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Transposable elements and their fossil sequences occupy about half of the

genome in mammals. While most of these selfish mobile elements have been

inactivated by truncations and mutations during evolution, some copies

remain competent to transpose and/or amplify, posing an ongoing genetic

threat. To control such mutagenic sequences, host genomes have developed

multiple layers of defence mechanisms, including epigenetic regulation and

RNA silencing. Germ cells, in particular, employ the piwi–small RNA pathway,

which plays a central and adaptive role in safeguarding the germline genome

from retrotransposons. Recent studies have revealed that a class of developmen-

tally regulated genes, which have long been implicated in germ cell specification

and differentiation, such as vasa and tudor family genes, play key roles in the

piwi pathway to suppress retrotransposons, indicating that the piwi-mediated

genome protection is at the core of germline development. Furthermore,

while the piwi system primarily operates post-transcriptionally at the RNA

level, it also affects the epigenetics of cognate genome loci, offering an intriguing

link between small RNAs and transcriptional control in mammals. In this

review, we summarize our current understanding of the piwi pathway in

mice, which is emerging as a fundamental component of spermatogenesis

that ensures male fertility and genome integrity.
1. Introduction
The genome encodes a master blueprint of an organism and species, which

however is not unchanging but is constantly subject to various alterations and

modifications. Mutation rates of both unicellular and multicellular organisms

are estimated at between 1 � 1029 and 10210 mutations per base per cell division

[1], which corresponds to around 1 � 1025 mutations per locus per generation in

humans. Actual insults to genomic DNA are, however, far more extensive, being

constantly generated as consequences of physical and chemical attacks imposed

by, for example, oxidative stress, exposure to natural ionizing radiation and

uptake of genotoxic reagents, leading to oxidation, hydrolysis and alkylation

and so on. Such damages to DNA molecules are estimated to be more than

thousands in a cell per day in mammals [2]. To counteract these, organisms

have evolved multiple DNA repair systems such as base and nucleotide excision

repair, non-homologous and homologous recombinational repair, etc., which

constitutively operate to avoid cellular catastrophe.

In addition to physico-chemical attacks on DNA, however, the genome is

subject to another severe biological threat, which is encoded by the genome

itself, that is, selfish mobile elements or transposons. Transposons are genetic

sequences that move or amplify themselves in the genome, thereby altering the

genome information and organization [3]. Unlike the structural lesions of DNA

molecules as described earlier, transposons do not leave distinct chemical

marks of damage that can be recognized by DNA repair proteins. Host genomes

instead have to distinguish transposon sequences to control their parasitic

activity. A general means of sequence-specific recognition is DNA- or RNA-

binding proteins, as exemplified by transcription factors. In transposon

regulation, the KAP1/TRIM28 complex recognizes a class of retrotransposon

promoters and suppresses their activity in mouse embryonic stem cells [4,5].

However, transposons, especially RNA-mediated retrotransposons, rapidly

mutate their sequences when compared with endogenous protein-coding genes
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and thus can be divergent more than a repertoire of DNA-/

RNA-binding proteins encoded in the genome. Another

more adaptive way of recognizing specific sequences is RNA

interference (RNAi) and its related systems, which use small

non-coding RNAs that guide the Argonaute family proteins

or associated complexes to cleave or translationally suppress

target RNAs or to affect cognate DNA loci [6]. Argonaute pro-

teins loaded with microRNA (miRNA) or small interfering

RNA (siRNA) are widespread in eukaryotes (with several

notable exceptions, such as Saccharomyces cerevisiae), and they

regulate a variety of cellular and developmental processes

through controlling the stability or translational activity of

endogenous mRNAs or foreign sequences. Such functioning

of RNAi likely originates from a key and ancient defensive

response to double-stranded RNAs derived from transposons,

viruses and repetitive sequences, etc., and there operates

another specialized RNAi mechanism, called the piwi pathway,

in animals, whose function is to silence retrotransposons in the

germline [7]. In this small RNA pathway, Piwi proteins of an

Argonaute subfamily are loaded with piwi-interacting RNAs

(piRNAs) [8–11] and act to control retrotransposons both tran-

scriptionally and post-transcriptionally. Remarkably, a class of

developmentally regulated genes that had long been thought

to act in germline specification and differentiation actually

play key roles in the piwi pathway [12–15], indicating that

transposon control is closely associated with proper germ cell

development and that host genomes have invested enormous

resources to protect their genetic information in the germline.

