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Abstract

Accurate segmentation of prostate in CT images is important in image-guided radiotherapy.
However, it is difficult to localize the prostate in CT images due to low image contrast,
unpredicted motion and large appearance variations across different treatment days. To address
these issues, we propose a sparse representation based classification method to accurately segment
the prostate. The main contributions of this paper are: (1) A discriminant dictionary learning
technique is proposed to overcome the limitation of the traditional Sparse Representation based
Classifier (SRC). (2) Context features are incorporated into SRC to refine the prostate boundary in
an iterative scheme. (3) A residue-based linear regression model is trained to increase the
classification performance of SRC and extend it from hard classification to soft classification. To
segment the prostate, the new treatment image is first rigidly aligned to the planning image space
based on the pelvic bones. Then two sets of location-adaptive SRCs along two coordinate
directions are applied on the aligned treatment image to produce a probability map, based on
which all previously segmented images of the same patient are rigidly aligned onto the new
treatment image and majority voting strategy is further adopted to finally segment the prostate in
the new treatment image. The proposed method has been evaluated on a CT dataset consisting of
15 patients and 230 CT images. Promising results have been achieved.

1 Introduction

Prostate cancer is the second-leading cancer for American men. Currently one of the major
treatment methods is external beam radiation therapy, which basically has two stages,
namely the planning stage and the treatment stage. In the planning stage, a planning image is
scanned from the patient and a dose plan is designed. During the treatment stage, a CT
image is acquired at each treatment day for the same patient, which could be repeated for up
to 40 times, each with a CT image acquired. The prostate in each treatment image needs to
be accurately localized so that the dose plan made in the planning image can be adjusted to
the current treatment image. Therefore, the success of external beam radiation therapy
highly depends on the accurate localization of the prostate.

However, there are three main challenges to accurately segment the prostate. First, prostate
boundary is of extremely low contrast with its surrounding tissues in the CT images as
shown in Fig. 1. Second, prostate motion is unpredictable due to the uncertain existence of
bowel gas in different treatment days. Third, the bowel gas can significantly alter the image
appearance and makes it inconsistent across different treatment days as illustrated in Fig.
1(a) and 1(b). In order to address these challenges, many novel methods have been proposed
these years. The first category of methods is deformable model [1, 2]. The second category
is registration-based method [3, 4]. Recently, Li et al. [5] incorporated context features into
prostate segmentation and achieved promising results.
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On the other hand, Sparse Representation based Classifier (SRC) [6] has achieved the state-
of-the-art results in face recognition. It represents a testing sample as a sparse linear
combination with respect to an over-complete dictionary, which consists of training samples
from all classes. Representation residue with respect to each class is used to determine the
class label of a testing sample. However, the good performance of the traditional SRC
depends on the assumption that the training samples in each class are distinct from those in
other classes. In practice, especially in pixel-wise classification, different classes may
include very similar samples. To overcome this limitation, we propose a discriminant
dictionary learning technique to enhance the dissimilarity between classes. Moreover,
context features are incorporated into SRC to refine the prostate boundary in an iterative
scheme. Finally, a linear regression model is further trained to predict the class probability
based on the representation residues. The proposed method has been evaluated on 230 CT
images from 15 patients. The experimental results show that our method can achieve
promising results and outperform other state-of-the-art prostate segmentation methods.

2 Methodology

2.1 Sparse Representation Based Classifier (SRC)

Given a dictionary D € R™ and a sample Y € R” sparse representation aims to find a sparse
linear combination of dictionary elements in D for best Prostate Segmentation by Sparse
Representation Based Classification representing y. Mathematically, the problem can be
formulated as the following minimization:

min|[x||y, subject to|ly — Dx||; < &, )
X

where x contains the sparse linear coefficients and is usually called as sparse code in the
literature, and e is the maximum allowable representation error. Although solving (1) is a
NP-hard problem, the solution can be well approximated by many pursuit algorithms such as
Basis Pursuit (BP) and Orthogonal Matching Pursuit (OMP) [7]. In consideration of both
efficiency and performance, we use OMP to solve the sparse coding problem in this paper.

In the traditional SRC, the dictionary D is formed as a collection of training samples from all
classes:

D:[Dl,Dz,...,Di,...,DK]=[d1,1,d1,2,...,d,-,j,...,dK‘NK], @

where Djis a sub-dictionary of class /that only contains training samples from class / d;;is
the jth training sample of class /, K'is the number of classes and Ny is the number of
training samples in class K. To classify a new sample y, its sparse code X is first computed
according to (1). Then the representation residual vector r ;with respect to class 7is
computed as:

ri=y — Dixi, (3)

where X, carries entries of X indexed by an index set, which contains indices of columns in D
belonging to D;. Finally, the new sample y is classified to the class with the minimum Iir Al

2.2 Discriminant Sub-dictionary Learning

The traditional SRC method works well when there are no similar elements between sub-
dictionaries. However, in many cases this assumption doesn't hold. In order to overcome this
limitation, we need to build discriminant sub-dictionaries whose elements are distinct from
those in other sub-dictionaries. In this paper, we combine feature selection with dictionary
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learning technique to learn a discriminant sub-dictionary for each class. Here only the case
of two classes is illustrated since a voxel is either classified to object (prostate) or
background in the case of prostate segmentation. But this idea can be readily extended to
multi-class cases when combined with multi-class feature selection techniques.

