclusion of the restraints led to a clear
improvement in model quality (Table I). This is a stringent benchmark for success, as the
standard Rosetta rebuild and refine protocol copies coordinates from the same alignments
from which restraints are derived. Hence the improvement upon adding restraints to the
standard Rosetta comparative modeling protocol must result from confining the optimization
to a smaller region of conformation-space that is closer to the native structure (Fig. 4). We
also experimented with the incorporation of restraints into the rebuilding portion of the
protocol. In general, the results were worse than using the restraints only during refinement
(Table I). This may be because rebuilding protocol only moves a part of the protein
structure, and satisfaction of the restraints can require moving parts of the protein fixed by
this protocol. Also, many of the residues that are flexible during rebuilding are not aligned to
any protein, and so there is no restraint information available to guide sampling during this
stage of the protocol (Fig. 3, panel B).
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Comparative modeling restraints and conformational sampling
There is clear analogy between the results using comparative modeling restraints and
previous work incorporating sparse experimental restraints into Rosetta. Protein structures
can be determined using datasets too sparse for conventional methods by using the sparse
data to increase sampling near the native conformation.12 The experimental data does not
completely determine the native conformation due to experimental noise and a lack of data
for some parts of the protein chain, but is sufficient in many cases to guide sampling to the
native protein conformation. Similarly, comparative modeling restraints generally do not
cover the entire length of the protein and will be inaccurate where the native structure differs
from the homologous templates. In both cases, the restraints can be used to focus
optimization on the most likely region of conformation-space, and the Rosetta full-atom
optimization method can be used to find the lowest energy structure within that region.
Comparative modeling restraints are expected to have more systematic errors than those
from experimental data, as comparative modeling derives restraints based on statistically
inferred relationships between proteins, while experiment can directly query properties of
the protein structure. On the other hand, comparative modeling restraints can be derived at
essentially no cost for arbitrary protein sequences, and structure determination could in
principle begin with structures built by comparative modeling followed by sampling guided
by experimental data. If incorporated properly, a combination of evolutionary, experimental,
and physical sources of information could significantly decrease the amount of experimental
data and computation necessary to determine protein structures.

Software availability
Results for this manuscript were produced using Rosetta 3.2 (SVN version r37323), which is
available from http://www.rosettacommons.org/software/. Structural models and input files
are available upon request from the authors. Flags for running each protocol are listed in
Supporting Information Text S1 and Table SII.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Dependence of distance deviations on individual features. Conditional probability
distributions were calculated using the features and approach outlined in Methods section,
which follows the Modeller approach for deriving distance restraints.3 Each panel shows the
distribution of distance deviations conditioned on a single feature (A—global sequence
similarity, B—local sequence similarity, C—burial in the template structure, and D—
distance from an alignment gap). Lines represent the distribution of deviations for quantiles
of the feature (red, 0–25%; orange, 26–50%; green, 51–75%; blue, 76–100%). Boundaries
that define quantiles for each variable are listed in Supporting Information Table SI.

Thompson and Baker Page 11

Proteins. Author manuscript; available in PMC 2013 January 08.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text



Figure 2.
Model evaluation based on likelihood of independent test set. A: Illustration of model
evaluation with distance predictions based on two Gaussians. Both Gaussians have a mean
of 7.0 Å and a standard deviation of 1.0 (solid line) or 2.0 Å (dashed line). If the native
distance occurs at 6.5 Å, the sharper Gaussian (solid line) is a better model. If the native
distance occurs at 9.5 Å, the wider Gaussian (dashed line) is a better model. B: Different
models were assessed based on the likelihood of distances from an independent set of
aligned proteins. Each bar shows the likelihood of sampling a set of atom-pair distances
using a fixed set of alignments and different variables to construct the models. The letters
below each bar list the input features used to construct the model (B—burial in template
structure, L—local sequence similarity, D— distance from a gap, and G—global sequence
similarity). The prior model is a Gaussian model based only on sequence separation of the
residues in the linear sequence (see Methods section) and is shown here as a negative
control. The middle four bars show the performance of models based on single features,
while the final three bars represent models based on two, three, and four features. All four
single-variable models out-perform the prior model. Adding predictors to each model
improve the likelihood of sampling the native atom-pair distance, which supports the use of
all four variables in estimating deviations from template structures.
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Figure 3.
Likelihood increases using weighted predictions from multiple templates. Each bar
represents the likelihood (negative log-probability) of sampling the native distance between
two Cα atoms under different Gaussian mixture models. A: Gaussians were derived using
the approach outlined in Methods section and evaluated using the likelihood test outlined in
Figure 2, and Gaussians restraining the same pair of atoms were combined to produce a
Gaussian mixture model. The probability of sampling the native distance was calculated
from the resulting probability distribution. Each bar plots the negative log-likelihood of
sampling the native distance, which decreases as predictions become more accurate. Shaded
bars represent a model in which all predictions are given equal weight, and open bars
represent a model in which predictions are given a weight proportional to sd–10. B:
Probabilistic models are compared using the likelihood test outlined in Figure 2. Prior is a
Gaussian model that models query distances based solely on the sequence separation
between residues in the query sequence, fixed_harmonic is a Gaussian mixture model that
assigns a fixed-width standard deviation to each template’s prediction and an equal weight
for each prediction, unweighted represents a model with standard deviations given by the
predictor described in Methods section and an equal weight for each prediction, and
weighted is a model with standard deviations estimated by the same predictor and weights
estimated as a function of that standard deviation. The perfect_classifier model represents a
model that adjusts weights for each prediction in order to maximize the probability of
observing the native distance, and perfect_knowledge represents a model in which the query
distances are modeled using a Gaussian model with a standard deviation of 1.0 Å.
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Figure 4.
Full-atom energy and homology-derived spatial restraints distinguish between models in
different accuracy regimes. We constructed models for a protein of unknown structure
during the CASP9 experiment (CASP9 target T0569). Models were made using the Rosetta
rebuild and refine protocol supplemented with the evolutionary restraints as described in
Methods section. After obtaining the experimentally determined structure of T0569, we
calculated the GDTMM of each model, which approaches 1.0 as a model become more
similar to the native (Supporting Information Text 4). The same statistics were calculated for
an ensemble of Rosetta refined native structures. Models were assigned to GDTMM bins,
which ranged from 0.1 to 1.0 in. increments of 0.1. In each plot, the points connected by
lines represent the statistics calculated on each bin, and the gray, red, and blue points
represent individual structures. A: Median GDTMM versus median Rosetta full-atom score,
with a circle surrounding the bin containing the refined native structures. B: Median
GDTMM versus median spatial restraint score. The Rosetta full-atom energy is very
effective at discriminating the high-quality from medium-quality models, while less
effective at discriminating medium-quality from low-quality models. Conversely, the
restraints discriminate medium-quality from low-quality models very well, but are not
effective at discriminating high-quality models from natives and can even provide a barrier
to sampling the native conformation. C: A combination of the two scores is effective at
discrimination independent of model quality.
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