In this review, we summarize our current understanding

of the piwi–small RNA system in mammals. The whole pic-

ture of the piwi pathway remains unclear still, but it is now

emerging as a key component of spermatogenesis that ensures

male fertility, and we outline the piRNA system focusing on

the functional components, biogenesis, retrotransposon control

and developmental regulation.
2. Germ cell development in mammals
The germ cell linage is segregated early in development,

and is set aside from other somatic lineages in many species.

In several model animals, such as Drosophila, C. elegans and

Xenopus, primordial germ cells (PGCs) are fate-determined

by maternally provided factors transmitted from oocytes,

representing a mosaic/determinative development [16–18].

By contrast, in mammals, PGCs are lineage-restricted

among a population of pluripotent epiblast cells, depending

on inter-cellular induction from surrounding somatic cells,

and thus the specification is regulative [19]. In mice, PGCs

appear in a posterior region of the extra-embryonic tissue,

the allantois, and then the cells proliferate and migrate through

the embryo proper to reach gonadal primordia at around mid-

gestation. Post migratory PGCs then initiate male or female

germ cell differentiation according to the sex of the surrounding

somatic cells, with (pro)spermatogonia/gonocytes in the male

being arrested at the G1(G0) phase of the mitotic cell cycle,

while in the female the prophase of meiosis I starts during

embryonic development.

Prospermatogonia then resume mitotic proliferation after

birth to become postnatal spermatogonial stem cells, fol-

lowed by spermatogenic differentiation, which gives rise to

meiotic spermatocytes, haploid spermatids and subsequently

mature spermatozoa throughout the male life [20]. In the
female, by contrast, oocytes start to grow after birth and

periodically mature into functional eggs depending on the

estrous cycle [21].

During such germline development, dynamic epigenetic

reprogramming takes place, including global and progres-

sive CpG demethylation in PGCs [22], followed by de

novo establishment of DNA methylation patterns in foetal

(pro)spermatogonia/gonocytes in the male and in postnatal

growing oocytes in the female [23,24]. This epigenetic rewrit-

ing defines how the genetic programme of the germline is

read out in the subsequent generation, including genomic

imprinting whose parent-of-origin specific marks are reestab-

lished according to the sex of the germ cells. One major

drawback of global epigenetic erasure/rewriting is that it

also affects selfish transposon sequences. Indeed, transposons

lose their silencing marks during global CpG demethylation

of PGCs [22], and are actually activated to detectable levels

in subsequent prospermatogonia/gonocytes and in growing

oocytes [25]. Such transposon activity is an outcome of

the balance between the activation programme and host

silencing mechanisms. If host defence systems fail, the conse-

quence is catastrophic for the genome information, which

will either be inherited by the next generation or will trigger

gross germ cell death, leading to sterility. The piRNA

machinery acts to establish retrotransposon silencing in

foetal prospermatogonia/gonocytes, through piwi-pathway-

mediated DNA methylation, to ensure proper postnatal

spermatogenesis (see relevant later text).
3. Transposable elements
Transposons are widespread in the three branches of life:

prokaryote, eukaryote and archaea. These selfish mobile

elements tend to increase their number during evolution,

with higher organisms having an increasingly higher pro-

portion of transposon copies in their genomes. In mammals,

transposons and their fossil sequences occupy about half of

the genome (at least approx. 45% in humans and 37% in

mice), which contrasts with 1–2% of protein-coding exonic

sequences [26,27]. Although most of these transposon elements

have been inactivated by mutations and truncations, some

sequences remain active and are still expanding, causing new

transposon copies to appear in the genome.

Transposons are classified into two classes (DNA transpo-

sosns and RNA-mediated retrotransposons) according to

how they move and/or amplify their sequences. DNA trans-

posons, which move from one genomic site to another, use a

transposase together with host repair proteins to ‘cut and

paste’ themselves into the genome [28]. They occupy about

2–3% of mammalian genomes, but all copies are inactive

because of accumulated mutations, with a possible exception

of vespertilionid bat (Myotis lucifugus) piggyBac-like elements

[29]. Currently, only artificially resurrected DNA transpo-

sons, derived from a variety of species, are being used in

mutagenesis studies, etc.

The other class of transposons, retrotransposons, amplify

themselves from RNA intermediates transcribed from one

locus, which are then reverse-transcribed back to DNA and

transpose into new genome positions (copy and paste). Retro-

transposons are further divided into three main subclasses,

depending on their structures: (i) long terminal repeat (LTR)

retrotransposons, (ii) non-LTR autonomous long interspersed
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elements (LINEs), and (iii) non-LTR non-autonomous short

interspersed elements (SINEs) [30].

