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The differentiation and reprogramming of cells are accompanied by drastic

changes in the epigenetic profiles of cells. Waddington’s classical model

clearly describes how differentiating cells acquire their cell identity as the

developmental potential of an individual cell population declines towards

the terminally differentiated state. The recent discovery of induced pluripo-

tent stem cells as well as of somatic cell nuclear transfer provided

evidence that the process of differentiation can be reversed. The identity

of somatic cells is strictly protected by an epigenetic barrier, and these

cells acquire pluripotency by breaking the epigenetic barrier by reprogram-

ming factors such as Oct3/4, Sox2, Klf4, Myc and LIN28. This review

covers the current understanding of the spatio-temporal regulation of epi-

genetics in pluripotent and differentiated cells, and discusses how cells

determine their identity and overcome the epigenetic barrier during the

reprogramming process.
1. Introduction
Induced pluripotent stem (iPS) cells are generated by the enforced expression of

embryonic transcription factors, most commonly Oct3/4, Sox2, c-Myc and Klf4.

In addition to pluripotency, they have infinite capacity for self-renewal [1,2]. iPS

cells have been generated from multiple cell types, including keratinocytes [3],

mesenchymal cells in fat [4], the oral mucosa [5], dental pulp cells [6], periph-

eral blood [7] and cord blood [8], as well as skin fibroblasts [2]. The

characteristics of fully reprogrammed cells are functionally and molecularly

very similar to those of embryonic stem (ES) cells in terms of their morphology,

gene expression profile and capacity to differentiate into any of the three germ

layers: endoderm, mesoderm and ectoderm. iPS cells could be a useful source

for cell transplantation therapy, drug screening and disease modelling [9].

iPS cells are also highlighted as a cell model for epigenetic research.

Pluripotent stem cells differentiate into any of the 200–300 specialized cell

types with distinct properties. Waddington clearly described how differentiat-

ing cells acquire their cell identity, by illustrating differentiating cells as

marbles rolling down valleys, with the developmental potential of individual

cell populations declining towards the terminally differentiated state at the

lowest elevation [10]. Recent genome-wide analyses using high-performance

sequencers have uncovered key differences in the epigenetic landscape of plur-

ipotent stem cells compared with that of lineage-committed cells. Waddington’s

classical model is now widely accepted; it appears that ‘Waddington’s marbles’

are present in different valleys and that the different elevation levels have

distinct epigenetic profiles, which are likely to play a role in the irreversibility

of the properties of lineage-committed cells and the maintenance of their

identity [11].

Cellular reprogramming induces differentiated cells to revert back to undif-

ferentiated cells including pluripotent stem cells. On the basis of Waddington’s

model, somatic cells in differentiated states maintain their own cell fate and do

not normally change from one differentiation pathway to another, although cell

fate can be altered by nuclear reprogramming [11–15]. This reversal process can
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be achieved by breaking the barrier of the differentiated state,

and it provides one of the strategies for investigating the mol-

ecular basis of cell identity governed by epigenetic regulation.

Because of its observed lower efficiency, the reprogramming

process has been depicted as climbing a mountain, because

it is much harder to achieve than differentiation, which is a

spontaneous process, as sliding down a hill [11]. Therefore,

a molecular understanding of the reprogramming process

may address the question of how differentiated cells maintain

their identity. Induced pluripotency is a process associated

with gradual epigenetic changes [16], and thus can be

exploited to obtain a molecular understanding of the deter-

mination of cell fate, which is mediated by epigenetic

changes such as the silencing of retroviral transgenes upon

the establishment of pluripotency [17,18], the reactivation of

endogenous pluripotency genes [1], the establishment of

bivalent chromatin domains in the promoters of developmen-

tally regulated genes [12,19], global DNA hypomethylation,

DNA hypermethylation of imprinted gene loci [17], reactiva-

tion of the inactive X chromosome in female iPS cells and

reorganization of chromatin fibres [20,21].

This review summarizes studies performed to understand

the epigenetic signatures associated with pluripotent and dif-

ferentiated states, and addresses how their unique signatures

contribute to the maintenance of pluripotency and how they

are established during the reprogramming process.
2. Distinct histone modification profile
in pluripotent cells

Recent technical advances have allowed us to map chroma-

tin modifications throughout the genome by combining

chromatin immunoprecipitation with DNA microarray

analysis (ChIP-chip) or high-performance sequencing

(ChIP-seq). Pluripotent stem cells have a unique expression

pattern for histone modifiers and distinct distributions of

modified histones.

