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Summary

		  Sirtuins are members of the silent information regulator 2 (Sir2) family, a group of Class III his-
tone/protein deacetylases. There are 7 different sirtuins in mammals (SIRT1-7), of which SIRT1 
is the best known and most studied. SIRT1 is responsible for the regulation of protein activation 
by means of deacetylating a variety of proteins that play important roles in the pathophysiology of 
metabolic diseases. Recently, it has been shown that SIRT1 plays key roles in the regulation of lipid 
and glucose homeostasis, control of insulin secretion and sensitivity, antiinflammatory effects, con-
trol of oxidative stress and the improvements in endothelial function that result due to increased 
mitochondrial biogenesis and b-oxidation capacity.

		  Nonalcoholic fatty liver disease (NAFLD) is currently the most common liver disease, and it has 
been accepted as the hepatic component of metabolic syndrome. Recent studies have shown that 
SIRT expression in the liver is significantly decreased in an NAFLD model of rats fed a high-fat 
diet, and moderate SIRT1 overexpression protects mice from developing NAFLD. In addition to 
resveratrol, a natural SIRT1 activator, small-molecule pharmacologic SIRT1 activators have positive 
effects on metabolic diseases. These effects are particularly promising in the case of diabetes mel-
litus, for which phase studies are currently being performed. With this information, we hypothe-
sized that the pharmacologic activation of SIRT1, which has been implicated in the pathogenesis 
of NAFLD, will be a potential therapeutic target for treating NAFLD. In this paper, we review the 
metabolic effects of SIRT1 and its association with the pathophysiology of NAFLD.
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Background

Nonalcoholic fatty liver disease (NAFLD) is among the most 
common causes of chronic liver disease worldwide [1]. The 
prevalence of NAFLD in the general population of Western 
countries is 20–30% [2]. Within the spectrum of NAFLD, 
only nonalcoholic steatohepatitis (NASH) has been con-
vincingly shown to have a progressive course. Approximately 
2–3% of the general population is estimated to have NASH 
[2]. NASH may lead to cirrhosis, hepatocellular carcinoma 
or liver failure. Most patients with NAFLD have risk fac-
tors such as insulin resistance, obesity or other indications 
of metabolic syndrome. Therefore, NAFLD is now recog-
nized as the hepatic manifestation of metabolic syndrome.

Insulin resistance, oxidative stress, and inflammatory cas-
cades are believed to play integral roles in the pathogenesis 
and progression of NAFLD [3]. As such, a ‘‘multi-hit’’ (for-
merly ‘‘double-hit’’) hypothesis has been used to describe the 
pathogenesis of NAFLD [4,5]. As a result of the first “hit,” 
insulin resistance arises and increased fatty acid levels in the 
blood enter the liver (and/or are not removed from the liv-
er), thus leading to hepatosteatosis. The second “hit” oc-
curs as a result of the inflammation caused by the hepatos-
teatosis. The criterion standard method for the diagnosis of 
NAFLD, which most frequently presents with an asymptom-
atic increase of transaminase enzymes, is a liver biopsy [6].

Despite evidence that weight loss, dietary modifications, bar-
iatric surgical operations, exercise and several drugs result 
in the biochemical and histological resolution of NAFLD, 
there is no current treatment regimen supported by valid, 
long-term studies that were properly randomized and con-
trolled [7–10]. Currently, the basis for treatment includes 
managing risk factors such as hyperlipidemia through steps 
such as lifestyle modification and weight loss.

SIRT1 is an NAD+-dependent deacetylase and acts as a mod-
ulator of various metabolic pathways. In this article, we fo-
cus on the sirtuin 1 (SIRT1) protein, which has important 
effects on glucose homeostasis, lipid mobilization, b-oxi-
dation, oxidative stress, insulin secretion and sensitivity, in-
flammation, cellular aging and apoptosis. We discuss the ex-
pression of SIRT1 in cases of NAFLD, the results of SIRT1 
activation and the potential therapeutic role for SIRT1 in 
treating NAFLD.