LTR retrotransposons are similar to retroviruses, and

encode gag (group-specific antigen) and pol (reverse tran-

scriptase, etc.) proteins but not the env protein, which is

necessary to make the envelope of a retrovirus particle (or

only a fragment of env remains in several classes of LTR

retrotransposons). LTR retrotransposons occupy about

8–10% of mammalian genomes but are mostly inactive in

humans, while the mouse genome contains active copies as

exemplified by intracisternal A particles (IAPs) [31].

Another class of retrotransposons, non-LTR LINEs, are

different from LTR retrotransposons in their terminal

sequences as well as coding proteins. LINEs possess a 50UTR

that contains an internal promoter(s) and a 30UTR with a

poly A signal(s), and two open reading frames (ORF1 and

ORF2) are encoded in a bicistronic mRNA. ORF1 is an RNA-

binding protein and ORF2 has endonuclease and reverse

transcriptase domains. LINE retrotransposition occurs by a

mechanism termed target-site-primed reverse transcription in

the nucleus, in contrast to LTR type retrotransposition, which

occurs in the cytoplasm. LINEs are the most abundant retro-

transposons in mammalian genomes: L1, the most common

type of LINEs, is present in more than 500 000 copies, compris-

ing approximately 20 per cent of the human and mouse

genomes. Among these, there are about 100 copies of full-

length active elements in the human genome and about 3000

copies in the mouse genome [3].

The third class of retrotransposons, SINEs, are short (a

few hundred bp when compared with 5–10 kb of LTR retro-

transposons and LINEs) and do not encode functional

proteins, being unable to transpose by their own machinery.

Instead, to expand in the genome, these non-autonomous

sequences use LINE proteins, mainly ORF2, that associate

with the 30 end sequence of SINEs, which share a signifi-

cant homology with that of LINEs [32]. Alu sequences are

the most abundant SINEs in humans, comprising about

10 per cent of the genome, while B1 and B2 elements are

the most prevalent elements in mice, each occupying

2–3% of the genome. The number of active copies of SINEs

is not well estimated, but a significant proportion of them

remains active and can transpose depending on the LINEs’

activity in trans.

Among the three classes of retrotransposons, LINEs and

SINEs are most actively expanding in mammalian genomes.

In humans, at least one in every 50 individuals has a new

copy of L1, while one in every 30 individuals contains a

novel Alu transposition. In mice, the estimates are even

higher, and novel transposon insertions are the major

source of spontaneous phenotypic variations among inbred

mice [3,31]. Naturally, transposons expand themselves in a

population through their activity in the germline, which

includes early pluripotent cells and fate-determined germ

cells. Indeed, retrotransposons are expressed in both early

embryos and germ cells [25], in addition to several somatic

cell lineages and some cancerous cells. How retrotransposons

are actively transcribed, especially in the germline, is not well

understood, but they co-opt cellular transcription machinery

such as RNA polymerase II and transcription factors, includ-

ing YY1, SOX2, SOX11 and RUNX3, for LINE1 promoter

regulation [33].

To fight against such transposon activity, host genomes

use multiple layers of molecular defence systems. In mammals,
one key pathway is genome DNA methylation. A maintenance

DNA methyl transferase, DNMT1, acts to suppress transpo-

sons and prevent embryonic lethality [34,35], whereas

DNMT3L has a more specific role in regulating retrotranspo-

sons in germ cells [36]. Histone modifications also have

critical functions in epigenetic silencing of transposons, as

was shown for Setdb1/Eset and H3K9 in mouse embryonic

stem cells [4,5]. In addition to epigenetic regulation, retrotran-

sposon transcripts after their expression are further targeted

by adaptive RNAi, mainly by recognition of the presence of

both sense and anti-sense strands of RNA. In particular, the

piwi system specifically operates in the germline and is essen-

tial to protect the genome stability of the germline and

reproductive fitness.
4. Piwi proteins and piRNAs
RNA interference (RNAi) and related systems represent a

posttranscriptional gene-silencing mechanism mediated by

small non-coding RNAs that guide Argonaute family pro-

teins to cleave or translationally suppress complementary

target RNAs [37,38]. Argonaute family proteins encode

PIWI (endonuclease), PAZ (single-stranded RNA binding)

