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Abstract
This paper demonstrates the use of mixed effects models for characterizing individual and sample
average growth curves based on serial anthropometric data. These models are an advancement
over conventional general linear regression because they effectively handle the hierarchical nature
of serial growth data. Using body weight data on 70 infants in the Born in Bradford study, we
demonstrate how a mixed effects model provides a better fit than a conventional regression model.
Further, we demonstrate how mixed effects models can be used to explore the influence of
environmental factors on the sample average growth curve. Analyzing data from 183 infant boys
(aged 3 to 15 months) from rural South India, we show how maternal education shapes infant
growth patterns as early as within the first six months of life. The presented analyses highlight the
utility of mixed effects models for analyzing serial growth data because they allow researchers to
simultaneously predict individual curves, estimate sample average curves, and investigate the
effects of environmental exposure variables.
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Longitudinal data are necessary to investigate the dynamic process of physical growth. With
this opportunity comes the analytical problem of a hierarchical data structure where serial
measurements are nested within individuals over time. Conventional general regression
provides a single equation or growth curve for an entire sample and does not consider
differences in growth between individuals. In fact, applying conventional regression to
hierarchical data produces incorrect standard errors and potentially misleading p-values
(Goldstein, 1986; Goldstein, 1989). Researchers used to have to painstakingly fit separate
regression models for each individual in a sample (Deming, 1957; Marubini et al., 1972;
Cameron et al., 1982). Mixed effects regression is a more sophisticated approach that can
incorporate individual growth characteristics in a single model, which simultaneously
estimates individual curves and a sample average curve (Goldstein, 2010).

In addition, mixed effects growth models can incorporate exposure variables in the same
way conventional regression models can (Goldstein, 2010). They can be used to investigate
the evolutionary, intergenerational, biocultural, and genetic factors that affect the expression
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of growth in a sample and thus have many applications for anthropological research. Many
publications in anthropology journals have related environmental factors to size at discrete
ages (e.g., Bogin and Loucky, 1997; Varela-Silva et al., 2009; Hadley et al., 2011), but few
have used mixed effects growth models to explain why systematic differences in the actual
pattern of growth exist (e.g., Buschang et al., 1988; Bhargava, 2000; Reyes-Garcia et al.,
2010). Only with the latter approach is it possible to ascertain exactly when differences in
growth emerge and how they progress over time.

Mixed effects growth models were largely developed in the 1980s and 1990s (Laird and
Ware, 1982; Bryk and Raudenbush, 1987), yet they have not often been utilized in recent
anthropology research. An accessible demonstration of mixed effects growth curve
modeling in an anthropology journal is thus timely and would fill a gap in the literature. This
paper provides a worked example of mixed effects growth curve modeling. We focus on the
first 15 months of life, a critical period where infants demonstrate remarkable plasticity to
their environment (Cameron and Demerath, 2002) and where responses to the environmental
may have long term consequences for health (Gluckman et al., 2009; Godfrey et al., 2010).
Our specific aims were 1) to develop a mixed effects model that accurately describes the
growth of 70 boys participating in the Born in Bradford birth cohort study, UK and 2) to
investigate the effect of maternal education on weight growth in 183 rural Indian boys and
test whether any potential association is mediated by concurrently measured morbidity.

METHODS
Samples and data

The sample used for our first aim comprised 70 boys participating in the Born in Bradford
birth cohort study (Raynor and Born in Bradford Collaborative Group, 2008) with birth
weight and serial infant weight measurements up to age 15 months. These data were
collected at non-standard assessment ages. In total, there were 612 observations, with an
average of 8.7 observations per participant (range 3–20) over an average of 0.92 years
(range 0.55–1.25).

The sample used for our second aim comprised 183 boys from an Indo-USA funded
collaborative longitudinal study, hereafter called the Infant Feeding Study, on the efficacy of
an integrated feeding and care intervention among 3- to 15-month-old infants in Andhra
Pradesh, India. Weight was measured at three monthly intervals. The 183 boys had a total of
859 observations, with an average of 4.7 per boy (range 3–5) over an average of 10.81
months (range 5–12). Maternal education level was self-reported at recruitment and the
number of morbidity events (i.e., fever, vomiting, coughing, diarrhea) in the prior week was
recorded at the target three monthly assessments. 18 (9.8%) boys had no morbidity data, but
the 165 (90.2%) boys with morbidity data had an average of 4.7 recordings out of a possible
five.

Statistical analysis: modeling the growth of Bradford infants
A series of statistical models were applied to the weight data of Born in Bradford boys to
provide a worked example of infant growth curve modeling. The first model was a
conventional general linear regression:

[Model 1a]

Where, y is weight, x is age, β0 is the intercept, and β1 is a regression coefficient.

