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Abstract
Modern statistical inference techniques may be able to improve the sensitivity and specificity of
resting state functional MRI (rs-fMRI) connectivity analysis through more realistic
characterization of distributional assumptions. In simulation, the advantages of such modern
methods are readily demonstrable. However quantitative empirical validation remains elusive in
vivo as the true connectivity patterns are unknown and noise/artifact distributions are challenging
to characterize with high fidelity. Recent innovations in capturing finite sample behavior of
asymptotically consistent estimators (i.e., SIMulation and EXtrapolation - SIMEX) have enabled
direct estimation of bias given single datasets. Herein, we leverage the theoretical core of SIMEX
to study the properties of inference methods in the face of diminishing data (in contrast to
increasing noise). The stability of inference methods with respect to synthetic loss of empirical
data (defined as resilience) is used to quantify the empirical performance of one inference method
relative to another. We illustrate this new approach in a comparison of ordinary and robust
inference methods with rs-fMRI.
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1 Introduction
When the brain is at rest (i.e., not task driven), functional networks produce correlated low
frequency patterns of activity that can be observed with resting state fMRI (rs-fMRI). These
correlations define one measure of functional connectivity which may be estimated by
voxel-wise regression of activity in a seed region against that of the remainder of the brain
[1]. The sensitivity and specificity of connectivity inference techniques hinge upon valid
models of the noise in the observed data. Structured violations of the noise models due to
local flow, bulk motion, distortions, or other artifacts can invalidate the methods
traditionally used for inference [2]. Modern robust and non-parametric methods remain valid
over a broader range of disturbances, but come with the cost of reduced power when the
traditional methods would be appropriate. Therefore, a quantitative approach for comparing
inference methods (and preprocessing pipelines leading to inference) is an essential
analytical tool.

Several approaches for evaluating fMRI inference methods have been proposed. When
repeated datasets are available, one can measure the reproducibility of estimated quantities
when inference is applied to each dataset separately [3]. In task-based fMRI, cross-
validation resampling procedures have been used to assess spatial patterns of reproducibility
and temporal predictability for fMRI of task activities with the held-back samples [4]. More
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recent approaches for defining inference performance have considered the inference
procedure as a classifier between the patterns of task activity and image intensity [5]. Yet,
these advanced approaches are not applicable to rs-fMRI, and to date, no methods have been
proposed to quantify relative performance of rs-fMRI inference methods based on typically
acquired datasets (i.e., without large numbers of repeated scans for a single subject).

Herein, we propose a new inference comparison approach based on the resilience of the
inference estimator. We apply this new technique to characterize ordinary and robust
inference of rs-fMRI data. This approach does not require acquisition of additional data and
is suitable for evaluation on isolated datasets as well as groups.

2 Theory
SIMEX is a statistical method that can be adapted to create resilience measures for inference
in rs-fMRI. The principle behind SIMEX is that the expected value of an estimator diverges
smoothly with increasing noise levels, therefore, the mean degree of corruption can be
estimated by extrapolating a trend of divergence when synthetic noise is added to empirical
data [6]. In our context, it is not reasonable to add noise because the noise distributions are
uncertain — especially in the context of outliers. If we apply the SIMEX assumption of
smooth convergence in this case, we can probe the marginal reduction in sensitivity of an
estimator by removing data.

We define resilience as the ability of an inference method to maintain a consistent
connectivity estimate despite a reduction in data. Over the time course of an rs-fMRI
experiment (5–10 mins), the active brain regions vary. Hence, reproducibility of inferences
based on sampled time periods is not meaningful. Therefore, we focus on decimating the
sampling rate (Fig 1). The resilience of t-value estimates is quantified by two summary
metrics: (i) the average absolute value of change in t-value with decimation level (i.e.,
slope), (ii) the average variance of the estimated metrics. The slope of t-value is computed
by averaging the individual slopes between decimation levels.

2.1 Regression Models
rs-fMRI data can be analyzed with a first order autoregressive model, AR(1), for a weakly
stationary time series [7],

(1)

where yi is a vector of intensity at voxel i, X is the design matrix, βi is a vector of regression
parameters at voxel i, and ei is a non-spherical error vector. The correlation matrix V is
estimated using Restricted Maximum Likelihood (ReML) and β is estimated on the
whitened data (i.e., the “OLS” approach). Alternatively, a robust estimator (e.g., the
“Huber” M-estimator [8]) may be applied after whitening. Both the OLS and Huber methods
are available within the SPM software [9]. Herein, we used the Huber method with the
tuning constant chosen for 95% asymptotic efficiency when the distribution of observation
error is Gaussian distribution [10].