and MID (50 nucleotide binding) domains, and are further

classified into Ago and Piwi clades. Argonaute clade mem-

bers are rather ubiquitously expressed in multicellular

organisms and bind to approximately 21–24 nucleotide

small RNAs, such as miRNAs derived from hairpin precur-

sors and siRNAs processed from sense and anti-sense

hybrids [6]. The other Argonaute clade comprises Piwi pro-

teins, which are only found in animals and are specifically

expressed in germ cells (and certain gonadal somatic cells

of several species, including Drosophila) [7]. Piwi proteins

bind to piwi-interacting RNAs (piRNAs), which are approxi-

mately 24–30 nucleotide single-stranded RNAs (8–11). In

mice, the genome encodes three piwi proteins: PIWIL1/

MIWI, PIWIL2/MILI and PIWIL4/MIWI2 [39–42]. These

three PIWI proteins are primarily expressed in male germ

cells (MILI is also detectable in oocytes [43–45]) and show

sequential and overlapping expression patterns during sper-

matogenic differentiation. MILI is first expressed in male

foetal germ cells at around the time of sex differentiation

and then continues its expression in prospermatogonia,

postnatal spermatogonia, pachytene speramtocytes and

early round spermatids (MILI is not detectable in leptotene-

zygotene spermatocytes; S. Chuma 2012, unpublished data).

MIWI2 is expressed in prospermatogonia but shows a

narrow expression window and is diminished a few days

after birth. In contrast to MILI and MIWI2, MIWI expression

starts postnatally and is expressed in pachytene spermato-

cytes and later including round to elongating spermatids.

How such differential expression of the piwi family members

is regulated is currently unknown.

In mammals, piRNAs are classified mainly into three

categories (foetal/prenatal, postnatal prepachytene and

pachytene piRNAs), according to the developmental stages

of their expression. In prospermatogonia, MILI and MIWI2

are loaded with foetal piRNAs, whose biogenesis is closely

linked to epigenetic control over retrotransposons (see

below), while MILI alone is expressed in postnatal spermato-

gonia, wherein piRNAs (postnatal prepachytene piRNAs) are

less abundant and less well characterized. Then during
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meiosis, the amount of piRNAs highly increases at the

pachytene stage of spermatocytes and also in post-meiotic

round spermatids [8–11,44,46,47]. Deep sequencing studies

revealed that piRNAs, which are very complex in their

sequence profiles when compared with miRNAs (millions of

piRNAs versus a few hundreds or thousands of miRNAs),

drastically change their sequences during development and

the three piRNA groups are quite distinct. While pachytene

piRNAs are enriched with inter-genic, non-annotated

sequences with relatively low abundance of transposon-

derived sequences (up to 20%), pre-pachytene piRNAs

expressed in postnatal spermatogonia are more abundant

with transposon-derived sequences (240%) as well as genic

sequences (220%). Foetal piRNAs also contain 40–50% of

transposon sequences but with different composition com-

pared with those in postnatal spermatogonia and with less

exonic sequences (23%). Genome mapping of such piRNA

sequences revealed that piRNAs mostly originate from distinct

genome clusters, termed piRNA clusters [8–11,44,46,47],

which are a few to hundreds of kb in length, with piRNA

clusters of each developmental stage showing little overlap
and being derived from different chromosomal locations.

How such piRNA clusters are defined is currently unclear,

but given piRNA sequences per se are not well conserved

among different species and, rather, the cluster synteny is sur-

prisingly conserved, some chromatin context(s) is most

probably involved.

Another characteristic feature of piRNA clusters is strand

asymmetry; that is, most piRNAs map to only one genome

strand of each cluster or a segment of it, suggesting that

long single-stranded RNAs transcribed from the piRNA

clusters are precursors of piRNAs. Such precursor transcripts

are then probably processed by (an) unknown nuclease(s) to

produce 50 ends with a phosphate group, which are sub-

sequently loaded onto PIWI proteins. Then, 30 sequences

are cleaved again by (an) unidentified nuclease producing

an OH end (and 20-O-methylation) with the size of piRNAs

being determined by the footprint of each PIWI protein

(average 26 nucleotides for MILI, 28 nucleotides for MIWI2

and 29–30 nucleotides for MIWI) [7,48]. This mechanism

of piRNA biogenesis is called the primary processing of

piRNAs (figure 1). Whether the primary piRNA biogenesis
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has any selectivity to preferentially recognize retrotransposon