The Polycomb group (PcG) complexes with the activity

of H3K27 methylation to repress the expression of develop-

mentally regulated genes in pluripotent stem cells [22,23],

whereas the Trithorax group (TrxG) complexes with the

activity of H3K4 methylation to activate the expression of

genes associated with self-renewal [24]. An active mark,

H3K4me3, is frequently observed in promoter regions of plur-

ipotent stem cells, and is linked to transcriptional activation in

general [25–27]. The methylation of H3K4 is mediated by

TrxG members such as Set/mixed lineage leukaemia (MLL)

methyltransferases. Wdr5, a key component of TrxG, interacts

with H3K4me2, and mediates the transition of H3K4me2 to

H3K4me3 [28]. The expression of Wdr5 is the highest in undif-

ferentiated ES and iPS cells, and the level decreases during the

differentiation process. The expression of Wdr5 along with

the reprogramming factors enhances the efficiency of iPS cell

generation [24]. Wdr5 physically interacts with Oct3/4, and

co-occupies the DNA-binding sites of Oct3/4. Silencing of

Wdr5 expression results in decreased expression of Oct3/4

target genes and the loss of self-renewal capacity of ES cells.

H3K4 demethylase LSD1 stabilizes global DNA methylation

[29] and also maintains an appropriate balance between

H3K4 and H3K27 methylation in the regulatory regions of sev-

eral developmental genes in pluripotent stem cells [30]. The

recently reported interaction between LSD1 and Dnmt1
indicated that LSD1 mediates the linkage between DNA

methylation and H3K4 demethylation [31].

The methylation of H3K27 is mediated by Polycomb

repressive complex 2 (PRC2), which is composed of PcG pro-

teins such as enhancer of zeste 2 (Ezh2), embryonic ectoderm

development (Eed) and suppressor of zeste 12 homolog

(Suz12) [32,33]. ES cells lacking a single component of the

PRC2 complex, such as Ezh2, Eed or Suz12, show partial dis-

ruption of self-renewal accompanied by complete depletion

of H3K27me3 [23,34], indicating that each component of the

PRC2 complex collaboratively executes H3K27 trimethylation

and regulates pluripotency and differentiation [35–38]. The

histone methyltransferase activity of Ezh2 is responsible for

maintaining H3K27 trimethylation in pluripotent stem cells

[36,38,39]. Suz12 interacts with Ezh2, and inhibits protein

degradation of Ezh2 [37]. A genome-wide analysis showed

that Suz12 is co-localized with H3K27 trimethylation at key

development regulators, as well as with highly conserved

non-coding elements in ES cells [22]. A subset of Suz12-

bound and H3K27me3-enriched genes are co-occupied by

Oct3/4, Sox2 and Nanog. They are preferentially activated

during ES cell differentiation, indicating that PRC2 poises

differentiation-related genes for rapid gene activation

during differentiation in pluripotent stem cells [22,40]. The

PRC1 complexes composed of RING1A, RING1B, BMI1

and other proteins exhibit diverse functions in a PRC2-

independent manner, such as ubiquitination of lysine 119 of

H2A [41,42], and are also involved in the repression of tran-

scription [43,44]. Previous studies in Drosophila melanogaster
and Caenorhabditis elegans demonstrated that PcG proteins

bind cis-acting DNA sequences and repress transcription,

facilitating heterochromatin formation by binding to RNA

[45–50]. For example, the incorporation of non-coding

RNAs into PRC2 complexes has been observed. The PRC2

complexes interact with Xist RNA in mouse ES cells [51],

whereas interaction between HOTAIR and SUZ12 has been

observed in human fibroblasts. Such a gene repression mech-

anism may also be employed by mammalian pluripotent

stem cells.

Transcriptionally inactive heterochromatin is usually

accompanied by H3K9 di- and tri-methylation (H3K9me2/3).

Oct3/4 upregulates demethylases for H3K9me2/3, such

as Jmjd1a and Jmjd2c, by interacting with their promoters.