This model describes the line of best fit between weight and age, which we would expect to
provide a poor fit for the data because we know that infant growth does not occur at a
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constant pace. The shape of the infant growth curve is a decaying polynomial because it
gradually departs negatively from a straight line as time increases (Cameron, 2002). To
create such a curve, an age2 term was added:

[Model 1b]

Where, y is weight, x is age, β0 is the intercept, and β1 and β2 are regression coefficients.

This model is a quadratic or second degree polynomial. It describes a curvilinear
relationship between weight and age, but it is still a linear model because each separate
parameter describes a linear association. The main limitation of this model is that it does not
consider the hierarchical nature of serial data. It only describes a single curve with an
average intercept and an average slope; the parameters are described as having fixed effects.
An improvement to the conventional regression model is the mixed effects model because it
allows any or all of the parameters to take different values for each infant (Baxter-Jones and
Mirwald, 2004). Such parameters are described as having mixed effects because they consist
of fixed effects (i.e., average parameter values for the entire sample) and also random effects
that are different for each infant. A second degree polynomial function where all parameters
had mixed effects was fitted next to allow us to demonstrate the need to incorporate
individual characteristics when modeling growth:

[Model 1c]

Where, yij is the weight of infant j at occasion i, xij is the corresponding age, β0j is the
intercept, and β1j and β2j are regression coefficients. β0j - β2j have mixed effects that
comprise a sample average fixed effect (β) and a subject specific random effect (uj).

In this model, the fixed effects together describe the sample average curve and the random
effects are individual departures from the intercept and slope of that curve. The formula
therefore describes the growth curve of every infant. Because each model parameter takes
different values for each infant, each parameter demonstrates variance and there is
covariance between parameters. The underlying variance- covariance structure of these data
is described by a matrix:

Where,  are the variances of the three random effects and σu01, σu12, and
σu02 are the covariances between the random effects.

All mixed effects modeling software allow the user to specify the structure of the variance-
covariance matrix. For growth models, it makes sense to select the unstructured option
because it allows the variance-covariance estimates to be distinct. It does not make sense to
use other options because the variances of the random effects are unlikely to be the same
since they describe different aspects of the individual curves. The independent and identity
options should definitely not be used during infancy because they set covariance estimates to
zero, when we know that birth size and subsequent growth rate should co-vary.
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We next fitted a mixed effects fractional polynomial to demonstrate an approach that offers
researchers flexibility to find a function of age that best describes their data (Long and
Ryoo, 2010). A fractional polynomial is an automated procedure that runs a large number of
models to find the one that best describes the dimension being modeled as some unknown
function of age. An a priori decision to include two age terms (i.e., a two degree fractional
polynomial) was made and the choice of powers with which to raise each age term was −2,
−1, −0.5, 0, 0.5, 1, 2, or 3. This approach therefore comprised 36 options and had the form:

[Model 1d]

Where, yij is the weight of infant j at occasion i, xij is the corresponding age, β0j is the
intercept, and β1j and β2j are regression coefficients. β0j - β2j have mixed effects that
comprise a sample average fixed effect (β) and a subject specific random effect (uj). p1 and
p2 represent the choice of powers [−2, −1, −0.5, 0, 0.5, 1, 2, or 3] with which to raise each
age term; when p1 or p2 = 0, ln(x)0; when p1 = p2, xp1 and xp2*x.

The best fitting option (age−2 and age−0.5) was used as the model with the lowest deviance
(see next paragraph).

All models were fit in Stata IC10 (College Station, Texas). Model fit was compared using
log likelihood, Akaike Information Criterion (AIC), and Bayesian Information Criterion
(BIC) statistics (Akaike, 1974; Shwartz, 1978). The log likelihood is the natural logarithm of
the likelihood function, a measure of the probability of observing the set of dependent
variable values. The estimation method for linear mixed effects models (maximum
likelihood estimation) is an iterative procedure that finds the parameter estimates that make
the log likelihood as close to zero as possible. The −2 log likelihood statistic or deviance is
equal to the sum of squared residuals (i.e., observed – fitted values). The AIC penalizes the
−2 log likelihood for model complexity by adding twice the number of estimated
parameters. The BIC provides a more penalized statistic by adding the number of estimated
parameters multiplied by the natural logarithm of the number of observations. Likelihood
ratio tests were used to compare to the difference between the log likelihoods of two
consecutive models (Neyman and Pearson, 1928). A p-value of < 0.05 was used to denote
statistical significance. The residuals from each model were plotted against age to allow
visual comparison of model fit across the studied age range. The sample average curves
were plotted in a single figure to allow comparison, with the exception of the curve of the
conventional quadratic polynomial model (1b) because it was nearly identical to that of the
mixed effects quadratic polynomial model and therefore would not be visible on the same
figure (1c). Using the mixed effects fractional polynomial model (1d), the individual curves
of three boys (selected at random) were plotted against their observed data and the sample
average curve to demonstrate the ability of a mixed effects model to predict individual
growth curves.