Given both background and object training samples, we want to select the topmost
discriminant features that can enlarge the dissimilarities between training samples of two
classes. Feature ranking based on Fisher's Separation Criteria (FSC) [10] is adopted in this
paper to select the most discriminant features while eliminate features that are similar in
both classes.

After feature selection, background and object samples can be directly used to form two sub-
dictionaries. However, in practice the number of samples is usually large. In consideration
of both sparse coding efficiency and dictionary storage, we need to use dictionary learning
technique to learn a compact representation of training samples. In this paper, we adopt K-
means as a way to learn sub-dictionaries. Compared with many reconstruction-oriented
dictionary learning methods such as K-SVD [8] which don't consider discriminability during
dictionary optimization, K-means can identify the individual clusters of different classes and
thus can better preserve the dissimilarity between background and object class during
dictionary learning. Therefore, it is more suitable when combined with SRC in
classification.

2.3 Boundary Refinement by Context Features

In order to accurately localize the prostate boundary, it is necessary to draw more
background and object training samples near the prostate boundary. However, these
background and object samples are quite similar even after feature selection basically for
two reasons: First, these samples are spatially close and sometimes next to each other.
Second, prostate boundary in CT images is of extremely low contrast. To the best of our
knowledge, no effective features which can accurately localize the prostate boundary have
been identified. Therefore, even after performing discriminant sub-dictionary learning
strategy, the SRC method can still produce many classification errors along the prostate
boundary, which results in a zigzag boundary, as shown in Fig. 2(a).

Motivated by [5], we incorporate context features into SRC and propose an iterative SRC
classification scheme. For each voxel, its features include not only local features but also
context features taken at context locations as illustrated in Fig. 1(c). Previous classification
results at context locations are used as context probability features which help guide the
boundary refinement in the next classification iteration. Assume no prior information is
available, we start with an uniform probability map. These context features don't help in the
first iteration since they are filtered out by feature selection. However, in the later
classification iterations, when the probability map becomes clearer and clearer, more context
features will be selected to guide the classification refinement. Usually after several
iterations, the prostate boundary becomes more refined as shown in Fig. 2(c).

2.4 Prediction by Residue-Based Linear Regression Model

The traditional SRC compares residual norms of different classes to determine the class
label of a testing sample. In such case, residues of different features are equally treated.
Usually a voxel is represented by the combination of different types of features, the
discriminabilities of individual features are different and their contributions to classification
are also different. Therefore, equally weighting them in determining the class label limits the
classification performance. Besides, the traditional SRC is a hard classification method,
which only assigns class label to a new sample. In contrast, soft classification provides more
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quantitative informaton, especially in the decision margin where the class membership is
unclear.

Motivated by these observations, a residue-based linear regression model is trained to learn
the contributions of different features in class probability prediction. For each training
sample, its background residual vector r and object residual vector rq are computed and

stacked into a single vector l‘=[1’gl‘1T]T, which is used together with its class label /€ {-1, 1}
to train a linear regression model m € R*, where tis the number of selected features for
each sample. For a new testing sample y 4 its object (prostate) class probability is
computed as:

B mTr,.+1
pEg|\l—H— |- @
where r 0, 1S the stacked residual vector of y ., and g(*) is defined as a piece-wise function
that maps any value outside [0, 1] to its nearest boundary value in order to keep the
predicted probability between [0, 1].

2.5 lterative Prostate Segmentation by SRC

We believe patches repeat not only spatially but also longitudinally. Therefore, in prostate
segmentation, patches in the new treatment image likely have appeared in the previous
treatment images or the planning image. If we build two discriminant patch-based sub-
dictionaries for prostate and background using previous images, for a new patch in the new
treatment image, it tends to draw more supports from the respective sub-dictionary in the
sparse representation. Based on the representation residues corresponding to each class, we
can estimate class probability of the voxel associated with this patch.

Our segmentation method consists of two stages, namely training stage and classification
stage. In thetraining stage, two sets of location-adaptive [5] SRCs along two coordinate
directions are learned using previous images of the same patient, which take the variability
of different prostate regions into account. For each location-adaptive SRC, it only draws
training samples from slices that it is responsible for. Then, based on the training samples,
discriminant features are selected, two discriminant sub-dictionaries are constructed, and a
residue-based linear regression model is finally learned. All these three steps are used
together to classify all training slices and the class probabilities after classification are used
to update the corresponding context probability features of the training samples. After the
training samples are updated, we can learn a new SRC for the next classification iteration.
The process is repeated until a specified number of iterations have been reached.