3 Methods and Results
3.1 One voxel simulation

Resilience aims to capture the performance of statistical inference methods on empirical
data where the true correlations are unknown. If the true correlations are known, one could
directly calculate the type I and type II errors. To explore how our definition of resilience
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relates to the type I error and the type II error, we performed single voxel simulation using
an AR(1) model,

(2)

where x was simulated as region of interest (ROI) time course containing 200 time points
with an approximately uniform distribution between 10 and 20 (arbitrary units), e was
distributed as zero mean autoregressive Gaussian noise with standard deviation equaling
10% of the mean y value and normalized correlation 0.2. The null hypothesis H0 : β1 = 0
was tested using a t-test. In separate simulations, β1 was assigned to 0 for specificity
exploration and 0.8 for sensitivity exploration. The type I and type II errors are calculated
based on p-value (p < 0.05). To simulate structured outliers, Rician distributed noise
(Rice(0,25)) was added to the y values corresponding to values with the lowest or largest
intensity. Rician noise is used to reflect the distribution of noise in MR magnitude images.
The number of outliers was swept between 0 and 10 using 103 Monte Carlo repetitions each.
The covariance matrix was assumed to be known, and OLS and Huber inference were
performed independently after whitening. Resilience metrics were calculated with three data
partitions (degraded up to ¼ of the dataset). Fig. 2 compares type I error, type II error, and
resilience as a function of number of outliers; significant differences were evaluated using
the Wilcoxon signed-rank test.

Both OLS and Huber controlled the type I and type II errors when there were no outliers.
For the resilience, the mean absolute slope and the mean variance of OLS and Huber are not
significantly different when β1 = 0 without outliers. When β1= 0.8 without outliers, the
mean absolute slope from OLS is larger than Huber while the mean variance is smaller.
These results are in agreement with the known behavior that robust methods are not as
powerful as OLS when assumptions are met.

When considering outliers, Huber resulted in lower mean absolute slope and mean variance
than OLS (for β= 0). When β = 0.8, the mean absolute slope of Huber was higher (due to
higher t-statistics with all data), but Huber yield lower variance estimates. Hence, we must
consider both the mean absolute slope and mean variance in consideration of estimator
performance as these are complementary measures. The mean variance from OLS increases
when outliers appear because some decimation samples include outliers while others do not.
In contrast, Huber is more resistant to outliers so that the variances are relatively constant.
The resilience results show less significance (e.g., last columns in the mean variance in Fig.
2) which is concordant with the decrease in the proportion of the differences in absolute
errors. In summary, the resilience is strongly correlated with the type I and type II errors.

3.2 Empirical 3T rs-fMRI Experiment
Eleven rs-fMRI of healthy subjects were acquired at 3T using EPI (197 vol, FOV = 192 mm,
flip θ = 90°, TR/TE = 2000/25 ms, 3×3×3 mm, 64×64×39 voxels) [11]. Prior to analysis, all
images were corrected for slice timing artifacts and motion artifacts using SPM8 (University
College London, UK). All time courses were low pass filtered at 0.1 Hz using a Chebychev
Type II filter, spatially normalized to Talairach space, spatially smoothed with an 8 mm
FWHM Gaussian kernel, linearly detrended, and de-meaned. Two voxels inside the right
primary motor cortex for each subject were manually selected as the ROI by experienced
researchers through exploring the unsmoothed images and comparing with the standard
atlas. The design matrix for the general linear model was defined as the ROI time courses,
the six estimated motion parameters, and one intercept. To create whole-brain connectivity
maps, every labeled brain voxel underwent linear regression using the design matrix
followed by a one sided t-test on the coefficient for the ROI time courses.
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For each subject, the whole dataset (197 scans) was subsampled. First, the TR value was set
to be 4 s (TR = 2 s in the original dataset), the 197 time series fMRI scans were divided into
two subsamples, one containing 99 scans and the other containing 98 scans. Similarly, the
TR value was set to be 6 s to obtain three subsamples. This procedure was repeated with a
TR value of 8 s. Thus, we have one original dataset and three collections of subsampled
datasets for each subject. The resting state fMRI analysis was performed on each dataset in
SPM8 using OLS and Huber inference.

To quantitatively compare the resilience of these two methods, the mean absolute slope and
the mean variance are evaluated across the gray matter (GM), white matter (WM) and
cerebrospinal fluid (CSF). To evaluate all subjects, we calculated the mean of the mean
absolute slope value and the mean of the mean variance in each brain region for each
subject. The significance of differences between the ordinary and the robust estimation
method were tested using the Wilcoxon signed-rank test.

The mean absolute slope and the mean variance from OLS are smaller than those of Huber
(Fig. 3). Over the 11 subjects, the mean absolute slope of OLS is not significantly different
while the mean variance is significantly smaller. Thus, the resilience metrics confirm
expectations that OLS is a superior inference technique for high quality empirical data (i.e.,
when distributional assumptions are appropriate).

3.3 Empirical 3T rs-fMRI Experiments with Outliers
To illustrate the use of resilience in the presence of outliers, a dataset with outliers was
simulated by increasing the WM intensity of the empirical 3T rs-fMRI dataset described in
section 3.2. The simulation results show that three outliers are enough to tell the difference
between OLS and Huber estimation so we selected three scans with low ROI intensity and
added random positive noisy images inside the WM region to simulate outlier scans. Noisy
Rician images are created with σ at 10% of the mean intensity and spatially smoothed at 8
mm FWHM Gaussian kernel. One slice of an outlier image is displayed in Fig. 4 (compare
with Fig. 3).