transcripts is not well understood. In addition to the primary

pathway, there operates another, secondary mechanism to

amplify piRNAs, which is important for retrotransposon

control. When piRNA populations are examined for their

sequence complementarity, a significant proportion of them

clearly show a 50 overlap of precisely 10 nucleotides, with

one strand enriched for uridine at the 50 end and the other

complementary strand enriched for adenine at position 10

[63]. This characteristic signature is explained by a proposed

secondary biogenesis pathway of piRNAs, termed the ping-

pong or feed-forward amplification cycle. In this pathway,

PIWI proteins loaded with primary piRNAs first recognize

complementary target RNAs, and then using the slicer activity

of the PIWI domain, the target RNAs are cleaved at the nucleo-

tide position complementary to the 10th nucleotide from the

50 end of the primary piRNA, producing secondary piRNA

precursors. The 30 end of secondary piRNA precursors is

then processed probably by the same mechanism as that for

primary piRNAs. Such sequence-complementarity-dependent

recognition and cleavage form a cycle that amplifies piRNAs

derived from transcripts having complementary counterparts

in the cellular transcriptome, and thus this mechanism pre-

ferentially targets genome-repetitive sequences, including

retrotransposons [7,63] (figure 1).

Such a piRNA amplification loop should effectively con-

tribute to reducing the transcript level of retrotransposon

RNAs. However, the piwi pathway not only operates at the

RNA level post-transcriptionally, but also exerts an intriguing

control over epigenetic regulation. In the absence of piwi genes

in mice (Mili2 and Miwi2), foetal piRNA biogenesis and/

or sequence profiles are severely disrupted, and de novo

genome CpG methylation of cognate retrotranspon loci in

(pro)spermatogonia is not properly established [42,44,46,47].

This hypomethylation is thought to cause an epigenetic

situation that later triggers a transcriptional activation of retro-

transposons in postnatal spermatocytes, wherein gross cell

death occurs. These phenotypes, retrotransposon demethyla-

tion and meiotic catastrophe, are reminiscent of those seen in

Dnmt3L mutants [36], suggesting that DNA demethylation

alone could be the major cause of Mili2 and Miwi2 mutant

phenotypes. A possible molecular link between the piwi

pathway and de novo DNA methylation is not yet under-

stood. However, because DNA hypomethylation in the piwi

mutants is selective for retrotransposons, there should be

some mechanism(s) of target discrimination, most likely via

piRNAs recognizing homologous genome DNA sequences or

nascent RNA transcripts, as is suggested for RNA-induced

transcriptional silencing in plants and yeasts [64].
5. Other piwi pathway components
Piwi proteins and piRNAs are the core effector components

of the piwi–small RNA machinery, but they do not act

alone. Instead, they form larger ribonucleoprotein (RNP)

complexes with other functional components (table 1).

Tudor family proteins were the first to be identified to inter-

act with Piwi proteins in mice [13–15,51,52,54,65–68]. There

are about 30 genes that encode a tudor domain(s) in mamma-

lian genomes, and a class of tudor domain containing (Tdrd)

proteins, including TDRD1 and TDRD9, act in the piwi

pathway. Tudor domains in general recognize arginine
dimethylation of target proteins [69], and recent studies

identified that the N termini of mouse Piwi proteins are argi-

nine dimethylated and are indeed recognized by the tudor

domains of the TDRD proteins [15]. More specifically, MILI

binds to TDRD1, MIWI2 makes a complex with TDRD9,

MIWI complexes with TDRD6 and so on. Among these,

Tdrd1 and Tdrd9 mutations exhibit LINE1 activation during

spermatogenesis with piRNA profiles being significantly

altered. IAP activation is not detectable unlike Mili and

Miwi2 mutations, the reason for which is currently unknown.

In Tdrd1 and Tdrd9 mutants, de novo DNA methylation in

(pro)spermatogonia is clearly reduced at LINE1 promoters,

indicating that the two tudor domain proteins, which associ-

ate with the piwi proteins, are essential for LINE1 regulation

at both the transcriptional and post-transcriptional level.

Other Tdrd members, including Tdrd5 and Tdrd7, also

show retrotransposon desilencing with Tdrd5 implicated in

the piwi pathway, while Tdrd7 may act differently [53,70–

72]. At the molecular level, TDRD proteins most likely function

as scaffolds to assemble macromolecular complexes via their

tudor domains, as well as other domains in each member. Evo-

lutionarily, tudor family genes in other species including

Drosophila tudor (the founding member of the tudor family),

spn-E/homeless (a homologue of Tdrd9) and others (Tejas, Yb
and Krimper, etc.), also act in the piwi pathway [73,74]. Tudor
family genes are now emerging as key conserved components

of the piwi–small RNA system that ensures the germline

integrity of diverse animals.