In the classification stage, the middle slice along each of two coordinate directions needs to
be manually specified by users in order to shift the learned SRCs to the new treatment image
space for classification (Note that the automatic middle slice identification method will be
developed in our future work). The classification results along two coordinate directions are
fused to form a final probability map. After classification is done, all previously segmented
prostate images of the same patient are rigidly aligned to the probability map of the new
treatment image and then majority voting strategy is adopted to segment the prostate finally.

3 Experimental Results

Our dataset consists of 15 patients, each with more than 11 CT images, with total 230 CT
images. The resolution of each CT image is Immx1mmx3mm. The expert manual
segmentation results are available for each image to serve as the ground truth. We use the
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first 3 images including the planning image to initialize our method. As more treatment
images are collected, only the latest 5 images are used as training images, which account for
the tissue appearance change under radiation treatment. Two sets of location-adaptive SRCs
are placed along anterior-posterior (y) direction and superior-inferior (z) direction,
respectively, because slices along these two directions contain richer context information
(e.g., pelvic bones) than slices along lateral (x) direction.

Before any operation is applied in the training stage, all previous treatment images are
rigidly aligned to the planning image based on the pelvic bone structures in order to remove
the irrelevant whole-body motion. The same preprocessing is also applied to the new
treatment image before classification.

For each voxel, its features include both local appearance features and context features.
Context features have two types of features, namely context probability features and context
appearance features. Context probability features have been introduced in the previous
section. They are used to refine classification results and updated in each iteration. In the
experiment we only use 3 classification iterations. Context appearance features are the same
kinds of features as local appearance features, but taken at context locations. 9 dimensional
Histogram of Oriented Gradient (HOG) [9] and 23 Haar features computed in a
21mmx21mm local window are used as appearance features in this paper.

The box-and-whisker plot of the DICE measures and centroid distances along three
coordinate directions of our method are shown in Fig. 3. Fig. 4 visually compares the
segmentation results using residual norm comparison and residue-based linear regression. It
can be seen that in the beginning and ending slices where the prostate is relatively small and
difficult to accurately localize, the proposed linear regression model performs better than the
traditional residual norm comparison. Four existing state-of-the-art prostate segmentation
methods [1-3, 5] are compared with our method. The mean and standard deviation of DICE
measures of our method is 0.912 + 0.044 based on Fig. 3, which is better than 0.820 + 0.060
in [3], 0.893 £ 0.050 in [2] and 0.908 in [5]. The median DICE measure of our method is
0.918, which is also better than 0.840 in [3] and 0.906 in [2]. The median probability of
detection and false alarm of our method are 0.913 and 0.072, respectively, which are better
than 0.840 and 0.130 reported in [1], and 0.900 and 0.100 reported in [5]. Besides, we also
compared the centroid distances. The mean centroid distances along lateral (x), anterior-
posterior (y) and superior-inferior (z) direction of our method in Fig. 3 are 0.06 mm, —0.07
mm and 0.19 mm, respectively, which are much better than the respective centroid distances
of —0.26 mm, 0.35 mm and 0.22 mm reported in [3], and comparable to the result of 0.18
mm, —0.02 mm and 0.57 mm in [5].

4 Conclusion

We have proposed a sparse representation based classification method for segmentation of
prostate in CT images. Feature selection is combined with dictionary learning technique to
learn two discriminant sub-dictionaries which overcome the limitation of the traditional
SRC. Context features are further incorporated into SRC to refine the classification results
(especially the prostate boundary) in an iterative scheme. A residue-based linear regression
model is finally learned to increase the classification performance and extend the traditional
SRC from hard classification to soft classification. Experimental results show that our
proposed method can achieve more accurate prostate segmentation results than other state-
of-the-art segmentation methods under comparison.
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Fig. 1.

(a) and (b) are two axial slices from different treatment images of the same patient. Blue
contours are the prostate contours manually delineated by experts. (c) is an illustration of
context locations of the center pixel by red points.
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Fig. 2.
The first, second and third column represents the results of the first, second and third
classification iteration, respectively
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Left-top figure shows the DICE measures of our method. Right-top, left-bottom and right-
bottom figures are centroid distances in lateral (x), anterior-posterior (y) and superior-
inferior (z) directions, respectively.
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Fig. 4.

Comparison of the segmentation results between linear regression and residual norm
comparison. Blue contours are the prostate boundaries manually delineated by experts. Red
and green contours are the segmentation results of the proposed method with linear
regression and residual norm comparison, respectively. This indicates that our proposed
method with linear regression achieves better results, especially in the beginning and ending
slices of the prostate.
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