Demethylation of H3K9me2/3 by these demethylases

contributes to the self-renewal of ES cells [52,53]. In fact,

depletion of Jmjd1a and Jmjd2c leads to decreased expression

of pluripotency genes and differentiation of ES cells. In con-

trast, H3K9 methyltransferases have been reported to play

an important role in early embryogenesis. G9a is an H3K9

methyltransferase that is essential for embryonic develop-

ment [54], and has been shown to prevent reprogramming

by recruiting Dnmt3a and Dnmt3b to the promoters of

Oct3/4 and HP1b [55]. Treatment of cells with a chemical

inhibitor specific for G9a increases the efficiency of iPS

cell generation [56]. Although the molecular significance of

silencing is unknown, ES cells are considered to be a

good model for studying the relationship between DNA

methylation and histone modifications, because of their

high level of de novo DNA methyltransferase activity

[57]. Endogenous retroviruses (ERVs) are transcriptionally

silenced in ES cells. However, the silencing of ERVs is

initiated by the H3K9 methyltransferase ESET/SETDB1,

with KRAB-associated protein 1 (KAP1, also known as
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TRIM28) in a DNA methylation-independent manner [58,59].

This suggests that not only the global level of H3K9me2/3,

but also the context-dependent regulation of H3K9

(de)methylation is involved in the maintenance of pluripo-

tency and differentiation. It is unclear whether the level of

H3K9me2/3 is lower in pluripotent stem cells [60,61].

The acetylation of histones is also a significant modifi-

cation observed in pluripotent stem cells. The level of

acetylation is generally correlated with transcriptional acti-

vation, and is strictly regulated by the balanced actions of

histone acetyltransferases (HATs) and histone deacetylases

(HDACs) [62]. RNA interference screening of ES cells for

chromatin components showed that a large set of HAT com-

plexes to which Tip60 (TAT-interacting protein 60)/p400

contributes are ES cell development regulators, such as

Gata4 and Gata6, and significantly overlap with target

genes of Nanog [63,64]. On the other hand, HDAC inhibitors,

such as valproic acid and trichostatin A, improve the effi-

ciency of nuclear reprogramming by both nuclear transfer

[65,66] and the transduction of pluripotency genes [67],

suggesting that histone acetylation is involved in the

maintenance and acquisition of pluripotency.

One of the most distinctive features of histone modifi-

cations in pluripotent stem cells is hypothesized to be

‘bivalent domains’, where both the active mark H3K4me3

and the repressive mark H3K27me3 are observed [25,68,

69]. These conflicting marks are preferentially observed at

promoters of lineage-specific genes in pluripotent stem

cells but very rarely in differentiated cells [19,25,27,68,

70,71]. This finding indicates that target genes in bivalent

domains are ‘poised’ for expression, which is kept silent by

H3K27 trimethylation in pluripotent stem cells and is pre-

sumably dependent on the trimethylation of H3K4. For

example, while the expression of genes in bivalent domains

is low in pluripotent stem cells, it switches to conventional

patterns in the presence of active or repressive marks by

erasing opposite marks during differentiation [69,72]. Conse-

quently, differentiation-related genes with bivalent domains

are expressed only in cells of their specific lineage. The

repressive function of H3K27 methylation at lineage-specific

loci is also demonstrated by the derepressed expression

of these target genes in ES cells lacking key subunits of

the H3K27 methyltransferase complex PRC2 [22,23,68].

Thus, the formation of poised chromatin architecture is

proposed to be a key mechanism involved in both the main-

tenance of pluripotency and the developmental potential of

pluripotent stem cells.

Incomplete formation of bivalent domains is occasionally

observed in partially reprogrammed cells [19]. Furthermore,

the Ink4/Arf locus is silenced during the early stage of

reprogramming with the formation of bivalent chromatin

domains, whereas forced silencing of Ink4/Arf by shRNA

increases the efficiency of iPS cell generation, indicating that

the Ink4/Arf locus could functionally behave as a barrier to

reprogramming [73]. In this way, genes responsible for differ-

entiation are susceptible to the formation of bivalent

domains, and keep target genes poised for transcriptional

activation in pluripotent stem cells [12].

In the last decade, it has come to be widely accepted that the

bivalent domain is one of the most distinctive features of plur-

ipotent stem cells. However, a recent study revised the role of

the bivalent domain in pluripotent stem cells. Mouse ES cells

cultured in leukaemia inhibitory factor (LIF)-containing and
feeder-free medium with two small-molecule kinase inhibitors

(2i) exhibited ground-state pluripotency. These naive ES cells

exhibited a decreased amount of H3K27me3 on the bivalent

domain compared with that observed in mouse ES cells

under conventional culture conditions. The distribution of

H3K4me3 in naive ES cells is similar to that in ES cells under

2i-free culture conditions, demonstrating that the bivalent

domain is transiently formed during differentiation [74].