Statistical analysis: testing maternal education effects on the growth of Indian infants
As well as describing infant growth using mixed effects models, researchers may want to
test hypotheses about the effect of different exposures on the pattern of growth depicted by a
sample average curve. Here, we investigated the effect of maternal education on weight
growth in rural Indian infants and tested whether any potential association was mediated by
concurrent morbidity.
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Maternal education was categorized as secondary or college, primary, or illiterate. Morbidity
at each three monthly assessment was categorized for each boy as two or more events, one
event, no events, or missing data. The Berkey-Reed (1987) 1st order function of age was
used to model growth because it is known to provide a good fit for the data of these Indian
infants (Johnson et al., 2012). Unlike models 1a–1d, it is a structural growth model (Hauspie
and Molinari, 2004) that imposes a particular form to the curve:

Where, y is weight, x is age, β0 is the intercept, and β1 - β3 are regression coefficients. β0 is
related to birth weight, β1 to the linear component of growth, β2 to the decrease in growth
rate over time, and β3 to the inflection point in the curve.

Three separate mixed effects Berkey-Reed 1st order models were developed and fitted in
Stata. In all instances, the final parameter (β3) did not have mixed effects, because Stata
could not make such a model converge. In the first model, systematic differences in the
weight of infants of mothers in different maternal education groups were investigated by
including maternal education as a main effect:

[Model 2a]

Where, yij is the weight of infant j at occasion i, xij is the corresponding age, β0j is the
intercept, and β1j, β2j, and β3 - β5 are regression coefficients. β0j - β2j have mixed effects
that comprise a sample average fixed effect (β) and a subject specific random effect (uj).
Dprimaryj is a dummy variable coded 1 for primary maternal education and 0 for secondary
or college or illiterate maternal education; Dilliteratej is a dummy variable coded 1 for
illiterate maternal education and 0 for secondary or college or primary maternal education.

This model allows a different intercept for each maternal education group. β4 and β5
represent an up or down shift in the entire curve for infants born to primary educated or
illiterate mothers, respectively, relative to the referent group of infants born to mothers with
secondary or college education. In the second model, maternal education group was also
included as an interaction with the three age terms:
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[Model 2b]

Where, yij is the weight of infant j at occasion i, xij is the corresponding age, β0j is the
intercept, and β1j, β2j, and β3 – β11 are regression coefficients. β0j - β2j have mixed effects
that comprise a sample average fixed effect (β) and a subject specific random effect (uj).
Dprimaryj is a dummy variable coded 1 for primary maternal education and 0 for secondary
or college or illiterate maternal education; Dilliteratej is a dummy variable coded 1 for
illiterate maternal education and 0 for secondary or college or primary maternal education.

This model allows the shape of the growth curve to be different for each maternal education
group. By setting all the Dprimaryj and Dilliteratej dummy variables to zero, the model
represents the growth of infants born to mothers with secondary or college education; by
setting all the Dprimaryj dummy variables to one and all the Dilliteratej dummy variables to
zero, the model represents the growth of infants born to mothers with primary education;
and by setting all the Dprimaryj dummy variables to zero and all the Dilliteratej dummy
variables to one, the model represents the growth of infants born to illiterate mothers. Next
we wanted to test whether morbidity mediated any effect of maternal education on infant
growth. Morbidity was a time dependent variable and was therefore included as a main
effect and also as an interaction with age to account for the fact that the effect of morbidity
on weight may have been different at each assessment age:
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[Model 2c]

Where yij is the weight of infant j at occasion i, xij is the corresponding age, β0j is the
intercept, and β1j, β2j, and β3 – β11 are regression coefficients. β0j - β2j have mixed effects
that comprise a sample average fixed effect (β) and a subject specific random effect (uj).
Dprimaryj is a dummy variable coded 1 for primary maternal education and 0 for secondary
or college or illiterate maternal education; Dilliteratej is a dummy variable coded 1 for
illiterate maternal education and 0 for secondary or college or primary maternal education.