Another intriguing and conserved component of the piwi

pathway is vasa (mouse vasa homologue (Mvh)/Ddx4 in

mice [55,75]). Vasa genes are evolutionarily conserved and

have long been used as a specific marker of germ cells of a

wide variety of animals. Vasa proteins have an RNA helicase

domain and have been implicated in RNA metabolism, but

the detailed molecular function remained unclear. Recently,

studies on vasa mutants of mice and Drosophila revealed

that vasa primarily acts in the piwi pathway [12,76]. In

mice, Mvh/Ddx4 mutation leads to clear upregulation of

LINE1 and IAP expression with spermatogenesis being

blocked during meiosis of spermatocytes. In the mutant,

foetal piRNAs loaded onto MIWI2 are abolished and cognate

DNA methylation is impaired, which clearly identified vasa
as an essential factor of the piwi pathway. In the developmen-

tal biology field, vasa and tudor have long been considered as

key developmental genes essential for the germline specifica-

tion (Drosophila) and differentiation (mice) [51,55,77–79].

However, it now has turned out that these genes, as well as

a group of other genes (including piwi) that have been impli-

cated in the germline development, actually participate in

transposon control through the piwi–small RNA pathway,

illustrating the importance and intimate integration of

transposon control in germ cell development.

Mov10L1 (a homologue of Drosophila Armitage) is another

RNA helicase required for the primary biogenesis and/or load-

ing of piRNAs and for suppression of LINE1 and IAP in

spermatogenesis [56,57]. Together with Mvh/Ddx4 and Tdrd9
(which also has a helicase domain) [12,54], these RNA helicases

are evolutionarily conserved and are essential for the operation

of the piwi pathway.

Other components of the piwi pathway identified so far

include Maelstrom [58,80] and GASZ/ASZ1 [60]. Maelstrom

has a HMG-box and is necessary for LINE1 and IAP suppres-

sion, with its loss of function causing a defect in the piRNA
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profile and transient hypomethylation of LINE1 in (pro)sper-

matogonia, of which the underlying mechanism is unclear.

Gasz/Asz1 encodes Ankyrin repeats and a SAM domain,

and acts to suppress LINE1 and IAP, possibly through the

stabilization of MILI and other piwi pathway factors.

Another recently identified, intriguing component of the

piwi pathway is Mitopld/Zucchini/PLD6, a member of

the phospholipase D family, which hydrolyses phospholipids

and mediates lipid signalling [61,62]. Mitopld/Zucchini has

also been assumed to be a putative nuclease responsible for

piRNA processing, but its nuclease activity has not been

established, while a lipase activity was biochemically demon-

strated [81]. Mitopld/Zucchini mutations result in LINE1

derepression with cognate DNA hypomethylation and a

severe defect in primary piRNA biogenesis. Interestingly,

the Mitopld/Zucchini protein is located at the outer mem-

brane of mitochondria, and its overexpression (in somatic

cells) facilitates mitochondrial fusion through lipid signalling

[81], while its loss-of-function disrupts the distribution of

mitochondria and delocalizes piwi pathway components

such as MILI and TDRD1. Mitopld/Zucchini provides an

important clue that links mitochondrial membrane regulation

and/or lipid signalling to the piwi pathway.
6. Spermatogenesis and the piwi pathway
in mice

The piwi pathway primarily functions in the male germline

in mice, and all loss of function mutations of the piwi

pathway genes reported to date lead to spermatogenesis

defects. The phenotypes are mainly manifested at two

distinct stages of spermatogenic differentiation, during meio-

sis of spermatocytes (Mili/Piwil2, Miwi2/Piwil4, Tdrd1, Tdrd9,
Mvh/Ddx4, Mov10L1, Maelstrom, Gasz/Asz1, Zucchini/Mitopld/
Pld6) [12–15,41,42,46,47,49–52,54,56–58,60–62,80] and

during later spermiogenesis of haploid spermatids (Miwi/
Piwil1, Tdrd1, Tdrd5; Tdrd1 mutants show both spermatocyte

and spermatid defects) [40,51,53].

