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Abstract: Water diffusion magnetic resonance imaging (dMRI) is a powerful tool for studying biological tis-
sue microarchitectures in vivo. Recently, there has been increased effort to develop quantitative dMRI
methods to probe both length scale and orientation information in diffusion media. Diffusion spectrum
imaging (DSI) is one such approach that aims to resolve such information based on the three-dimensional
diffusion propagator at each voxel. However, in practice, only the orientation component of the propagator
function is preserved when deriving the orientation distribution function. Here, we demonstrate how a
straightforward extension of the linear spherical deconvolution (SD) model can be used to probe tissue ori-
entation structures over a range (or ‘‘spectrum’’) of length scales with minimal assumptions on the underly-
ing microarchitecture. Using high b-value Cartesian q-space data on a rat brain tissue sample, we
demonstrate how this ‘‘restriction spectrum imaging’’ (RSI) model allows for separating the volume fraction
and orientation distribution of hindered and restricted diffusion, which we argue stems primarily from dif-
fusion in the extraneurite and intraneurite water compartment, respectively. Moreover, we demonstrate
how empirical RSI estimates of the neurite orientation distribution and volume fraction capture important
additional structure not afforded by traditional DSI or fixed-scale SD-like reconstructions, particularly in
gray matter. We conclude that incorporating length scale information in geometric models of diffusion
offers promise for advancing state-of-the-art dMRI methods beyond white matter into gray matter struc-
tures while allowing more detailed quantitative characterization of water compartmentalization and histo-
architecture of healthy and diseased tissue. Hum Brain Mapp 34:327–346, 2013. VC 2012Wiley Periodicals, Inc.
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INTRODUCTION

Owing to its exquisitely sensitive contrast mechanism,
water diffusion magnetic resonance imaging (dMRI) is a
powerful technique for studying the microstructural and
physiological properties of biological tissue in vivo [Le
Bihan et al., 1986]. At normal brain temperatures, the diffu-
sion coefficient of water in the CNS is about 1 lm2/ms.
During typical diffusion times of 20–80 ms water molecules
probe lengths scales on the order of 5–20 lm, making dMRI
signals uniquely sensitive to a wide range of microstruc-
tural information at the cellular and subcellular level. Over
the past decade, a number of important methodological
advances have been made to probe both length scale and
orientation information from biological tissue samples [for a
review see Yablonskiy and Sukstanskii, 2010].

Q-space imaging (QSI) is one such technique that utilizes
data collected over multiple q-values (defined as q ¼ cdG/
2p where c is the gyromagnetic ratio of hydrogen, and d and
G are the diffusion gradient duration and magnitude,
respectively) under the so-called narrow gradient pulse re-
gime (d<<D where D is the time between the leading edges
of the gradient pulses) [Callaghan et al., 1990; Cory and Gar-
roway, 1990] to probe length scale information in terms of
the statistical probability of water displacements along a
single (1D) dimension [Assaf et al., 2000; Cohen and Assaf,
2002]. One of the major contributions of QSI has been the
identification and characterization of separable hindered
and restricted diffusion pools in nerve tissue samples, with
the length scale of the restricted pool offering information
on the size of the compartment [Assaf and Cohen, 2000].
Length scale information of separable diffusion pools can
also be probed in terms of the apparent diffusion coefficient
(ADC) of water using multiexponential signal models for
data collected with multiple b-values (b�q2D) [Mulkern
et al., 1999]. Similar to QSI, these multiexponential signal
models which assume a Gaussian mixture model for the
displacement distribution routinely show evidence for
water compartmentation in biological tissue when meas-
ured over an extended b-value range. Typically, at least two
Gaussian diffusion pools (exponentials) are observed, one
with a high ADC, corresponding to coarse scale (‘‘fast’’) dif-
fusion, and one with a small ADC, corresponding to fine
scale (‘‘slow’’) diffusion [Mulkern et al., 1999]. While many
have attributed the ‘‘fast’’ and ‘‘slow’’ components to hin-
dered and restricted diffusion in the extracellular (ECS) and
intracellular space (ICS) of tissue respectively [Mulkern
et al., 2009], this theory is not without controversy, particu-
larly due to paradoxically reversed estimates of their partial
volume fractions [Mulkern et al., 2009].

There is also a large body of literature describing the use
of multidirectional dMRI acquisitions at a fixed b-value (or
q-value) for studying the geometric organization of white
matter tissue in vivo [Basser et al., 1994b; Behrens et al.,
2003; Jansons and Alexander, 2003; Tournier et al., 2004;
Tuch, 2004; Anderson, 2005; Alexander, 2005b; Hess et al.,
2006; Ozarslan et al., 2006; Kaden et al., 2007]. The most

popular of these methods is diffusion tensor imaging (DTI),
which uses a set of six or more images with noncollinear
diffusion directions, plus one or more images with no diffu-
sion weighting (b ¼ 0) to estimate the apparent diffusion
tensor in three-dimensional (3D) space at each voxel [Basser
et al., 1994a). The eigensystem of the tensor is commonly
used to quantify both the degree of anisotropy and the
principal directions of the diffusion process [Basser and
Pierpaoli, 1996], with the later forming the basis for white-
matter fiber-tracking studies [Basser et al., 2000]. However,
the well-known limitation of the tensor model in describing
diffusion in nonhomogenous media [Beaulieu, 2002] has
led to the development of numerous high-angular resolu-
tion diffusion imaging (HARDI) techniques to resolve com-
plex (e.g., crossing or bending) fiber orientations within
voxels [Alexander et al., 2002; Frank, 2002; Tournier et al.,
2004; Tuch, 2004; Anderson, 2005; Alexander, 2005b; Hess
et al., 2006; Ozarslan et al., 2006; Jian and Vemuri, 2007;
Kaden et al., 2007]. In contrast to DTI, these HARDI meth-
ods require a large number of diffusion directions (>6) to
be collected at a fixed diffusion weighting, and include
techniques such as spherical harmonic modeling of the
ADC [Frank, 2002], Q-ball numerical approximation of the
water diffusion orientation distribution (dODF) [Tuch,
2004], and spherical deconvolution (SD) reconstruction of
the fiber orientation distribution (FOD) [Tournier et al.,
2004; Alexander, 2005a; Dell’Acqua et al., 2007; Jian and
Vemuri, 2007; Kaden et al., 2007]. However, despite their
successful application in resolving complex white-matter
fiber orientations in vivo, these HARDI methods are gener-
ally limited to studying only the geometric aspect of the
diffusion process, and are agnostic to length scale informa-
tion (e.g., fast/slow hindered/restricted diffusion) due to
the adherence of a single diffusion weighting factor with
fixed diffusion time.

In recent years, there has been increased interest in
developing alternative dMRI methods to probe both length
scale and orientation information from multidirectional
diffusion acquisitions with multiple diffusion weightings.
Wedeen et al. introduced a nonparametric technique called
diffusion spectrum imaging (DSI), which generalizes the
QSI method to a 3D Cartesian sampling of q-space to
obtain the 3D water displacement probability density func-
tion or diffusion propagator [Kärger and Heink, 1983] at
each voxel [Wedeen et al., 2005]. However, it is common
practice in DSI to integrate the propagator in the radial
direction to yield the dODF, which while capturing the
orientation structure of the diffusion function, removes all
scale information inherent in the propagator itself. In addi-
tion, DSI adopts the classic q-space formalism to obtain the
propagator through Fourier Transform, but it does so
without satisfying the narrow gradient pulse requirement,
which challenges the interpretation of the propagator and
dODF [Basser, 2002]. Assaf et al. proposed a parametric
multicompartmental hindered and restricted model of dif-
fusion (CHARMED) for white matter, which was later
extended to measure axon diameter distributions in a
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technique called AxCaliber [Assaf et al., 2008; Barazany
et al., 2009]. This composite framework makes use of a
more efficient concentric shell sampling of q-space (some-
times referred to as a multishell HARDI acquisition), where
each shell measurement is differentially weighted by diffu-
sion at different length scales. Alexander et al. used a sim-
plified version of the CHARMED model to measure an
axon diameter index in vivo [Alexander et al., 2010]. Jes-
persen et al. introduced a parametric multicompartmental
model of the cytoarchitecture that uses a distribution of cyl-
inders to model fine scale diffusion in axons and dendrites
(collectively called neurites), and a tensor model for coarse
scale diffusion elsewhere (cell bodies, glia, ECS) [Jespersen
et al., 2007; Jespersen et al., 2010]. In this model, a multi-
shell HARDI acquisition is harnessed to disambiguate the
intraneurite versus extraneurite water fraction yielding esti-
mates of the neurite volume fraction and orientation distri-
bution [Jespersen et al., 2007; Jespersen et al., 2010].
However, an important limitation of many of these hybrid
diffusion methods is that they often require complex and
time-consuming nonlinear optimization of the model
parameters.