The replacement of canonical histones with specific var-

iant forms has emerged as a key mechanism of modulation

of nucleosome dynamics and chromatin structure. Incorpor-

ation of histone variants alters the interaction surfaces

and overall stability of nucleosomes, including localized

changes in chromatin structure and the formation of special-

ized chromosomal domains [75–77]. Some of the histone

variants are considered to play an important role in differ-

entiation or reprogramming. In ES cells, H2AZ, a highly

conserved variant of H2A, is preferentially incorporated

into the bivalent domains of developmentally important

genes [78,79]. The depletion of H2AZ by RNA inter-

ference in ES cells results in the expulsion of PcG proteins

from the bivalent domains, leading to derepression of

genes that are silenced by the PcG complexes, although

H2AZ is not required for the maintenance of stemness in

ES cells [78].

In addition to H2AZ, macroH2A, one of the histone

variants incorporated mainly in heterochromatin [80], was

recently identified as a regulator of reprogramming [81].

In addition to variants of core histones, differential compo-

sition of a linker histone H1 has been observed [82]. The

possible roles of other histone variants in differentiation or

reprogramming also need to be evaluated.
3. DNA methylation and demethylation:
modulating the barrier for reprogramming

DNA methylation maintains long-lasting cell memories, and

is therefore considered to be a pivotal epigenetic barrier to

cellular reprogramming [83]. During reprogramming, the

activation of endogenous pluripotency genes including

Oct3/4 and Nanog is accompanied by erasing the methylation

of cytosines at their promoter regions. Insufficient DNA

demethylation at the promoter regions, which is occasionally

observed in partially reprogrammed iPS cells, fails to produce

the robust reactivation of pluripotency genes [1,84–86].

In addition, the differential patterns of DNA methylation

that are associated with genomic imprinting, retrotransposon

silencing and X chromosome inactivation are observed bet-

ween differentiated and pluripotent stem cells and among a

series of pluripotent stem-cell lines [27,86–89], indicating

that DNA methylation may be a suitable epigenetic marker

for characterizing pluripotent stem-cell lines. Although it is

unclear how such differential levels of DNA methylation

arise, functional linkage between DNA methylation and

reprogramming has been demonstrated. The inhibition of

DNA methylation by chemical compounds or RNA interfer-

ence targeting DNA methyltransferase can increase the

efficiency of iPS cell generation [19].

Recent analyses using a high-performance sequencer have

enabled mapping of DNA methylation with high resolution

and have revealed an intriguing distribution of methylated

cytosine in pluripotent stem cells. Since DNA methylation
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is frequently observed at CpG islands, which contain a high

frequency of CpG sites, it is considered that the frequency

of CpG sequences was positively correlated with the suscep-

tibility to DNA methylation. However, the most recent

studies of genome-wide DNA methylation status in pluripo-

tent stem cells have produced observations that differ from

the widely accepted model. The methylation levels of CpGs

in pluripotent stem cells were negatively correlated with the

local CpG density.

In ES and iPS cells, regions with high CpG density exhib-

ited low DNA methylation, whereas those with low CpG

density exhibited high DNA methylation [27,87,90,91].

Regions with low CpG density are frequently observed in

the promoters of tissue-specific genes [91], implying that

the mechanism responsible for DNA methylation in the regu-

lation of tissue-specific genes is different from that for DNA

methylation in the regulation of other genes. Intriguingly,

DNA hypermethylation at the promoters of these tissue-

specific genes with low CpG density is accompanied by biva-

lent chromatins in ES and iPS cells [91,92]. The relevance of

this uniquely low CpG methylation level in pluripotent

stem cells with bivalent domains is yet to be investigated at

the molecular level; such information would provide impor-

tant clues regarding the mechanisms of epigenetic regulation

during differentiation.

A single-base-resolution methylome analysis by whole-

genome bisulphite sequencing (WGBS) also highlighted the

significance of non-CG methylation in pluripotent stem

cells [86,89]. Surprisingly, approximately one-quarter of all

methylated cytosines in ES and iPS cells occurred in a non-

CpG context, whereas most of the methylated cytosines in

somatic cells were observed in CpG sequences. These pluri-

potent stem cell-specific non-CpG methylation sites tend to

be located in the exonic regions of actively transcribed

genes [86]. The existence of DNA methylation in cytosine

of non-CpG may be linked to the fidelity of DNA methyl-

ation, which was proposed in a previous study of DNA

demethylase Tet1 [93].