In the former group of mutants, spermatocytes are

arrested at around the zygotene stage, showing a synapsis

failure of homologous chromosomes with increased DNA

double-strand breaks (DSBs), of which the simplest expla-

nation would be that elevated activities of retrotransposons

cause genome-wide DNA damage. Such DSBs are likely to

be independent of the endogenous meiotic recombination

programme, as was exemplified by the persistent DSBs

observed in Maelstrom mutant spermatocytes in the absence

of Spo11, a meiosis specific topoisomerase [58]. Remarkably,

while the developmental defect of these mutants is evident

during meiosis of spermatocytes, distinct molecular changes

are seen at much earlier stages in foetal (pro)spermatogonia

during embryonic development. In mutant (pro)spermatogo-

nia, in which no detectable defect is observed at the cellular

level, the biogenesis of piRNAs per se or their sequence

profiles are clearly impaired with the expression of retro-

transposons being upregulated. Further, de novo CpG

methylation of retrotransposon loci, which is normally estab-

lished in (pro)spermatogonia after the genome-wide

demethylation in PGCs [23], is also defective in the piwi path-

way mutants that show postnatal meiotic catastrophe. This

epigenetic status in (pro)spermatogonia probably explains

the delayed cellular phenotype. CpG hypomethylation at
retrotranspson loci should be transmitted to postnatal sper-

matogonial stem cells and then to meiotic spermatocytes,

wherein retrotransposons, especially LINE1, are transcrip-

tionally activated to a moderate permissive level in the

wild-type, while in the piwi pathway mutants, which lack

repressive methylation marks, much higher activation

occurs to a detrimental level leading to gross cell death.

Another compelling possibility is that an unusual chromatin

conformation caused by hypomethylation of retrotransposon

loci leads to non-allelic homologous recombination or aber-

rant chromosome condensation, which should then trigger

checkpoint activation.

Compared with the ‘early’ meiotic phenotype, the later

spermatid defect of piwi pathway mutants (Miwi, Tdrd1,
Tdrd5) is less well characterized [40,51,53]. Because pachytene

piRNAs expressed in pachytene spermatocytes and later

spermatids are not enriched with transposon derived

sequences, the piwi system has not been thought to function

in transposon control post-meiotically. However, a recent

study revealed that LINE1 retrotransposon is actually acti-

vated in Miwi mutants, and that Miwi slicer activity cleaves

LINE1 transcripts to reduce their abundance and to produce

repeat derived piRNAs [50]. This action of MIWI however

does not affect DNA methylation of cognate LINE1 loci and

thus is likely post-transcriptional. Another post-meiotic

defect is seen in Tdrd5 mutants. However, although the

Tdrd5 loss-of-function mutant shows a phenotype in round

spermatids reminiscent of the Miwi mutation, it also brings

about earlier molecular changes in foetal (pro)spermatogo-

nia, with LINE1 expression being upregulated, genome

DNA hypomethylated at LINE1 loci and MIWI2 and

TDRD9, which act in the secondary pathway, delocalized.

One explanation for such a long lag period between the mol-

ecular and cellular phenotypes is that the extent of

retrotransposon desilencing in this mutant may be relatively

moderate or that Tdrd5 may have independent functions in

foetal (pro)spermatogonia and postnatal spermatids.

Together, genetic studies have unveiled that the piwi

pathway is essential for male fertility in mice with each com-

ponent acting at several distinct stages of spermatogenesis and

having non-redundant functions. In the female, by contrast,

although several piwi pathway components, such as Mili,
Tdrd1 and Tdrd9, as well as piRNAs are expressed in oocytes

[43–45,51,54,82], there has been no report of female sterility or

oocyte degeneration in such piwi pathway mutants. This may

be because endogenous siRNAs and the canonical RNAi path-

way act to suppress retrotransposons in oocytes [45,82].

Alternatively, oocytes of the piwi pathway mutants are indeed

affected, but the effect may be below the threshold of fatal

oocyte damage. Supporting the latter notion, Mili mutant

oocytes show a moderate increase in retrotransposon expression

[45], but they are still functional and fertilizable. Whether the

increased retrotransposon expression causes novel insertions in

oocytes and in subsequent offspring awaits future investigations.
7. Experimental systems
Our current understanding of the piwi pathway has mainly

come from a combination of genetic studies of mutant ani-

mals and deep sequencing profiling of piRNAs therein.