In this study, we show how a rather straightforward
extension of the SD model for HARDI acquisitions can be
used to probe the orientation structure of tissue microstruc-
tures over a range (or ‘‘spectrum’’) of length scales with
minimal assumptions on the underlying microstructure
and while preserving an efficient linear implementation.
Using high b-value Cartesian q-space data collected on a
fixed rat brain, we show how this linear analysis approach,
which we call ‘‘restriction spectrum imaging’’ (RSI), can be
used to separate the volume fraction and orientation struc-
ture of fine and coarse scale diffusion processes in rat brain
tissue, which we believe stems from restricted and hin-
dered diffusion in the intraneurite and extraneurite water
compartment, respectively. We support this hypothesis
using both theoretical and empirical evidence, including a
diverse set of histological material from corresponding
brain regions. We further demonstrate how the resultant
neurite orientation distribution provides additional struc-
ture beyond that which can be gleaned from traditional DSI
and fixed-scale SD-like reconstructions.

MATERIALS AND METHODS

Sample Preparation and Image Acquisition

The diffusion data and histological materials used in
this study were the same as used in a previous report
[Leergaard et al., 2010]. Briefly, an adult Sprague DawleyVR

rat (Charles River Laboratories International, Wilmington,
MA) was deeply anesthesized (ketamine hydrochloride 50
mg/kg, and sodium pentobarbital 12 mg/kg, i.p.) and
transcardially perfused with 4% paraformaldehyde. The
brain was extracted and immersed in contrast enhancing
MagnevistVR solution (Bayer HealthCare Pharmaceuticals)
for �2 weeks [D’Arceuil and de Crespigny, 2007; Leer-

gaard et al., 2010]. For image acquisition, the brain was
immobilized in a molded plastic holder and placed in a
sealable custom-built plastic chamber filled with perfluoro-
carbon liquid (FomblinVR LC/8, Solvay Solexis, Thorofare,
NJ) to fixate the tissue. High-resolution diffusion images
were collected using a 4.7T Bruker BioSpec Avance scan-
ner (Bruker Instruments, Freemont, CA) featuring a 40-cm
warm bore diameter and equipped with a 3-cm solenoid
receiver coil. Data were acquired using a single-shot
pulsed gradient spin echo (PGSE) echo planar imaging
sequence with Cartesian q-space sampling and the follow-
ing pulse sequence parameters: TR/TE ¼ 650/49 ms, D/d
¼ 23/12 ms, 515 q-space vectors [Wedeen et al., 2005],
|G|max ¼ 380 mT/m, bmax ¼ 30452 s/mm2, matrix ¼ 64 �
64 � 128, voxel size ¼ 265 lm isotropic, total imaging time
�12 h. Following tomographic imaging, the brain was
coronally sectioned at 50 lm using a freezing microtome
(Microm HM450, Microm Gmbh, Waldorf, Germany). Ev-
ery fourth section was stained for myelin using a standard
procedure modified from Woelche [Woelche, 1942].

Supplementary histological material was derived from
another Sprague Dawley rat (Scanbur, Norway) that was
sacrificed as described above. This brain was sectioned sag-
itally (at 50 lm), and selected sections stained for myelin.
High-resolution mosaic images of the histological sections
were obtained through UPlanApo 20/0.70 and 40/0.85 dry
objectives using a motorized Olympus BX52 microscope
running the Neurolucida 7.0 software (Virtual Slice mod-
ule, MBF Bioscience, Williston, VT) or a slide scanner
(Mirax Scan, Carl Zeiss MicroImaging, Jena, Germany).
Additional histological reference images were downloaded
from the BrainMaps.org website (www.brainmaps.org) and
the Rodent Brain Workbench (www.rbwb.org). This con-
cerned images showing 40-lm thick coronal sections from
an adult Sprague Dawley rat stained for potassium channel
interacting protein (KChlP1) using the K55/7 monoclonal
antibody (NeuroMab; http://neuromab.ucdavis.edu/), and
images showing the distribution of axonal plexuses antero-
gradely labeled with Phaseolus vulgaris leucoagglutinin
[www.rbwb.org; Whole Brain Connectivity Atlas; case
R606; see also Zakiewicz et al., 2011].

DSI Reconstruction

DSI is based on the Fourier relationship between the dif-
fusion signal S(q,D) and the 3D propagator P(R,D) [Kärger
and Heink, 1983]

Sðq;DÞ ¼
Z

PðR;DÞe�2pq:Rd3R (1)

where R is the net displacement of water molecules during
the diffusion time D, and q ¼ cdG/2p is the q-space diffu-
sion wave vector. To obtain P(R, D), the signal values were
filled into 3D Cartesian coordinate space consisting of a 17
3 17 3 17 voxel grid according to their respective position
in q-space. Then the inverse Fourier Transform was applied
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directly to the gridded data. Before the Fourier inversion, a
3D Hanning window h(r) ¼ 0.5 � (1 1 cos (2p r/17)) was
used to filter the data at high |q| to reduce truncation arti-
facts (Gibbs ringing) in the reconstructed propagator
[Wedeen et al., 2005]. Finally, the orientation distribution
function in the direction of the unit vector x was obtained
by evaluating the integral

dODFðxÞ ¼
Z Rmax

0

PðRx;DÞjRj2dR: (2)

To evaluate this integral, we used a third-order tessellation
of the sphere (642 vertices) to define each point x, and
Sinc interpolation along 20 equally spaced points between
0 and Rmax.

Restriction Spectrum Imaging

Spherical deconvolution

In traditional SD, the diffusion signal magnitude in each
voxel s(q) can be written as

sðqÞ ¼ s0

Z
Rðq; xÞf ðxÞd3x; (3)

where f(�) is the fiber orientation distribution (FOD), s0 is
the signal measured with no diffusion weighting [i.e., s0 :
s(q ¼ 0)], and R(�,x) is the signal attenuation to a single
‘‘fiber’’ with orientation given by the unit vector x. To
obtain the FOD, a popular approach uses an axially sym-
metric Gaussian model for the fiber response function
[Anderson, 2005]

Rðq; xÞ ¼ exp �b ðDL �DTÞ cos2 aþDT

� �� �
(4)

where b ¼ |q|2 (D 2 d/3) is the diffusion weighting factor
(or b-value), a is the measurement angle relative to the
fiber axis (i.e., a ¼ |r � x|, where r ¼ q/|q| is a unit vec-
tor oriented along q), and DL and DT are the longitudinal

and transverse diffusivities of the response function,
respectively, with DL [ DT. When these diffusivities are
known a priori (or can be estimated from the data and
held fixed) the convolution in Eq. (3) can be implemented
as a linear system of equations. Given N q-space measure-
ments {q1, q2,. . .,qN} and M desired FOD reconstruction
points on the sphere {x1,x2,. . .,xM}, Eq. (3) can be written

s ¼ Rf;

�sðq1Þ
..
.

�sðqNÞ

2
64

3
75 ¼

Rðq1; x1Þ � � � Rðq1; xMÞ
..
. . .

. ..
.

RðqN; x1Þ � � � RðqN; xMÞ

2
64

3
75

f ðx1Þ
..
.

f ðxMÞ

2
64

3
75 (5)

where s ¼ s/s0 denotes the normalized signal. However,
rather than treating each of the M values of f(�) as
unknown parameters, the FOD is often parameterized
using a set of even order spherical harmonics (SH) Ym

l (�)
with order l ¼ 0,2,. . .,L and degree m ¼ 2l,. . .,0,. . .,l,

f ðxÞ ¼
XP
k¼1

bkYkðxÞ; (6)

where P ¼ (L 1 2)(L 1 1)/2 is the total number of SH ba-
sis functions in the series,

YkðxÞ ¼

ffiffiffi
2

p
RefYm

l ðxÞg; if �l � m < 0

Y0
l ðxÞ; if m ¼ 0ffiffiffi

2
p

ImfYm
l ðxÞg; if 0 < m � l

8><
>:

k � kðl;mÞ ¼ ðl2 þ lþ 2Þ=2 þm;

; (7)

is the kth SH basis function, and {b1,b2,. . .,bP} are the
unknown real-valued parameters (weights) to be esti-
mated. This particular basis in Eq. (7) ensures that the
recovered FOD is both real and symmetric [Descoteaux
et al., 2007]. Substituting Eqs. (6) and (7) into (5) yields the
parameterized SD signal model

s ¼ RYLb;

�sðq1Þ
..
.

�sðqNÞ

2
64

3
75 ¼

Rðq1; x1Þ � � � Rðq1; xMÞ
..
. . .

. ..
.

RðqN; x1Þ � � � RðqN; xMÞ

2
64

3
75

Y1ðx1Þ � � � YPðx1Þ
..
. . .