Studies using mice harbouring mutant DNA methyl-

transferases showed the importance of strict regulation of

DNA methylation during the normal developmental pro-

cess. Dnmt1 and Dnmt3a/Dnmt3b are enzymes essential

for the maintenance and establishment of DNA methyl-

ation, respectively [87,94,95]. The loss of Dnmt1 causes

the loss of two-thirds of total DNA methylation, thus lead-

ing to embryonic lethality [96]. Embryos with mutant

Dnmt3b appear to be normal in early developmental

stages but show multiple developmental defects in the

later stages [97]. The conditional deletion of Dnmt3b in

mouse embryonic fibroblasts leads to a partial loss of

DNA methylation [98]. However, although the Dnmt

family plays an essential role in both the developmental

process and the reprogramming of germ cells, de novo

methylation by Dnmt3a and Dnmt3b is dispensable for

the induction of iPS cells [99].

The mechanism by which methylated cytosine is con-

verted into unmodified cytosine during the reprogramming

process is elusive. However, with regard to DNA demethyla-

tion at the global level, two possible mechanisms have

been proposed: a replication-independent ‘active’ DNA de-

methylation pathway and a replication-dependent ‘passive’

DNA demethylation pathway. The existence of active

DNA demethylation is demonstrated by the base-excision
repair (BER) machinery in plants and in fertilized eggs of

animals. Previous studies have suggested TDG [100,101],

MBD4 [102], AID/APOBEC [103], GADD45A [104] and

MBD2B [105–107] as candidate DNA demethylases in

mammalian cells [108–111], and the coordinated action of

these factors is required for active DNA demethylation

through the BER machinery [112]. However, the roles of

these molecules in active DNA demethylation in mammals

are controversial.

The recent findings of Tet family proteins as candidate

DNA demethylases have advanced our understanding of

DNA demethylation in pluripotent stem cells and other tis-

sues [113–119]. Tet family proteins catalyze the conversion

of methylcytosine to 5-hydroxymethylcytosine (5hmC) in

an Fe(II)- and a-ketoglutarate-dependent manner. Tet pro-

teins have been implicated in ES cell maintenance and

lineage specification in vitro. Tet1 and Tet2 are highly

expressed in mouse ES cells, and are downregulated upon

cell differentiation [116,119]. The silencing of Tet1 expression

by RNA interference downregulates the expression of pluri-

potency genes such as Nanog, Esrrb, Klf4, Prdm14, Lefty1
and Lefty2, and increases the trans-differentiation potential

of ES cells to extra-embryonic lineages [93,116,119–121].

Genome-wide analysis using a high-performance sequencer

revealed the presence of an intricate relationship between

Tet1 and the expression of its target genes [93,120,122,123].

Tet1 preferentially binds to the gene body and GC-rich

sequences in promoter regions of both transcriptionally

active and repressive genes [122]. The Tet1-binding sites

overlap with PcG-target sites [123]. Consistently, the proteo-

mic analyses identified Sin3a, a component of the PcG

protein complex, as a binding partner of Tet1 [93]. Knock-

down of Tet1 decreases the expression of PcG-target genes

and pluripotency-related genes [120], indicating that gene

regulation by Tet1 cannot be completely explained by the

collaborative functioning with PcG. The involvement of

chromatin remodellers in Tet1-mediated gene regulation

has also been reported. The Mbd3/NURD complexes were

identified as a ‘reader’ of 5hmC. The Mbd3/NURD com-

plexes directly recognize 5hmC and control the expression

of Tet1-target genes [124]. Functioning of Mbd3/NURD

complexes as a reader of 5hmC may affect the regulation

of Tet1-target genes through modification with 5hmC.