The sample average curves from models 2b and 2c were plotted by maternal education
group to allow visual comparison of the effects of maternal education before and after
adjusting for morbidity. In addition, for both model 2b and 2c, the fixed and random effect
estimates for each parameter were used to estimate individual weight data at three monthly
intervals. The differences in these estimated data between maternal education groups at each
age were tested using separate between-subjects analysis of variance (ANOVA) models,
specifying a Bonferroni correction for multiple comparisons.

RESULTS
The growth of Bradford infants

The parameter estimates of the four growth models (1a–d) applied to the weight data of
Born in Bradford boys are shown in Table 1 and the sample average curves are shown in
Figure 1. Fit diagnostics improved with each consecutive step in development, even after
penalization for increasing model complexity with the AIC and BIC. Allowing a
conventional quadratic polynomial (model 1b) to have mixed effects (model 1c) drastically
improved fit diagnostics, thereby providing a clear example of the need to incorporate
individual characteristics when modeling growth. Deviance, for example, was reduced by
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more than 60% (i.e., 876/1398*100). Figure 2 also clearly demonstrates the effect of a
mixed effects approach on shrinking residuals. There was some evidence that the mixed
effects quadratic polynomial (model 1c) and fractional polynomial (model 1d) estimated
individual curves too low at birth and too high immediately after birth. This may reflect the
inability of these models to describe weight loss in the first two weeks of life. In fact,
investigation of three individual curves from the mixed effects fractional polynomial model
(1d) revealed one infant (boy X) with a typical pattern of neonatal weight loss whose
individual curve failed to capture this phenomenon (Fig. 3). Nevertheless, Figure 3 does
demonstrate the ability of a mixed effects model to describe the growth of three individuals
with very different patterns of change over age.

In addition to constructing a visual representation of growth, some of the model parameters
in Table 1 provide useful information about the growth of the sample. In both the
conventional and mixed effects quadratic polynomial models (1b and 1c), the intercept
describes size at birth, the age term describes the gradient or rate of growth, and the age2

term describes the multiplicative acceleration in weight that determines the shape of the
curve. In model 1c, for example, average size at birth was 3.3 kg, infants gained an average
of 11.3 kg/per year, and there was a decreasing growth rate over time because the solution to
−4.819*age2 becomes exponentially more negative (indicating a slowing down of growth or
a less steep curve) as age increases. Therefore, the negative covariance between the intercept
and the age term (i.e., σu01) indicates that infants who were lighter at birth demonstrated a
faster rate of growth, the positive covariance between the intercept and age2 term (i.e., σu02)
indicates that infants who were heavier at birth had a slower declining rate of growth, and
the negative covariance between the age and age2 terms (i.e., σu12) indicates that infants
with a steeper gradient had a faster declining rate of growth. The mixed effects fractional
polynomial model (1d) provided the best fit for the data. The parameter estimates are,
however, not discussed here because when multiplied by age−2 and age−0.5 the interpretation
is not intuitive.

Maternal education effects on the growth of Indian infants
When maternal education was included only as a main effect in a mixed effects Berkey-
Reed 1st order model (2a), infants in the primary education group were consistently 16g
heavier than those in the secondary or college education group, whereas the illiterate group
were consistently 68g lighter than the secondary or college group (p-values 0.911 and 0.634,
respectively) (Table 2). When, however, maternal education was included also as an
interaction with the age terms in model 2b there was evidence that the shape of the growth
curve for the illiterate group was significantly different to that for the secondary or college
group (p-values for illiterate and illiterate-by-age, by-ln age, and by-inverse age <0.05). The
curve for the illiterate group began to fall away from the secondary or college group after six
months of age, resulting in a deficit of approximately 0.5kg at 15 months of age (Fig. 4).
Separate ANOVA models, however, showed that at no one age were the differences between
maternal education groups statistically significant (p-values >0.25).

In model 2c, we further adjusted for concurrent morbidity. The main effect of illiterate and
also the illiterate-by-ln age and by-inverse age interactions retained significance, indicating
that being born to an illiterate mother had effects on infant weight growth in this sample that
were independent of concurrently measured morbidity. Because many of the parameter
estimates, however, changed by more than 10% between models 2b and 2c, growth curves
from model 2c were plotted (Fig. 4) to see whether adjusting for concurrent morbidity
altered the effect of maternal education on weight growth. The three curves were slightly
closer together and this was confirmed by marginally less significant p-values from
ANOVA models.
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DISCUSSION
The study of physical growth has long been a part of anthropological research. This paper
provides an example of using mixed effects methods to analyze serial growth data. We
demonstrate the principles of fitting individual curves and testing exposure variable effects
on the average curve of a sample. The paper is neither a statistical treatise nor a how to
guide to growth curve modeling, but it is a starting point for researchers with serial growth
data that need analyzing (example code in online appendix). For simplicity, we only present
linear parametric models, but the reader should be aware of other non-linear models (e.g.,
Jens and Bailey, 1937) and non-parametric approaches (e.g., splines and kernel estimators
(Gasser et al., 2004)) that form part of a growth modeler’s toolbox.