. ..
.

Y1ðxMÞ � � � YPðxMÞ

2
64

3
75

b1

..

.

bP

2
64

3
75 ; (8)

where the subscript L is used to make the SH expansion
order of Y explicit.

RSI model

The two main assumptions of the SD model in Eq. (8)
are that (1) the orientation structure of the FOD lies within

the subspace spanned by the spherical harmonic basis vec-

tors in YL, which places an intrinsic upper limit on the

angular resolution of the FOD estimate [White and Dale,

2009], and (2) the tissue architecture can be described by a

linear mixture of (nonexchanging) cylindrical fiber ele-

ments with identical diffusion characteristics. In other

words, the diffusion length scale is presumed fixed for all
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fibers within the voxel. To do away with this assumption,
we implement a straightforward extension to the deconvo-
lution model that allows for a mixture of cylindrically
symmetric Gaussian kernel functions with different DT

and fixed (constant) DL. Thus, Eq. (5) is rewritten as

s ¼ R D
ð1Þ
T

� �
f1 þ R D

ð2Þ
T

� �
f2 þ : : : þ R D

ðJÞ
T

� �
fJ (9)

where D
ð1Þ
T \D

ð2Þ
T \ . . .\D

ðJÞ
T \DL are the transverse dif-

fusivities for each of the J total FODs (Fig. 1). The distribu-
tion of FODs f1,f2,. . .,fJ, which we call the ‘‘FOD
spectrum’’, models the orientation structure of the diffu-
sion process at length scales given by D

ð1Þ
T \ D

ð2Þ
T \ . . . \

D
ðJÞ
T . Once again, if the diffusivities are known a priori, the

multiscale model retains its efficient linear implementation
and can be written

s ¼ Ab0;

¼ R D
ð1Þ
T

� �
YL1

� � � R D
ðJÞ
T

� �
YLJ

e�bDL e�bDF

h i
bð1Þ

..

.

bðJÞ

bL

bF

2
666664

3
777775
;

(10)

where A is now a large N � ð
PJ

i¼1 PiÞ þ 2 matrix, where Pi

¼ (Li þ 2)(Li þ 1)/2 is the total number of SH for the ith
FOD. To model the partial volume fraction of isotropic dif-
fusion in both brain and nonbrain voxels, we included
two terms e�bDL and e�bDF to our forward model in Eq.

(10), where the longitudinal diffusivity DL is the longitudi-
nal diffusivity estimated from white matter, and DF is the
‘‘free’’ water diffusivity estimated from the intraventricular
space of our tissue sample (as described in the following
‘‘Estimation’’ section section). Note that unlike traditional
SD, the RSI model in Eq. (10) requires multiple b-values
and diffusion gradient directions to separate scale and
geometric information.

Estimation

To fit the RSI model in Eq. (10) we first derived an esti-
mate of DL by fitting a tensor model to the diffusion data
in a small region of the corpus callosum known to have a
high density of uniformly oriented white-matter fibers. In
this region, we estimated DL to be �0.34 lm2/ms. This
value of DL was also used to estimate the theoretical com-
partment size diameter for restricted diffusion using Monte
Carlo simulations (see ‘‘Compartment Size Diameter Simu-
lation’’ section). Next, we derived an estimate of DF by fit-
ting the same tensor model to voxels comprising the
intraventricular space of our tissue sample. In this region,
we estimated DF to be �2.0 lm2/ms. Finally, with DL and
DF now fixed, we let DT take on J ¼ 12 linearly spaced val-
ues between 0 and 0.9�DL, and used a fourth-order (L ¼ 4)
SH expansion for each FOD, and a third-order tessellation
of the sphere to define the M ¼ 642 FOD reconstruction
points {x1,x2, : : : ,xM}. Given the large number of unknown
parameters for this particular parameterization (182 total)
we sought a regularized solution for b̂

0
to prevent

overfitting

b̂
0 ¼ Ays

Ay ¼ ðATAþ aIÞ�1AT:
(11)

where a is the Tikhonov regularization factor. To optimize
the regularization level, we selected the a which mini-
mized the Bayesian Information Criterion (BIC) [Schwarz,
1978] over a large region of our tissue specimen, which
included both gray and white matters (not shown). The
BIC is defined as n lnðr̂2

eÞ þ k lnðnÞ, where n is the number
of measurements, r̂2

e is the error variance, and k ¼ trace(-
AyA) is the effective number of model parameters. The
BIC can be interpreted as managing the tradeoff between
goodness-of-fit on the one hand, by penalizing models
with large residual error (i.e., nln(r̂2

e) term), and reducing
model complexity on the other, by penalizing models with
a large number of free parameters [i.e., kln(n) term]. At the
optimum regularization level (minimum BIC), the effective
number of model parameters was reduced to approxi-
mately k � 20.

Compartment Size Diameter Simulation

The theoretical compartment size diameter for restricted
diffusion was estimated using Monte Carlo simulations

Figure 1.

Restriction spectrum model. The oriented component of the dif-

fusion signal is written a linear mixture (spectrum) of cylindri-

cally symmetric Gaussian response functions R with different

fixed transverse diffusivities DT and unknown volume fraction

and orientation distribution (f).
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consisting of a population of ‘‘spins’’ undergoing random-
walk diffusion within a single impermeable cylinder with
known diameter. The exact diameter (d) varied for each
simulation experiment and ranged between 0.1 and 100 lm.
Spins were initially randomly distributed within the cylin-
der and allowed to diffuse with an intrinsic diffusion coeffi-
cient of DL. Spins that encountered a boundary were
reflected off the cylinder wall while preserving their unre-
flected diffusion path length [Hall and Alexander, 2009].
The accumulated spin phase was used to generate synthetic
diffusion signals for our Cartesian q-space acquisition pa-
rameters G, D, and d (see ‘‘Sample Preparation and Image
Acquisition’’ section). For each cylinder diameter (simula-
tion experiment), the logarithm of the signal measured per-
pendicular to the long axis of the cylinder was plotted as a
function of b-value to obtain an estimate of DT. This yielded
a plot of DT versus d after compiling across all simulation
experiments. This curve was then interpolated into for each
DT of our RSI model to yield the theoretical cylinder diame-
ter for restricted diffusion at each scale.

RESULTS AND DISCUSSION

General Observations and the Neurite

Hypothesis

The goal of this study was to investigate whether a
rather straightforward extension of traditional fixed-scale
SD model for HARDI acquisitions could be used to probe
the orientation structure of our tissue sample at multiple
length scales in a manner that reflects the underlying biol-
ogy. The results of our RSI analysis is illustrated in Figure
2 for a single horizontal slice taken at the level of the dor-
sal striatum, hippocampus, and tectum. We found that the
majority of the diffusion signal in our fixed tissue sample
occurred at the fine (Fig. 2, left hand side; red frame) and
coarse scale (Fig. 2, right hand side, blue frame), with little
or no signal at intermediate scales. The fine scale diffusion
processes were characterized by transverse diffusivities
significantly smaller than the longitudinal diffusivity (DT/
DL < 0.1), whereas the coarse scale processes were charac-
terized by transverse diffusivities �60–90% of the

Figure 2.

RSI analysis for a single horizontal slice taken at the level of the

dorsal striatum, hippocampus, and tectum. The diffusion length

scale is shown increasing from left to right. Volume fraction

maps (top row) are derived from the zeroth-ordered SH coeffi-

cients normalized to sum to one (negative weights set to zero).

These maps provide an estimate of the fractional contribution of

diffusion at each scale to the total signal, where dark voxels indi-

cate large contributions (volume fractions), and light voxels indi-

cate little or no contribution. Note the apparent bimodal

separation of fine (left, red frame) and coarse (right, blue frame)

scale diffusion processes, which is consistent with in vivo biex-

ponential models of ‘‘slow’’ and ‘‘fast’’ diffusion, respectively. The

FOD spectra for two representative voxels in white and gray

matter are shown in rows 2, and 3, respectively. Note the differ-

ences in orientation structure at the fine and coarse scale, par-

ticularly in gray matter (row 3). All FODs are displayed by

subtracting the minimum (which highlights the oriented compo-

nent of the FOD) and scaling their amplitudes by their relative

volume fraction. Values for the geometric tortuosity (kg) were

computed directly from the RSI model scale, while the compart-

ment size diameters (d) were estimated using Monte Carlo sim-

ulations (see ‘‘Compartment Size Diameter Simulation section’’).