Knockdown of Tet1 in ES cells produces a phenotype similar

to that of Mbd3-knockdown ES cells with increased

expression of trophectoderm markers, implying a funct-

ional link between Tet1 and Mbd3. In addition to 5hmC,

5-formylcytosine (5fC) and 5-carboxylcytosine (5caC) were

detected as intermediates of the oxidation reaction mediated

by Tet1 [125], and 5caC is subject to base excision by

thymine–DNA glycosylase (TDG) in ES cells [126]. This

suggests that the oxidation of Tet1 followed by base excision

of 5caC by TDG is a possible pathway for active DNA

demethylation in ES cells. The functional relevance of Tet1

in active DNA demethylation and the maintenance of

pluripotency has been demonstrated in vitro; however,

Tet1 mutant mice are viable and fertile. Moreover, ES

cells from mutant mice did not show any aberrations in

the maintenance of pluripotency [127]. Although the invol-

vement of Tet1-mediated active DNA demethylation in the

maintenance of pluripotency is of great interest, further

studies are necessary to elucidate the role(s) of Tet1 in

pluripotent stem cells.
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4. Implication of other epigenetic regulations:
chromatin remodelling, high-order structure
and non-coding RNA

Adenosine triphosphate (ATP)-dependent chromatin remodel-

ling factors, which are capable of mobilizing or displacing

nucleosomes at both the global and the locus-specific level

[128–130], regulate gene expression programmes in early

development and cell fate decisions [129,131,132].

SWI/SNF (switch/sucrose non-fermentable) complexes

trigger the ejection of nucleosomes. The SWI/SNF factor is

composed of two complexes Brg/Brahma-associated factors

(BAF) and polybromo BAF (PBAF), and contributes to the

self-renewal, proliferation or differentiation of ES cells.

BRG1, a catalytic subunit of BAF, regulates the self-renewal

and pluripotency of ES cells [133]. Knockdown of BRG1 by

RNA interference results in morphological changes and a

decreased proliferation of ES cells. BRG1 binds to the promo-

ter regions of pluripotency genes such as Oct3/4, Sox2 and

Nanog. Decreased expression of BRG1 downregulates the

expression of pluripotency genes including Oct3/4, Sox2
and Sall4, accompanied by upregulation of differentiation-

related genes such as Gata4 and Gata6. The involvement of

esBAF, an ES cell-specific BAF complex, in self-renewal and

pluripotency has also been reported [134–137]. esBAF

enhances the binding of Oct3/4 to the target promoters,

and facilitates the reprogramming of fibroblasts [138].

Although the molecular mechanism of esBAF-mediated

facilitation of reprogramming has been explained, Brg1, the

subunit of esBAF, also facilitates PcG function and represses

the expression of classical PcG targets such as Hox genes, the

expression of which is essential for the maintenance of

pluripotency [139]. The CHD (chromodomain helicase DNA-

binding) family complexes, as well as SWI/SNF complexes,

trigger the ejection of nucleosomes, and are involved in

the cell identity and function of ES cells [140–146]. CHD

complexes are composed of the CHD enzymes, methyl-CpG-

binding domain 3 (MBD3) and HDACs. The NuRD complex

includes CHD3, CHD4 and MBD3, and is responsible for the

deacetylation and trimethylation of H3K27. In addition,

the NuRD complex is essential for maintaining both pluripo-

tency and developmental transitions in early embryogenesis

[140,147,148]. In addition to the function of the complexes,

the roles of each component of the complexes in pluripotency

have been reported. For example, CHD1 targets Oct3/

4-binding sites, and is required for efficient reprogramming

of fibroblasts to the pluripotent stem-cell state. The silencing

of CHD1 expression by RNA interference blocks normal differ-

entiation and the accumulation of heterochromatin [144]. The

deletion of HDAC1 results in aberrant differentiation of ES

cells, the effects of which include preferential differentiation

toward the mesodermal and ectodermal lineages at the expense

of endoderm [149], and leads to embryonic lethality [150–153].

ES cells lacking MBD3 express trophectodermal markers and

show aberrant differentiation with sustained high expression

of Oct3/4 [140,146]. The restriction of interaction of MBD3

with the SWI/SNF component BRG1 to pluripotent stem cells

[137] implies that crosstalk among chromatin remodelling

complexes regulates the pluripotency of the cells.

The TIP60/p400 complexes belonging to the INO80

family regulate gene transcription by depositioning his-

tone variants H2A.Z into chromatin [130]. Knockdown of
Tip60/p400 expression in ES cells resulted in aberrant

morphology and a loss of pluripotency. The expression

profile of Tip60/p400-silenced cells was similar to that of

Nanog-silenced cells [63], suggesting that Nanog and

Tip60/p400 cooperatively maintain the pluripotency of ES

cells. Bprt, a member of the ISWI family proteins, is also

involved in early embryonic growth and represses the

expression of differentiation markers in ES cells [154].