Such studies unambiguously uncovered a novel paradigm

of transposon regulation by this small RNA system in the
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germline. However, to further elucidate the detailed molecu-

lar processes, cell culture models, if available, would greatly

assist easier experimental manipulation. In several insect

species, gonadal somatic cells express a Piwi protein(s) and

produce piRNAs, and several cell lines established from

insect gonads have been successfully used to analyse the

piwi pathway. For example, a Drosophila ovarian somatic

cell line, OSC, was established from follicle cells and

expresses the Piwi protein (but not Aub and Ago3) [83]. In

this cell line, piRNAs are mainly derived from primary loading

onto the Piwi protein and the secondary ping-pong signature

is negligible. Such a cell line is useful for characterizing

piRNAs from a pure cell population and allows for easy

access to RNAi and mutagenesis experiments. Another insect

cell line, BmN4, a Bombyx mori (silkworm) ovary derived cell

line, expresses two Piwi proteins, Siwi and BmAgo3, which as

expected act in the ping-pong amplification of piRNAs [84].

Cellular extracts from this cell line have been effectively used

to load the Piwi proteins with synthetic RNA substrates to

examine 50 nucleotide preference and 30 end processing, etc [85].

In mammals, germline stem (GS) cells are a good candidate

cell line for piRNA study. GS cells are established from sperma-

togonial stem cells and can expand in culture in the presence of

growth factors such as glial cell line-derived neurotrophic factor

and basic fibroblast growth factor [86]. Remarkably, GS cells

produce functional sperm when transplanted back into testes

(seminiferous tubules) of recipient mice and normal live off-

spring can be derived. In this sense, GS cells authentically

function as GS cells. In GS cells, Mili is expressed and primary

biogenesis of piRNAs operates (T. Nakano 2012, unpublished

data), which corresponds to the piwi system in postnatal sper-

matogonia in vivo, in which MIWI2 has been turned off and

before the onset of MIWI expression. This cell line should pro-

vide a good resource to study the primary processing of

mammalian piRNAs, the identification of novel piwi pathway

components and their biochemistry. Whether GS cells can be

reconstituted with the foetal piRNA pathway by expressing

Miwi2, etc. will be worthy of further investigation.
8. Perspective
The battle between host genomes and transposable elements

over long evolutionary history is still ongoing. While piRNAs

should have been recognized for years (for instance, pachy-

tene piRNAs in mammalian testes are very abundant), it

was not until recently that we became aware that such

small RNA species are at the core of the genome defence
system against transposons in the germline. Still, much

remains to be learned about this ancient small RNA pathway.

One key issue is how or whether retrotransposon transcripts

are preferentially incorporated into the piwi pathway. The

feed-forward/ping-pong amplification mechanism is beauti-

ful to capture those transcripts that have both sense and

anti-sense complementary copies, but the selection mechan-

ism of the primary loading of the cellular transcriptome, if

any, onto the piwi machinery is not well explained. In

addition, how genome piRNA clusters are defined, such as

their transcriptional regulation, developmental control and

syntenic conservation, is not understood. Another unsolved

issue is sub-cellular RNP assembly of piwi pathway com-

ponents. The piwi pathway seems to be closely associated

with germinal granules/nuage, a cytoplasmic RNP compart-

ment characteristically observed in the germline [87].

Germinal granules/nuage have long been implicated in the

germline specification in early embryos of several model ani-

mals, such as Drosophila and C. elegans [16–18], but in

mammals the structure is only assembled during later differ-

entiation stages of germ cells [87,88]. Recent studies found

that many piwi pathway proteins are enriched at germinal

granules/nuage or at another relevant RNP structure, the

processing body [54,59,71,89,90]. It remains elusive how

such subcellular localization contributes to the piwi pathway

function and whether there is any crosstalk between piwi

factors and other components of germinal granules/nuage.

Last, the epigenetic link between the piwi pathway and

cognate genome CpG methylation is quite important, given

that very little is known about the physiological function of

endogenous small RNAs in epigenetic regulation in mammals,

unlike plants and yeasts [64]. The piwi pathway in foetal

(pro)spermatogonia provides a precious experimental model

to study the mechanism by which small RNAs guide epige-

netic control over specific genome loci. A recent study

reported that DNA methylation of a paternally imprinted

gene, Rasgrf1, is regulated under the control of the piwi path-

way via a transcript of a neighbouring repeat element and

piRNAs generated from a remote locus [91]. Retrotransposons

are quite abundant in the genome and epigenetic control could

exert a long distance effect in cis; therefore, the piwi pathway

may have more widespread effects beyond retrotransposon

silencing in the genome as well as in the cellular transcriptome.
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