Together, the geometric tortuosity and theoretical compartment

size diameter support the hypothesis that the fine- and coarse-

scale diffusion processes stem from restricted and hindered dif-

fusion in the intraneurite and extraneurite water compartment,

respectively (see ‘‘Theoretical and Empirical Support for the

Neurite Hypothesis’’ section). In the ‘‘Histological Substrates for

the r-FOD and h-FOD’’ section, we compare the restricted (r-

FOD) and hindered (h-FOD) FOD against histology at the two

scales illustrated with arrows. [Color figure can be viewed in

the online issue, which is available at wileyonlinelibrary.com.]
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longitudinal diffusivity (0.6 < DT/DL < 0.9). This apparent
bimodal separation of fine and coarse scale diffusion is
consistent with in vivo biexponential models of ‘‘slow’’
and ‘‘fast’’ diffusion, respectively [Niendorf et al., 1996;
Mulkern et al., 1999; Maier and Mulkern, 2008]. Yet, unlike
these biexponential models, our RSI model allows for
additional quantification of the orientation structure at
each scale through analysis of the FOD spectrum. In Fig-
ure 2, we plot the FOD spectrum for two representative
voxels in white (Fig. 2, row 2) and gray (Fig. 2, row 3)
matter. Interestingly, in many gray-matter voxels and
some white-matter voxels, we found dissimilar orientation
structure at the fine and coarse scale (see Fig. 2, row 4).
However, in all voxels, we noted similar orientation struc-
ture across neighboring scales, suggesting some degree of
local blurring of model parameters. In the Appendix (‘‘RSI
Model Resolution’’ section), we quantify the degree of
blurring using the model resolution matrix, and show that,
in our fixed tissue sample, our optimally regularized RSI
model allows for resolving approximately three length
scales at the fine, intermediate, and coarse scale level. This
means that each of the 12 scales in Figure 2 cannot be con-
sidered independent, and that the lack of signal contribu-
tion at the intermediate scale is a property of the data and
not the model. It should be noted that the intrinsic ‘‘scale
resolution’’ of the RSI model is mainly due to the acquisi-
tion protocol and not the model itself or Tikhonov regula-
rization level. Rather, the Tikhonov regularization level
had a larger impact on the smoothness of the individual
FODs of the spectrum (data not shown).

We were also interested in the physical nature of diffu-
sion at the length scales probed by our RSI model. In bio-
logical tissue, there are two general modes of diffusion:
hindered and restricted [Le Bihan, 1995]. Hindered diffu-
sion relates to the increase in diffusion path length mole-
cules must travel when diffusing around cellular
obstructions and is classically described in terms of the
‘‘tortuosity’’ k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D=ADC

p
, which relates the measured, or

apparent diffusion coefficient (ADC) with the free (aque-
ous) diffusion coefficient D of the molecule [Sykova and
Nicholson, 2008]. Restricted diffusion, on the other hand,
relates to the physical blockage of molecules trapped within
cellular compartments. If the diffusion time D is long
enough, the length scale of diffusion will vary dramatically
depending on whether diffusion is hindered or restricted
[Le Bihan, 1995]. To provide insight into this phenomenon
in our data, we computed the geometric tortuosity of our
model kg ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DL=DT

p
(assuming hindered diffusion) and

compartment size diameter (assuming restricted diffusion,
estimated using Monte-Carlo simulations, see ‘‘Compart-
ment Size Diameter Simulation’’ section) for each scale and
plot these in Figure 2 (bottom rows). Based on these tortu-
osity and compartment size calculations, together with the
nature of the FOD spectrum, we believe that the fine scale
diffusion processes probed by our model has to be re-
stricted and not hindered, and that the geometry of the re-
stricted compartment is consistent with neurites (axons and

dendrites), and possibly even long slender glial cell proc-
esses. Moreover, we believe that the coarse scale diffusion
processes reflect water hindered within the extraneurite
compartment, including large cell bodies, ECS, and glia. In
the remainder of this article, we provide theoretical and ex-
perimental support for this neurite hypothesis. We begin
by explaining the rationale for the neurite hypothesis using
prior theoretical and empirical evidence, together with our
own calculations for the geometric tortuosity and compart-
ment size diameters. Then in the ‘‘Histological Substrates
for the r-FOD and h-FOD section’’ we provide further em-
pirical support for this hypothesis by comparing the re-
stricted FOD (r-FOD) and hindered FOD (h-FOD) at two
representative length scales (DT/DL ¼ 0 and 0.82, respec-
tively; cf. Fig. 2) against histological material from corre-
sponding anatomical regions.

Theoretical and Empirical Support for the

Neurite Hypothesis

The main source of water restriction in biological tissues
comes from cell membranes, and the vast majority of ori-
ented cylindrical compartments in the brain relate to neu-
ronal extensions, or neurites (axons and dendrites). In the
rat brain, the diameter of unmyelinated and myelinated
subcortical axons range between 0.02 and 3.0 lm, with a
mean of 0.2–0.6 lm [Partadiredja et al., 2003; Barazany
et al., 2009], which is consistent with our diameter calcula-
tions at the fine scale (see the values for d on the bottom
of Fig. 2, left). If we assume that the fine-scale diffusion is
hindered and not restricted by neurites, the geometric tor-
tuosity at this scale would have to be greater than 2 (see
the values for kg on the bottom of Fig. 2, left). This is quite
certainly not the case. We know from previous reports
that tortuosities greater than 2 can only be achieved under
extreme pathophysiological states such as severe brain is-
chemia [Nicholson and Sykova, 1998; Chen and Nicholson,
2000]. In fact, the maximum geometric tortuosity intro-
duced by various packed cellular objects in the brain ECS
has empirically been estimated to be no greater than 1.225
[Tao et al., 2005]. Even in an ideal simulated environment
consisting of a bundle of cylindrical fibers organized in
the most compact way, the transverse ADC (DT) cannot
exceed (2/p)2 or 0.4 times the longitudinal ADC (DL),
which corresponds to a geometric tortuosity maximum of
kg ¼ p/2 ¼ 1.57 [Le Bihan, 1995]. We therefore argue that
all water contributing to the fine scales of our model has
to be restricted and not hindered. As neurites fit well with
the predicted geometry of the restricting compartment
(i.e., cylinders with diameters < 3–4 lm), as opposed to
say large spherical cell bodies, we argue that the source of
restriction primarily stems from neurites, possibly with a
small contribution from elongated cylindrical glial proc-
esses. In addition, we argue that all hindered water (with
tortuosities less than 1.57) must contribute to the coarse
length scales probed by our model. However, the source
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of this hindered water is less certain, and likely includes
not only water in the ECS but also cell bodies and glia.
For one, the short diffusion time of our experiment (D ¼
23 ms), together with the fact that the tissue was fixed
with paraformaldehyde (which decreases the ADC) limits
our ability to probe any restricted compartment (spherical
or cylindrical) greater than about

ffiffiffiffiffiffiffiffiffiffiffiffi
2DLD

p
� 4 lm; meaning

that any water restricted within compartments greater
than 4 lm would be indistinguishable from hindered
water. Thus, it’s likely that water trapped within many
cell bodies (with diameters on the order of 5–15 lm),
which may otherwise appear restricted at long diffusion
times, would appear hindered in our short diffusion time
experiment. Second, while some elongated glial processes
may contribute to the restricted volume fraction (as men-
tioned above), the majority of intraglial water should con-
tribute to the hindered fraction for two reasons. First, the
permeability of glia cell membranes are orders of magni-
tude greater than that of neurons [Solenov et al., 2004],
raising the likelihood of increased exchange with the hin-
dered ECS compartment. Second, as we demonstrate in
Figure 3, many glia, and in particular protoplasmic astro-
cytes, which take up as much as 10-20% of the neuropil
volume fraction [Reichenbach A, Wolburg H, 2005] have
far more ‘‘spongiform’’ morphologies than neurons [Ober-
heim et al., 2008; Wilhelmsson et al, 2006], which may
allow even restricted water in the glial compartment to
travel fast, effectively hindered paths during the experi-
mental diffusion time.

In summary, given the aforementioned empirical and the-
oretical evidence, we surmise that our RSI model has sepa-
rated the intraneuritic restricted water from extraneuritic
hindered water in our fixed tissue sample. Note, this neu-
rite-specific assignment is fundamentally different from the
common (albeit controversial) view that fine (‘‘slow’’) and
coarse (‘‘fast’’) scale diffusion stems from water in the ICS
and ECS of tissue [see Mulkern et al., 2009 for a review).
Also note that this neurite assignment fits well with model
presented by Jespersen for measuring the neurite density
and orientation distribution [Jespersen et al., 2007]. In the
next section, we provide further empirical support for this
hypothesis, by comparing RSI estimates of the r-FOD and h-
FOD with histological material taken from corresponding
anatomical regions.

Histological Substrates for the r-FOD and h-FOD

If the neurite hypothesis holds true, then the volume
fraction and orientation distribution of neurites should be
reflected in the volume fraction and orientation distribu-
tion of the r-FOD, while the h-FOD should reflect the ori-
entation distribution of hindered extraneuritic water. To
investigate the anatomical substrate of the r-FOD and h-
FOD, we compared their orientation distribution and vol-
ume fraction against the histoarchitecture in selected brain
regions (the striatum, globus pallidus, cerebral cortex, and

cerebellum) known to have complex but characteristic tis-
sue architectures.