The organization of high-order chromatin structures

has emerged as a key machinery of genome regulation

[155–157]. ES cells possess loosely compacted euchromatin.

They have an increased level of highly condensed heterochro-

matin that forms transcriptionally inactive regions during the

differentiation process [158,159]. Another study using fully

reprogrammed iPS cells with high Nanog expression and

partially reprogrammed iPS cells that were morphologically

similar to ES cells but lacked Nanog expression revealed

that fully reprogrammed cells with high pluripotency lose

the ability to form heterochromatin [21]. Not only loci-specific

heterochromatin formation, but also other nuclear features,

such as the nuclear lamina nucleolus and nuclear speckles,

may affect the chromatin architecture. However, the role of

the lamina in pluripotency remains controversial. One report

showed morphological differences between pluripotent and

differentiated cells [20], whereas another report indicated that

B-type laminas are not required for ES cells [160].

RNA occasionally acts as a chromatin regulator. Micro-

RNAs (miRNAs) regulate the post-transcriptional control of

gene expression [161]. The involvement of miRNAs in the

maintenance of pluripotency was suggested by the finding

that the expression of miRNAs is regulated by the core tran-

scriptional regulatory circuit in ES cells [162]. Studies using

mice lacking either Dicer or Dgcr8, which are required for

the maturation of all miRNAs, reveal that they play essen-

tial roles in the proliferation and differentiation of ES cells

[163–165]. However, although the loss of Dgcr8 results in a

cell cycle defect and aberrant differentiation as a result of

inability to silence the self-renewal programme of ES cells,

Dgcr8-deficient mice still maintain self-renewal in ES cells

[163]. This complicated regulation of pluripotency by

miRNA is now partially explained by antagonism between

miRNA-294, a regulator of the cell cycle in ES cells, and

the let-7 family, which is abundantly expressed in somatic

cells, in the stabilization of the self-renewing and differen-

tiation status [166]. miRNA-294 downregulates the let-7
family through stabilization of the let-7-negative regulator

LIN28 in the self-renewal state. LIN28 is highly expressed

in pluripotent stem cells [167,168] and facilitates the repro-

gramming of somatic cells in collaboration with other

pluripotency genes, such as Oct3/4, Sox2 and Nanog [169].

let-7 downregulates MYC in cancer cells through let7-binding

sites on MYC 30UTR, whereas the overexpression of MYC

decreases let-7 expression [170,171]. These observations

reveal a direct double-negative feedback loop, and imply

similar capacities of MYC and LIN28 to promote induction

of pluripotency. However, further study is required, particu-

larly to characterize the autoregulatory loop between MYC

and LIN28 in pluripotent stem cells.

Although previous studies have demonstrated similar

expression profiles of mRNA and miRNA in different

clones of both ES cells and iPS cells, other studies have

shown differential expression of a few transcripts from

imprinted regions or pluripotency-related genes. Some iPS
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cell clones display aberrant silencing at the Dlk-Dio3 gene

cluster on mouse chromosome 12F1, which is associated

with a poor cellular contribution to chimeric mice [172].

However, another report demonstrated contradictory evi-

dence in which the stoichiometry of reprogramming factors,

but not the imprinting status at the Dlk1-Dio3 region, strongly

interfered with the quality of iPS cells [160]. Hence, further

studies using a number of iPS cells with well-characterized

methodology are required to elucidate the molecular features

that can predict the quality of pluripotent stem cells.

X chromosome inactivation (XCI) is a regulatory mechan-

ism by which one of the two X chromosomes in female cells is

silenced [173,174]. A mouse ES cell or fully reprogrammed

iPS cell carries two active chromosomes (XaXa) and the

differentiation of these cells initiates XCI, leading to the inac-

tivation of either X chromosome to equalize the expression of

X-linked genes between the male (XY) and the female (XX).

The reprogramming of female mouse fibroblasts faithfully

reactivated the silenced X chromosome [175]. However, a pre-

vious study showed that some human ES cells and iPS cells

from female cells retained an inactive X chromosome [176].