We applied the same connectivity analysis method (OLS and Huber) and the same resilience
calculation method (TR from 2s to 8s, mean absolute slope and mean variance in GM, WM
and CSF) described in section 3.2 (Fig. 4).

The connectivity maps illustrate that the OLS method lost substantial power in the vicinity
of the seed voxels when outliers were introduced whereas the Huber method preserved
detection. In terms of resilience, the Huber approach resulted in significantly smaller mean
absolute slope and mean variance in the WM. We also noted smaller mean absolute slope
and smaller mean variance from the robust method than the ordinary method in GM regions.
The relative improvement of the Huber performance in GM may due to the spatially pooled
covariance estimation. In CSF, the mean absolute slope from OLS is larger while the mean
variance is smaller for the example subject and across subjects. Noting that there are no
outliers in the CSF it is reasonable that the performance of Huber is not better than OLS.
The resilience results here suggest that the robust estimation method outperforms the OLS
method if outliers are present.

4 Discussion
The proposed resilience metrics provide a quantitative basis on which to compare inference
methods. The simulation results suggest that a comparison of methods based on resilience
would yield similar conclusions as one based on the type I and type II errors. It is reassuring
to see that resilience also indicates that OLS would outperform a Huber inference approach
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when the data quality is high (as in the publicly available dataset under study), whereas a
Huber approach would outperform OLS in cases when outliers are present. As rs-fMRI is
applied to ever more challenging anatomical targets (i.e., those requiring high spatial and
temporal resolution and/or using ultra-high field imaging), the achievable signal to noise
ratio decreases and the propensity for artifacts increases [12]. Hence, it is becoming
increasingly more important to quantitatively determine which inference methods are
appropriate.

In summary, we have presented a novel approach for quantifying inference methods based
on empirical data. Herein, we evaluated the resilience of the ordinary (OLS) and a robust
method (Huber) for both simulated and empirical data. Resilience provides a simple, but
powerful method for comparing a proxy for accuracy of inference approaches in empirical
data where the underlying true value is unknown. Continued exploration of metrics based on
resilience criteria promises to provide a fruitful avenue for comparative characterization of
inference stability and “quality.”

Note that if two inference methods yield different t-values when all data are considered, the
one that has a higher starting t-value will have a higher mean absolute slope even if both
methods degrade at the same rate. Hence, in the regions of true association (i.e., β ≠ 0), the
variance measure is likely of greater interest as it reflects degraded inference consistency.
Yet, in regions that lack an association (i.e., β = 0), the slope measure would reflect on
anonymous changes in t-value which could be attributed to “non-robust” influences.
Consideration of data-adaptive combinations of these metrics would be area of fruitful
investigation.
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Fig. 1.
Resilience features capture the stability of an inference method to data decimation. An rs-
fMRI dataset (1) is temporally decimated into subsets; each inference method (2) is applied
independently to each subset; voxel-wise statistics (3) are estimated; and the parameter maps
(4) capture spatial dependencies.
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Fig. 2.
One voxel simulation. Y axes are indicated by panel titles. The first row shows the results
when and the second row shows the results when. When the number of outliers increases,
the type I error and the type II error of OLS increases more rapidly than Huber M-estimator.
The boxplots in the white background display the results from OLS and the boxplots in the
gray background are the results from Huber M-estimator.
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Fig. 3.
Resilience results for empirical 3T rs-fMRI analysis. The upper plots present results for a
representative subject and the lower plots display the results across the 11 subjects. The first
row shows the connectivity maps estimated by the OLS and Huber methods (p < 0.001, 5
voxels extent threshold to exclude noise). The blue crosshairs indicates one voxel inside the
ROI. The right column displays one slice of the smoothed image from one scan (top) the
difference of the mean absolute slope (middle), and the difference of the mean variance
(bottom) for the same slice. The mean absolute slope and the mean variance from OLS
(white background) and Huber (gray background) across GM, WM and CSF regions are
shown in the second row. In the second half, the mean of the mean absolute slope and the
mean of the mean variance across eleven subjects are displayed. Significant differences
based on the Wilcoxon signed-rank test are indicated by the asterisks.
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Fig. 4.
Resilience results for 3T resting state fMRI with simulated outliers. The upper plots present
the results for the same subject shown in Fig. 3 and the lower plots display the results across
the 11 subjects. The first row shows the connectivity maps estimated by the OLS and Huber
methods (p < 0.001, 5 voxels extent threshold to exclude noise). The right column displays
(top) one outlier image from one scan for the same slice shown in Fig. 3, (top) the difference
of the mean absolute slope and (bottom) the difference of the mean variance. The mean
absolute slope and the mean variance from the ordinary and the robust method across GM,
WM and CSF regions are shown in the second row. Below, the mean of the mean absolute
slope and the mean of the mean variance across eleven subjects are displayed. Significant
differences calculated with the Wilcoxon signed-rank test are indicated by asterisks.
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