Example 1: Striatum and globus pallidus

In both the striatum and globus pallidus, the tissue
architecture is characterized by the dense bundles of pene-
trating corticofugal axons, and by a relatively complex
architecture with topographically organized axonal termi-
nal fields [Brown et al., 1998; Alloway et al., 1999; Gerfen,
2005], neurons and glial cells. The penetrating corticofugal
axons appear dark in the myelin stain (Figs. 4B,E and 5G),
while the complex network of dendritic arbors and axonal
terminal fields can be visualized using voltage-gated po-
tassium channel stains (KChlP1, Fig. 5F,I) and axonal trac-
ing techniques (Fig. 6D), respectively. In the striatum and
globus pallidus, the dissociation between the h-FOD and r-
FOD is pronounced (Figs. 4A,C and D,F and 5E,H).

For example, in the anterior dorsal striatum, the r-FOD
features three peaks, of which the anterioposterior compo-
nent corresponds nicely with the through-plane

Figure 3.

Comparison of neuronal and glial cell morphologies in the rat

cerebral cortex. (A) Confocal image of two-layer-V pyramidal

neurons [modified from Kalisman et al., 2005, with permission].

(B) Maximum projections of dye-filled, nonreactive astrocytes in

layer IV [reprinted from Wilhelmsson et al., 2006 with permis-

sion]. In contrast to pyramidal cell dendrites, astrocytes have a

‘‘spongiform’’ appearance with numerous, highly tortuous, and

permeable processes that are not well modeled by piecewise cy-

lindrical elements. As a reference, the maximum length scale

probed by our experiment is on the order of
ffiffiffiffiffiffiffiffiffiffiffiffi
2DLD

p
� 4lm.

Scale bars, 25 lm
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orientations of penetrating corticofugal axons (compare
blue peaks in Fig. 4A with B), while the more complex,
crossing orientations appear to reflect the more random or-
ganization of corticostriatal terminal plexuses [Brown

et al., 1998; Alloway et al., 1999; Veinante and Deschenes,
2003], dendritic arbors, and cellular processes in the region
(compare red and green peaks of the r-FOD in Fig. 5E
with the histoarchitecture in Figs. 5F,I and 6D).

Figure 4.

Sagittal comparison of RSI and histology in the striatum and

globus pallidus. Color-coded RSI reconstructions of the r-FOD

(left column; A, D) and h-FOD (right column; C, F) are shown

together with myelin stained histological sections (middle col-

umn; B, E) from the same specimen. All RSI distributions were

scaled to fit within the voxel boundary, while the h-FOD was

further normalized by subtracting the minimum to highlight its

preferred orientation. RSI volume fractions are shown as voxel

grayscale intensities (dark corresponds to increased volume frac-

tion). The upper left inset indicates position of the sagittal slice.

Two regions are compared, one in the dorsolateral striatum (A–C)

and one in the globus pallidus (D–F). Arrows on top of the inset

images and frames in A and C indicate the position of the coronal

slices shown in Figure 5E,H, respectively. The oblique orientation

of the elongated dark, myelin stained fibers in B and E correspond

well to the anterioposterior (blue) component of the r-FOD, but

less well with the elongated h-FOD. The r-FOD volume fractions

(grayscale darkening from left to right in D) fit well with the den-

sity of myelin labeled fibers in E. [Color figure can be viewed in

the online issue, which is available at wileyonlinelibrary.com.]
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Figure 5.

Coronal comparison of RSI and histology in the cerebral cortex

and striatum. Presentation as in Figure 4. In addition to the mye-

lin stained histological sections (middle column; C, G) from the

same specimen, potassium channel (KChlP1) stains (middle col-

umn; B, F, I) are also included from a similar specimen (from

www.brainmaps.org; see Sample Preparation and Image Acquisi-

tion section). Two regions are compared, one in the parietal

cortex (A–D) and one in the dorsolateral striatum (E–I).

Arrows on top of the inset images and frames in E and H indi-

cate the position of the sagittal slices shown in Figure 4A,C,

respectively. In the cortex, the primary orientation of the r-FOD

and h-FOD are aligned radial to the cortical surface, while the r-

FOD displays additional tangential orientations, which are most

prominent in superficial layers I/II. In the striatum, the through-

plane (anterioposterior, blue) r-FOD and h-FOD orientations

reflect the cross-sectioned myelin stained fibers passing through

the striatum (dark dots in E, light dots in F). Here, again the r-

FOD displays substantial additional in-plane structure (red and

green peaks), which we argue reflects the complex geometry of

corticostriatal terminal plexuses (Fig. 6D) and vast networks of

dendritic arbors in the region (I). Scale bar 50 lm. [Color figure

can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]



In the globus pallidus, a similar pattern of r-FOD orien-
tations is observed, with prominent peaks well aligned
with the oblique axial fibers penetrating the region (com-
pare blue peaks in Fig. 4D with E), and less prominent,
dorsoventrally (green) and mediolaterally (red) oriented
peaks. While some of the smaller amplitude green and red
peaks may be due to ringing artifacts introduced during
reconstruction (see Appendix 5.2 for discussion and simu-

lation of these artifacts), the larger amplitude peaks cannot
be explained based on ringing artifacts alone, and are con-
sistent with the orientation of pallidal dendrites and stria-
topallidal axonal terminations in the region [Gerfen, 2005;
Sadek et al., 2007].

By contrast, the h-FOD in the globus pallidus and dorsal
striatum has a broader disk-like shape, with oblique dorso-
ventral orientation in the globus pallidus (Fig. 4F), and

Figure 6.

Axonal architecture in the cerebral cortex and dorsal striatum.

Histological images [from the Whole Brain Connectivity Atlas at

www.rbwb.org, case R606; Zakiewicz et al., 2011] showing spe-

cific corticocortical and corticostriatal axonal projections, an-

terogradely labeled by axonal tracer injection in the primary

somatosensory cortex (darkly stained region indicated by aster-

isk in inset, see ‘‘Sample Preparation and Image Acquisition’’ sec-

tion). (A) Overview of the secondary somatosensory cortex

and dorsal striatum showing the distribution of distinct, darkly

labeled axonal plexuses. Note the columnar distribution of la-

beled fibers in the cerebral cortex, with profuse arborizations in

layers I–III and V, and laminar distribution of striatal fiber plex-

uses (arrowheads) extending in parallel with the overlying exter-

nal capsule (ec). Frames indicate the position of panels B–D. (B–

D) Image magnifications showing detailed fiber architectures in

cerebral cortex (B, layer I/II; C, layer IV/V) and dorsal striatum

(D). Note the perpendicular fiber orientations in the deeper

part of the cortex (C) and striatum (D), which match the r-FOD

in Figure 5A,E, respectively. Also, the more complex fiber orien-

tations in the superficial cortex (B) fit well with the more pro-

nounced tangential r-FOD peaks in Figure 5A. Scale bars, 500

and 50 lm.
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Figure 7.

Coronal comparison of RSI estimates of (restricted) neurite vol-

ume fraction with histological measures of fiber architecture.

The coronal section is the same as in Figure 5 (frames indicate

corresponding panels). As expected, the RSI neurite volume

fraction is consistent with the combination of both myelinated

axons (left panel) and unmyelinated dendrites (right panel). Note

also the increased neurite volume fraction in superficial layers of

the cerebral cortex (I/II), which are also clearly visible in the po-

tassium channel (KChlP1) stain (right panel). [Color figure can be

viewed in the online issue, which is available at wileyonlinelibrary.com.]

Figure 8.
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horizontal orientation in the striatum (Figs. 4C and 5H).
Recall, the h-FOD was normalized by subtracting the mini-
mum to highlight their preferred orientation, which turns
spherical FODs into disk-like distributions. Interestingly,
in none of these regions is the primary orientation of the
h-FOD aligned consistently with the penetrating myelin-
ated fibers (compare Fig. 4B with C and E with F). While
we lack data to interpret this observation conclusively, we
surmise that the primary orientation of the h-FOD in this
region reflects the combined hindrance of extraneurite
water by both penetrating corticofugal and striatofugal
axonal projections, and the highly oriented striatal [Brown
et al., 1998; Alloway et al., 1999; Veinante and Deschenes,
2003] and pallidal neurites [Sadek et al., 2007]. This can
explain why the h-FOD appears to align somewhere in
between the primary (blue) and secondary and tertiary
(green and red) peaks of the r-FOD (Fig. 4B,C,E,F). This
also supports the existing notion that in most regions
(excluding uniformly oriented dense white-matter fiber
tracts) the fiber architecture is less well characterized by
the fast hindered water fraction compared to the slow re-
stricted fraction [Ronen et al., 2003; Assaf and Basser,
2005].