Human pluripotent stem cells share characteristics with

mouse epiblast stem cells (EpiSCs), suggesting that human

pluripotent stem cells are in a ‘primed’ pluripotent state,

whereas mouse ES cells and iPS cells are in a ‘naive’ pluripo-

tent state [177]. Since diverse mechanisms for the initiation of

XCI during development have been found in mammals, such

differences may be associated with the observed inconsisten-

cies in X chromosome reactivation between mouse and

human pluripotent stem cells [178]. There are recent reports

of human iPS cells with ground-state pluripotency, demon-

strated by X chromosome reactivation, under certain culture

conditions [179,180]. Further studies are required for under-

standing of the molecular mechanism responsible for the

inactivation and reactivation of the X chromosome during

the reprogramming process [181].
5. Conclusions and perspectives
Pluripotent stem cells have been used as a cell model for

understanding the molecular mechanism of cellular differen-

tiation and a source of cells for regenerative medicine. Studies

of stem-cell identity and the fate of pluripotent stem cells

upon differentiation have advanced remarkably over the

last few decades. Many studies, including a recent genome-

wide analysis of epigenetic modifications, support the classi-

cal ‘landscape model’ of Waddington, which describes

irreversible cell differentiation. Our growing understanding

of epigenetic regulation in pluripotent stem cells and their

dynamic changes during differentiation can be used to

update this model, which represents not only cell fate but

also the coupling of developmental potential with the

epigenetic status of the cells during differentiation.

The recent discovery of iPS cells has enabled us to

dissect epigenetic regulation during reprogramming and

differentiation [1,182]. Reprogramming, the reverse of differ-

entiation, is achieved by breaking the barrier of the

differentiated state. Dissection of epigenetic regulation

during the reprogramming process may provide a descrip-

tion of how cells sustain their fate and may provide

candidates for molecules that act as guardians of differen-

tiation. The identification of guardian molecules that are
responsible for the differentiated state of cells will be of

use in the efficient generation of iPS cells. Reprogramming

factors, including Oct3/4 and Sox2, are thought to be indu-

cers of pluripotency and may also act as ‘destroyers’ of

the differentiated state. It will be of interest to know how

reprogramming factors contribute to the destruction of the

epigenetic barrier in the early stage of the reprogramming

process, and whether such a mechanism directly regulates

the master regulators that maintain the differentiated state,

or break the differentiated state through genome-wide

alteration of epigenetic status.

Pluripotent stem cells are now suggested as an artificial

source of tissues, and consequently it is necessary to be

able to guarantee their safety in the human body after trans-

plantation. However, both ES cells and iPS cells are produced

after long-term culture, and thus harbour clone-to-clone vari-

ations in their epigenetic profiles as well as DNA sequences

and copy numbers. Difference in iPS cells among clones

have been reported [85], and it is therefore important to vali-

date the quality of pluripotent stem cells including ES and iPS

cells by genomic and epigenomic analyses.

Methylome analysis may be a good candidate for eva-

uating the quality of pluripotent stem cells, since DNA

methylation is stable and acts as a source of long-term

memory. Some residual DNA methylation signatures

observed in iPS cells show characteristics of their somatic tis-

sues of origin, implying the presence of epigenetic memory

[85,183]. Considering the recent reports of variation among

clones in terms of the characteristics of pluripotent stem

cells, it is crucial to establish methods for the reliable evalu-

ation of the quality of iPS cells, which should eventually

be useful for generating clinical-grade iPS cells for use in

regenerative medicine.

Analysis using deep sequencers has also revealed non-

negligible differences among individuals in the genome and

epigenome. One of the advantages of using iPS cells as plur-

ipotent stem cells is the ability to analyse and compare

established iPS cells with the original somatic cells. In other

words, with these cells, it is possible to distinguish whether

the observed alterations in the genome/epigenome rep-

resent aberrations acquired during long-term cell culture or

the individual variation that is normally observed among

the individuals.

There is increasing evidence of the importance of

epigenetic regulation in maintaining pluripotency and the

reprogramming process. Current high-performance sequen-

cers make it possible to screen for genomic alterations at

the whole-genome level, and can be used to guarantee that

the cells are of clinical grade, on the basis of their genomic

sequence. It is also important to examine the epigenetic pro-

file of pluripotent stem cells, because the epigenetic

landscape represents both the past and the current develop-

mental state, and may be a useful indicator to predict their

future potential. Further advances in the understanding of

epigenetic regulation hold promise for the molecular under-

standing of cell fate and the realization of regenerative

medicine using pluripotent stem cells.
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