To demonstrate the principles of mixed effects methods for growth analysis, we developed a
robust statistical model to describe the weight growth of 70 infants in the Born in Bradford
study. A mixed effects quadratic polynomial model (1c) provided a remarkably better fit for
the data than a conventional quadratic polynomial model (1b), thereby providing a clear
example of the need to incorporate individual characteristics when modeling growth. The
overall residual standard deviation of a model provides a measure of average error in the
original unit of measurement. It is calculated as the square root of the residual variance
statistic we show in Table 1. The final mixed effects model (1d) in our example was a
fractional polynomial with a residual standard deviation of 200g. Because this is larger than
the technical error of measurement of infant weight data (Ulijaszek and Kerr, 1999), we
would typically continue model development and test non-parametric approaches such as
mixed effects cubic regression splines. In addition, after looking at a scatter plot of residual
against age, there was some evidence that the final model was unable to describe the
expected pattern of weight loss in the first two weeks of life. The development of a
structural growth model that imposes a negative growth rate immediately after birth and an
inflexion point around two weeks of age may be a worthy endeavor.

Before the advent of mixed effects growth modeling, researchers would have to fit separate
models for each infant in a sample (Deming, 1957; Marubini et al., 1972; Cameron et al.,
1982), and it was generally accepted that to do this the infant should have one more data
point available than the number of parameters in the model (Baxter-Jones and Mirwald,
2004). In our analysis of data from Born in Bradford infants we demonstrate the ability of
mixed effects growth models to combine all available data, regardless of the number and
timing or serial observations, and estimate individual and sample average curves. Statistical
packages efficiently handle non-consistently collected data using probability functions to
describe the relative likelihood of each random effect occurring at a given point in the
observation space (Rabe-Hesketh and Skrondal, 2008).

In our second worked example showing how to test the effects of an exposure variable on
the sample average curve of a mixed effects model, we investigated the influence of
maternal education on weight growth in rural south Indian boys. By fitting maternal
education as a main effect (i.e., up / down shift in curve) and also an interaction with the age
terms (i.e., change in shape of curve) in a Berkey-Reed (1987) 1st order model, we were able
to show that maternal education significantly influenced the shape of the weight growth
curve of these rural south Indian boys. Despite maternal education influencing growth both
before and after adjusting for concurrent morbidity, separate ANOVA models applied to
estimated data at every three months of age showed that significant differences between
maternal education groups at specific ages were not present. In this scenario, the advantage
of producing growth curves for each maternal education group is that we can identify the
beginning of infants falling short of their potential growth trajectories. A cross-sectional
analysis would conclude that maternal education is not important for optimal infant growth,
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whereas this longitudinal analysis concludes that inequalities in infant growth due to
maternal education may begin in infancy, which would be an important period to target for
prevention of further growth faltering.

CONCLUSIONS
Growth curve modeling has many applications for anthropological research, yet mixed
effects methods have not often been utilized in research in the field. This paper highlights
the utility of mixed effects models for analyzing serial growth data because they allow
researchers to simultaneously predict individual curves, estimate sample average curves, and
investigate the effects of environmental exposure variables. A mixed effects fractional
polynomial model best described the growth of Bradford, UK infants compared to other
parametric options, but had the limitation that parameter estimates could not be easily
interpreted. Indian infants of illiterate mothers started to deviate in their growth from those
born to more highly educated mothers at approximately six months of age, thereby
providing evidence that interventions targeting educational differences in growth in India
should target the end of the exclusive breastfeeding period.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Sample average growth curves from three different statistical models (1a, 1c, 1d) applied to
serial weight from birth to 15 months of age for 70 boys in the Born in Bradford birth cohort
study.
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Figure 2.
Residuals plotted against age for four different statistical models (1a–d) applied to serial
weight from birth to 15 months of age for 70 boys in the Born in Bradford birth cohort
study.
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Figure 3.
An example of individual growth curves of boys in the Born in Bradford birth cohort study:
Estimated from a fractional polynomial mixed effects model (1d).
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Figure 4.
Sample average weight growth curves from three to 15 months of age, by maternal
education group, in 183 rural Indian boys from the Infant Feeding Study: Estimated from
separate mixed effects models (2b and 2c), the first not adjusted for concurrent morbidity
and the second adjusted for concurrent morbidity.
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