Example 2: Cerebral cortex

The cerebral cortex features a characteristic laminar and
columnar organization with radially and tangentially ori-
ented neurites [Lorente de No, 1938; Szentagothai, 1975;
Mountcastle, 1997]. Here, the h-FOD is aligned radially to
the cortical surface (Fig. 5D), consistent with the orienta-
tion of pyramidal cell axons and dendrites, as well as
most corticoefferent and corticoafferent fibers [Deschenes
et al., 1998] (Figs. 5B and 6B,C). By contrast, the r-FOD not
only reflects the same radial orientations, but also displays
prominent orientations tangential to the cortical surface
(Fig. 5A), with the largest tangential amplitude occurring
in the superficial cortical layers I/II. Given their large am-
plitude relative to the main (radial) peak, is it unlikely
that the tangential peaks of the r-FOD are caused solely by
ringing artifacts (again, see Appendix 5.2 for a detailed
discussion and simulation of these artifacts), rather they
likely reflect the well-known horizontal orientation of cort-
ical neurites, see e.g., [Kristt, 1978; Cowan and Wilson,
1994; Veinante and Deschenes, 2003]. The complex, charac-

teristic radial and tangential organization of cortical neu-
rites is demonstrated in Figure 6A–C.

In the external capsule (ec) below the cortical gray mat-
ter, both the h-FOD and r-FOD are elongated parallel with
mediolaterally oriented fibers (Fig. 5A–D), while the r-
FOD displays additional perpendicular orientations (Fig.
5A), which appear to reflect corticoefferent fibers passing
through the external capsule toward the underlying stria-
tum [Cowan and Wilson, 1994; Veinante and Deschenes,
2003] and the fibers peeling off the ec into the cortex
(arrows in Fig 5C).

To lend further support for the notion that the fine (re-
stricted) scales probed by the RSI model reflect water re-
stricted within neurites, we qualitatively compared RSI
maps of the total restricted volume fraction (summing
scales DT/DL ¼ 0, 0.08, 0.16, 0.25, Fig. 2, red frame) with
the myelin and KChlP1 stained sections (Fig. 7). We found
that the RSI maps were indeed largely consistent with the
expected neurite volume fraction within gray and white
matter as the model predicts. RSI estimates of the
neurite volume fraction in the cerebral cortex varied from
�18–31%, with the highest fraction occurring in layers I/II
followed by layer V. This pattern is consistent with the
high density of apical dendrites and horizontally oriented
neurites in layers I/II [Zhou and Hablitz, 1996] (see, also
Fig. 6B), as well as numerous dendritic arbors and profuse
plexuses of thalamocortical afferents in layer V [Deschenes
et al., 1998] (see Fig. 6C). Histological substrates for this
pattern are seen in the KChlP1 stain (Fig. 5B, Fig. 7), and
the axonal tracer data (Fig. 6B,C). In the underlying white-
matter (ec, and corpus callosum, cc) RSI estimates of the
total restricted volume fraction increased dramatically to
�42–84%, consistent with the presence of densely packed
white-matter fibers in this region, which appear dark red
on the myelin stain (Fig. 7). Taken together, these results
compare favorably with the expected neurite volume frac-
tion in gray and white matter, and indicate that the re-
stricted volume fraction is a likely surrogate measure of
the neurite volume fraction.

Example 3: Cerebellum

We finally explored the anatomical substrates of the r-
FOD and h-FOD in the cerebellum (Fig. 8), which features
a well-known stereotypic architecture, see e.g., [Voogd,

Figure 8.

Axial RSI analysis in the cerebellum. Color-coded RSI reconstruc-

tions of the (A) r-FOD and (B) h-FOD are shown for a horizon-

tal cerebellar slice taken at level of lobules 3, 5, and 8,

corresponding to a level �4.6 mm below bregma, illustrated in

the inset atlas diagram redrawn from Figure 201 in Paxinos and

Watson 2007 [Paxinos and Watson, 2007]. All distributions were

scaled to fit within the voxel boundary, while the h-FOD was fur-

ther normalized by subtracting the minimum to highlight its pre-

ferred orientation. RSI volume fractions are shown as voxel

grayscale intensities (dark corresponds to increased volume frac-

tion). The cerebellar white matter and cortical layers are differen-

tiated by distinct differences in r-FOD and h-FOD orientation and

volume fraction. White boxes correspond to voxels plotted in

Figure 10. Cb, cerebellar lobule, CrusI, crus 1 of the ansiform

lobule; CrusII, crus 2 of the ansiform lobule; gcl, granule cell layer;

ml, molecular layer; Sim, simple lobule; wm, white matter. [Color

figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]
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1995]. Our analysis focused on the cerebellar vermis in a
horizontal slice at the level of lobules 3, 5, and 8, where
the cerebellar folia are mediolaterally oriented, and orien-
tation structure is easier to interpret in relation to the
employed slice planes. The cerebellar white matter, gran-
ule cell layer, and molecular layers (mls) were all readily
identified based on the r-FOD and h-FOD volume fractions
and orientations (Fig. 8). The narrow Purkinje cell layer
could not be distinguished due to partial voluming.

In white matter (wm), the cerebellar afferent and effer-
ent fibers largely follow the foliated structure of the
cerebellum, but also form more complex (crossing) orienta-
tions in some regions, see e.g., [Wu et al., 1999]. As
observed in the earlier examples, the preferred orientation
of white-matter fibers was clearly reflected in both r-FOD
and h-FOD, while the r-FOD also showed additional sec-
ondary and tertiary orientations (Fig. 8), which are consist-
ent with crossing afferent and efferent fibers in this region
[Wu et al., 1999], but may also reflect partial voluming
with neighboring layers.

The granule cell layer (gcl) is characterized by the pres-
ence of numerous small granule cells, and further also
smaller numbers of other cell types. Radially (translobu-
larly) oriented mossy fiber and climbing fiber penetrate the
gcl and ascend together with granule cell axons through the
Purkinje cell layer into the overlying ml [Voogd, 1995]. In this
layer, the r-FOD showed prominent radial (blue and green)
peaks (Fig. 8), consistent with the orientation of mossy and
climbing fibers, and less prominent mediolaterally (red) ori-
ented peaks (Fig. 8), which may be associated with the differ-
ent cellular extensions in the gcl. The h-FOD, on the other
hand, tended to be more variably elongated in both translobu-
lar or parlobular directions (Fig. 8).

The ml contains several categories of radially (translobu-
larly) oriented neurites (including Purkinje cell dendrites,
ascending granule cell axons, dendrites of Golgi- and stel-
late cells, and glial extensions [Voogd, 1995]. These orien-
tations are clearly visible as blue and green peaks in the r-
FOD (Fig. 8). Another characteristic feature of the ml is the
presence of numerous, mediolaterally (parlobularly) ori-
ented parallel fibers, which fit well with the prominent
mediolateral (red) peaks of the r-FOD (Fig. 8). The h-FOD,
on the other hand, illustrates a single peak pointed in the
direction of the parallel fibers (Fig. 8), which makes sense
given the high packing density of parallel fibers in this
region compared with other neurites in the ml (e.g., Pur-
kinje cell dendrites and ascending granule cell axons),
leading to increased tortuosity of extraneurite water in the
orthogonal direction.

Taken together, we found that the r-FOD demonstrates
the stereotypic organization of cerebellar neurites in each
layer, while the h-FOD tends to be more indicative only of
the densely packed white-matter and parallel fibers, which
provides further support for the notion that the coarse
scale hindered fraction of diffusion is less well characteris-
tic of the underlying fiber architecture compared with the
fine scale restricted fraction.

Comparison With SD and DSI

We have demonstrated how the r-FOD and h-FOD
reflect different aspects of the neurite architecture in both
white and gray matter, but we were also interested in how
these multiscale RSI measures compared with traditional
fixed-scale SD and DSI. To address this issue, we com-
puted fixed-scale estimates of the FOD (FS-FOD) using a
single deconvolution kernel (DT/DL ¼ 0.08), which can be
viewed as an extension of the traditional SD for HARDI
acquisitions to arbitrary q-space data [Leergaard et al.
2010], and DSI estimates of the water diffusion orientation
distribution function (DSI-dODF) (see Materials and Meth-
ods), and compared them with the r-FOD and h-FOD in
the cerebral cortex and cerebellum.

In the cerebral cortex, we found that the FS-FOD and
DSI-dODF reflected mainly the radial orientation of corti-
cal neurites in contrast to the r-FOD, which was able to
resolve both the radial and tangential organization of corti-
cal neurites (Fig. 9). It is also interesting to note the quali-
tative similarity between the h-FOD and the DSI-dODF
(Fig. 9), which were both normalized by subtracting the
minimum to highlight their preferred orientation (the r-
FOD and FS-FOD were not normalized as their minima
was effectively zero). This similarity is not surprising
given the DSI-dODF reflects the overall statistical likeli-
hood of water diffusion in a given direction, which is
heavily weighted by the volume fraction of ‘‘fast’’ hin-
dered diffusion along that direction and less so by the
‘‘slow’’ restricted fraction.

Figure 10 compares the r-FOD and h-FOD versus the FS-
FOD and DSI-dODF in three representative voxels from
different layers of the cerebellum. In white matter (Fig. 10,
bottom row), the main (red) peak of the r-FOD and h-FOD
were well aligned with the main peak of the FS-FOD and
DSI-dODF, which follow the cerebellar afferent and effer-
ent fibers in this region. Note that in these voxels, the sec-
ondary and tertiary peaks of the r-FOD and FS-FOD may
be due in part to ringing artifacts introduced during recon-
struction, as their amplitudes are quite small compared to
the main peak (see Appendix 5.2 for a discussion). Small
spurious peaks in the r-FOD, FS-FOD, and DSI-dODF may
also due to numerical sampling errors associated with
nonuniform (Cartesian) sampling of q-space.

In the granule cell layer (gcl, Fig. 10 top row), the FS-
FOD and DSI-dODF both demonstrated prominent medio-
lateral (red) and radial (blue) peaks consistent with the ori-
entation of mossy fiber and climbing fiber in the region.
These same peaks were also present in the RSI r-FOD and
h-FOD. Yet additional information can be gleaned from
RSI. For example, the strong mediolateral (red) orientation
of the h-FOD suggests mediolaterally oriented neurites
may have higher packing densities compared with radially
oriented neurites, leading to higher tortuosities of extra-
neurite water in the orthogonal direction.

The ability to separate hindered and restricted diffusion
may also increase the sensitivity of RSI to resolve neurite
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orientations in voxels with a high partial volume fraction
of hindered diffusion. For example, in the ml (Fig. 10 mid-
dle row), the FS-FOD, DSI-dODF, and RSI h-FOD again
demonstrated prominent mediolateral (red) peaks consist-
ent with the orientation of parallel fibers in the ml. How-
ever, the r-FOD showed strong additional radially
(translobularly) oriented blue and green peaks, which are
consistent with the known orientation of Purkinje cell den-
drites, ascending granule cell axons, dendrites of Golgi-
and stellate cells, and glial extensions in this region
[Voogd, 1995]. These results were generally consistent
across other cerebellar voxels (see Fig. 8). Taken together,
the r-FOD seems to capture additional anatomical structure
not afforded by fixed-scale SD-like reconstruction or DSI.

Advantages and Disadvantages

The RSI analysis method presented in this study is simi-
lar in spirit to the earlier model of neurite architectures
proposed by Jespersen and coworkers [Jespersen et al.
2007; Jespersen et al. 2010]. Both use a distribution of non-
exchanging cylinders to model the tissue microstructure
and spherical harmonics to describe their orientation dis-
tribution. Both also harness multiple b-value data to sepa-
rate scale information at the hindered and restricted level.
Similar to RSI, Jespersen’s model also showed good agree-

ment with the neurite volume fraction across various gray-
and white-matter regions [Jespersen et al. 2010]. The major
difference between the two methods is that our RSI model
does not explicitly fit for the intracylindrical and extracy-
lindrical diffusivities (which requires nonlinear optimiza-
tion of model parameters), but rather assumes the
diffusivities can take on a broad range (or spectrum) of
values when fitting the data. This allows RSI to preserve a
linear implementation, which greatly simplifies estimation
and decreases computation time significantly. The spec-
trum of independent scales and orientation distributions
further allows RSI to model the tissue microstructure with
minimal a priori assumptions on the number of hindered
and restricted water compartments, their respective geo-
metries, and partial volume fractions. This is in contrast to
other biophysical models of diffusion in white matter,
which often impose some form of geometric dependence
between the hindered and restricted compartment to infer
on nonlinear parameters describing the axon diameter dis-
tribution [Assaf et al., 2008; Alexander et al., 2010]. While
it may be reasonable to equate the geometry of the hin-
dered and restricted compartment in white matter, as
axons provide the major source of both diffusion hin-
drance and restriction in this region, in gray matter, the
physical relationship between the two compartments is
more complex. For example, in the current study, and in

Figure 9.

Comparison of RSI with SD and DSI in the cerebral cortex.

Color-coded RSI reconstructions of the (A) r-FOD and (B) h-

FOD are compared against (C) SD reconstructions of the fixed-

scale FOD (FS-FOD) and (D) DSI reconstructions of the dODF

(DSI-dODF). The region sampled is the same as in Figure 5A–D.

All distributions were scaled to fit within the voxel boundary,

while both the h-FOD and DSI-dODF were further normalized

by subtracting the minimum to highlight their preferred orienta-

tion. RSI volume fractions are shown as voxel grayscale inten-

sities (dark corresponds to increased volume fraction). The FS-

FOD and DSI-dODF are plotted on the r-FOD volume fraction

map. In contrast to the r-FOD, both the FS-FOD and DSI-dODF

demonstrate little evidence for the numerous horizontally ori-

ented neurites tangential to the cortical surface (see Fig. 6B,C),

and have similar orientation structure to the h-FOD. I/II, cere-

bral cortex layer I/II; ec, external capsule. [Color figure can be

viewed in the online issue, which is available at

wileyonlinelibrary.com.]
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Jespersen’s model, the geometries of the hindered and re-
stricted compartments are modeled independently to
account for the fact that there are numerous additional
structures in the extraneurite compartment (cell bodies,
glia, ECS) that can alter the tortuosity of the hindered
compartment besides neurites alone. Also, the tortuosity is
known to fall off rapidly with increasing ECS volume frac-
tion a [Chen and Nicholson, 2000; Kume-Kick et al, 2002]
and therefore it’s likely only populations of tightly packed
neurites (i.e., small a) will produce measurable increases
in tortuosity in gray-matter voxels, while sparsely packed
neurites will not. This may explain why in the current
study not all peaks in the r-FOD were demonstrated in the
h-FOD and helps validate the use of independent geome-
tries for the hindered and restricted compartment. With
that said, the disadvantage of using a relatively uncon-
strained mixture model for the tissue architecture is the
risk of overfitting and blurring of model parameters, as
well as reduced inferential power. In the current study,
we mitigated the risk of overfitting using carefully chosen
model regularization techniques in conjunction with the
Bayesian information criterion (BIC) to optimize the regu-
larization level. We also quantified the extent and nature
of model blurring in the optimally regularized model
using the resolution matrix (as described in Appendix 5.1).
Finally, we gained inferential power in the current study

using the combination of simulations and theoretical (tor-
tuosity) models of hindered and restricted diffusion in
known geometries to relate our observations to the under-
lying histoarchitecture in various anatomical regions.

Some care must be taken when extrapolating our find-
ings in a fixed tissue sample to the in vivo situation. For-
malin fixation is known to reduce the mean diffusivity in
gray and white matter by about 64% and 80%, respec-
tively, but has little effect on the fractional anisotropy (FA)
[D’Arceuil et al., 2007]. Given the FA is preserved, we
would not expect the fixation process to alter the orienta-
tion distribution of the r-FOD or h-FOD, nor the overall
pattern of the length scale spectrum per se (i.e., separation
of hindered and restricted diffusion), as both are based on
measures of the relative diffusivity DT/DL. However, as
the fixation process has different effects on gray and white
matter [D’Arceuil et al., 2007] and we assumed a constant
DL across both regions, one should be cautious when
interpreting the absolute volume fraction of hindered and
restricted diffusion at a given length scale.

CONCLUSIONS

In this work, we presented an efficient linear reconstruc-
tion and modeling framework for multidimensional (mul-
tidirection and multi b-value) diffusion data called RSI
that allows for resolving both length scale and orientation
information of biological tissue microstructures. Our
model is based on a straightforward extension of the linear
SD HARDI reconstruction method, by including a range
(or spectrum) of Gaussian deconvolution kernels. We dem-
onstrate in high b-value Cartesian q-space data how RSI
analysis can be used to separate fine and coarse scale dif-
fusion processes, which we argue stems mainly from re-
stricted and hindered diffusion in the intraneurite and
extraneurite water compartment, respectively. We support
this hypothesis both theoretically and empirically, and
demonstrate the correspondence of the restricted volume
fraction and corresponding orientation distribution (r-
FOD) with the underlying neurite volume fraction and
three-dimensional histoarchitecture of white- and gray-
matter structures. We further demonstrate how RSI recon-
structions of the r-FOD captures additional anatomical
structure beyond that which can be gleaned from tradi-
tional fixed-scale SD and DSI analyses, particularly in
gray-matter regions. Future work is needed to understand
the conditions and experimental protocols required to fur-
ther probe hindered and restricted diffusion length scales
in greater detail, which may include using multidiffusion
time protocols to explore the diameter distribution of vari-
ous cellular compartments, similar to the AxCaliber
method for quantifying axon diameter distributions in
vivo [Barazany et al., 2009; Assaf et al., 2008].

We conclude that incorporating diffusion length scale in-
formation in geometric models of biological diffusion will be
of upmost importance for advancing state-of-the-art dMRI
methods beyond quantifying white-matter orientations, to

Figure 10.

Comparison of RSI with SD and DSI in the cerebellum. Color-

coded RSI reconstructions of the r-FOD and h-FOD are com-

pared against the FS-FOD and DSI-dODF. The sampled voxels are

shown as white boxes in Figure 8. In the molecular layer (ml), the

r-FOD shows additional radially (translobularly) oriented green

peaks (arrow) that are consistent with the orientation of Purkinje

cell dendrites and ascending granule cell axons in the region.

These peaks are not evident in either the FS-FOD or DSI-dODF.

[Color figure can be viewed in the online issue, which is available

at wileyonlinelibrary.com.]
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providing a more detailed quantitative characterization of
tissue microstructures in health and disease. While future
work will be required to test the application of this method
on clinical scanners, we anticipate the general multiscale lin-
ear mixture model framework of RSI will find important
clinical applications in probing salient microstructural fea-
tures of normal and pathological tissue in vivo.
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APPENDIX

RSI Model Resolution

The concept of the model resolution matrix in linear
estimation problems is a well established and important
way to characterize the bias in linear inverse problems
[Aster et al., 2005]. The basic idea is to see how well a par-
ticular inverse solution b̂ matches the original model pa-
rameters b through the expression b̂¼AyA b, where Ay is
the regularized inverse matrix, and AyA is the model reso-
lution matrix. In practice, the model resolution matrix is
commonly used in two different ways. The first is to
examine the diagonal elements of AyA for their deviation
from unity. A value of one would indicate perfect resolu-
tion, i.e., where b̂¼Ib, with I being the identity matrix. In
this way, the trace of AyA can be used to indicate the
intrinsic dimensionality of the problem, by quantifying the
total number of resolvable parameters. The second is to
multiply AyA by a particular ‘‘test model’’ btest to see how
well the true (test) model would be resolved using the
regularized inverse matrix. Often the test models are col-

umn vectors of all zeros, except for a single element equal
to one, which when multiplied on the left hand side by
AyA equals the corresponding column of AyA. Thus, the
columns of AyA, or ‘‘resolution kernels,’’ describe how
well the true parameters are recovered or blurred by the
regularized inverse matrix. Similarly the rows of AyA can
be viewed as quantifying how sensitive a particular pa-
rameter estimate is to the true model.

In this section, we use the model resolution matrix to
quantify the blurring and intrinsic dimensionality of our
optimally regularized RSI model. To do this, we first pro-
jected the regularized model resolution matrix AyA (cf.
Eqs. 10,11) onto the FOD surface via YLA

yAYT
L, where YL

is a large block diagonal matrix of SH vectors. In this way,
the model resolution can be visualized directly on the
FOD surface, rather than in spherical harmonic space,
which is more difficult to interpret. The resultant matrix
was then row normalized (i.e., the same axis limits were
used for each row element) and plotted in Figure A1. For
simplicity, and without loss of generality, we plot only the
columns of the resolution matrix that corresponds to unit

Figure A1.

RSI model resolution matrix. Each row illustrates the sensitivity of the recovered (estimated) FOD

at that scale (row number) to FODs at all other scales (column number). Perfect resolution would

result in a diagonal matrix of ‘‘cigar-like’’ FODs along the horizontal axis (labeled). All FODs are

shown unnormalized (without subtracting the minimum) with negative values set to zero. [Color

figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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fibers pointed along the horizontal axis (i.e., ‘‘test models’’
were horizontal unit fibers), and ignore the two isotropic
terms. Each row of the matrix can be interpreted as the
sensitivity of the recovered (estimated) FOD at that scale
to FODs at all other scales. Thus, perfect resolution would
result in a diagonal matrix of cigar-like FODs.

As expected, we found that FODs at the fine and coarse
scale were separable, despite significant blurring across
neighboring scales. For example, rows 1–2 have little or no
contribution from columns 10–12, and rows 10–12 have lit-
tle to no contribution from columns 1–2. This separability
fits well with our empirical observations (see Fig. 2). Also,
the isotropic FODs in the bottom right-hand corner dem-
onstrate how estimates of coarse scale hindered FODs
have higher angular uncertainly compared with the re-
stricted FODs in the upper left, which also fits well with
our empirical observations. As mentioned above, the reso-
lution matrix in Figure A1 quantitatively demonstrates
how information is blurred across neighboring scales
using our optimally regularized model and q-space acqui-
sition parameters (i.e., G, D, and d). The model resolution
matrix can also be used to optimize the experimental
acquisition parameters offline to achieve finer scale resolu-
tions. For example, it may be possible to use multidiffu-
sion time protocols to resolve restricted length scales in
more detail, which would result in diagonal terms in
the upper left-hand corner of Figure A1. One can also use
the trace of the resolution matrix to quantify the effective
number of resolvable scales, which we calculated in our
q-space data to be just under 3 (2.67).

Reconstruction Bias (Ringing Artifacts)

An additional source of bias well-known to all deconvo-
lution-based HARDI methods using spherical harmonic
basis functions are ringing artifacts (spurious sidelobes)
introduced during reconstruction. These artifactual side-
lobes result from truncation of the spherical harmonic se-
ries, leading to a form of Gibbs ringing on the surface. For
a 4th order (L ¼ 4) harmonic expansion, there will be
exactly L/2 � 1 ¼ 1 sidelobes that occurs at 90� to the
main peak [Hess et al., 2006]. Often, these artifactual peaks
can be mitigated with appropriate model regularization
techniques such as Tikhonov regularization (used in this
study) or Laplace-Beltrami regularization while balancing
the tradeoff between angular resolution on the one hand
and suppression of ringing artifacts on the other.

To test the extent to which our regularized RSI model
was prone to ringing artifacts, we performed an additional
Monte Carlo simulation study. Briefly, we generated syn-
thetic diffusion signals using a simplified RSI model con-
sisting of a single fiber system with two diffusion scales,
one restricted (DT/DL ¼ 0), and one hindered (DT/DL ¼
0.82) with various volume fractions. For each Monte Carlo
run, we added random Rician noise to the synthetic signal

at a given signal-to-noise (SNR) ratio with respect to the
signal power at b ¼ 0. Finally, we used the fully regular-
ized RSI model (all 12 scales as implemented in this study)
to estimate the model parameters. We then repeated the
experiment for various SNR levels and hindered and re-
stricted volume fractions.

The results of our Monte Carlo simulations are shown
in Figure A2. Note that we only plot RSI estimates of the
r-FOD, as the h-FOD was found to be largely insensitive to
these ringing artifacts. Not surprisingly we found that the
ringing artifacts increased both as the SNR decreased and
as the volume fraction of hindered diffusion increased
(Fig. A2). This is consistent with prior simulation studies
showing both the SNR dependence of these artifacts
[Tournier et al., 2008] and their sensitivity to isotropic
‘‘background’’ diffusion [Dell’acqua et al., 2010]. However,
we also found that the amplitude of these ringing artifacts
was generally very small compared to the main peak,
even at very low SNR (Fig. A2). Thus, given the SNR of
our q-space data was in the range of �29.8 and �55.1 for
white and gray matter, respectively, we would not expect
the amplitude of the ringing artifacts to be greater than
about 7% of the main peak, even in regions with a high
partial volume fraction of hindered diffusion, such as cort-
ical gray matter (~70–80%). Taken together with the fact that
many of our r-FOD peaks were not always at 90� to each
other (see Fig. 5E), we argue that it is unlikely that many of
the secondary and tertiary orientations of the r-FOD pre-
sented in this study can be explained on the basis of ringing
artifacts alone, but rather likely reflects to a large extent the
underlying neurite architecture of the region.

Figure A2.

RSI Monte Carlo simulations. The mean r-FOD (color-coded sur-

face) and mean plus standard deviation (gray opaque surface)

over 100 Monte Carlo runs are shown for various SNR levels

and hindered (h) and restricted (r) volume fractions. The ampli-

tude of the 90� ringing artifact increases both with decreasing

SNR and increasing hindered volume fraction. The SNR of our

q-space data in white and gray matter was �29.8 and �55.1,

respectively. [Color figure can be viewed in the online issue,

which is available at wileyonlinelibrary.com.]
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