Overview of SIRT1 and SIRT1 Activators

Silent information regulator 2 (Sir2) proteins, or sirtuins, 
are a class of proteins that possess either histone deacety-
lase or mono-ADP-ribosyl transferase activity. They are found 
in organisms ranging from bacteria to humans. SIRT1, an 
NAD+-dependent protein deacetylase, is an important reg-
ulator of energy homeostasis in response to nutrient avail-
ability. Currently, the best-studied sirtuin homolog, SIRT1, 
is expressed in metabolic tissues such as liver, skeletal mus-
cle, adipose tissue, pancreas and brain; its actions in these 
tissues include regulation of b-cell and neuron survival, he-
patic gluconeogenesis, insulin secretion and adiposity [11].

Resveratrol (trans-3,5,4’-trihydroxystilbene) is a polyphe-
nol found in red wines and a wide variety of plants includ-
ing grapes, berries and peanuts [12]. Resveratrol has been 

shown to be a potent agonist of SIRT1 [13–15]. In mam-
malian cells, resveratrol promotes cellular expression of 
the SIRT1 protein and dramatically stimulates SIRT1 activ-
ity [16]. Furthermore, small-molecule SIRT1 activators with 
structures unrelated to resveratrol but with 1000 times the 
potency have been identified [17]. The effects of SIRT1 ac-
tivation, especially in metabolic tissues, lead to the inhibi-
tion of various pathways important for NAFLD pathogene-
sis. These pathways represent potential therapeutic targets 
for NAFLD treatment.

1. Effects of SIRT1 in the Liver

The liver is the central metabolic organ and regulates sev-
eral key aspects of lipid metabolism (fatty acid b-oxidation, 
lipogenesis and lipoprotein uptake and secretion) in re-
sponse to nutritional and hormonal signals [18].

Nutritional intake in excess of the b-oxidation capacity of 
the cell, lipoprotein synthesis and defects in excretion form 
the foundation of hepatosteatosis. Over time, the transcrip-
tional network of the liver contributes to an inflammatory 
process that progressively leads to NASH associated with fi-
brosis, liver cirrhosis, hepatocellular carcinoma and death 
due to liver disease [19].

In several recent studies, SIRT1 has been shown to play an 
important role in the dynamics of NAFLD pathophysiology. 
Using an experimental NAFLD model consisting of rats fed 
a high-calorie diet, SIRT1 expression was found to decrease 
significantly. Another study in rats with NAFLD showed a 
significant increase in hepatic SIRT1 expression and histo-
logical improvement with calorie limitation [20,21].

In a study by Purushotham et al. [22], hepatocyte-specif-
ic loss of SIRT1 (through hepatocyte-specific deletion of 
SIRT1) was shown to cause peroxisome proliferator-activat-
ed receptor a (PPARa) signal failure and a decrease in fatty 
acid b-oxidation. However, SIRT1 overexpression increased 
levels of PPARa and its coactivator PPARg coactivator 1a 
(PGC-1a). PGC-1a impairs PPARa signaling and decreas-
es fatty acid b-oxidation, whereas overexpression of SIRT1 
induces the expression of PPARa’s targets. SIRT1 interacts 
with PPARa and is required to activate the PPARg coactiva-
tor PGC-1a. In a recently reported study in rats, SIRT1 was 
shown to confer protection against age-associated metabol-
ic damage, lead to healthier aging, decrease the frequency 
of liver cancer related to metabolic syndrome and protect 
the liver from carcinogenic damage [23].

Studies performed at the molecular level have demonstrated 
that SIRT1 plays an important role in the regulation of the 
transcriptional networks controlling various critical metabol-
ic processes in the liver [24–26]. Along those lines, SIRT1 
has been shown to deacetylate many nonhistone proteins, 
including p53, nuclear factor kappa B (NF-kB), forkhead 
box class O 3 (FOXO3) transcription factors, PGC-1a, liv-
er X-receptor (LXR), CLOCK, PER2 and TORC2 [27–36].

In a study by Yamazaki et al. [37], treatment of mice mod-
eling NAFLD with a SIRT1 activator (SRT1720) result-
ed in decreases in expression of lipogenic genes (such as 
those encoding sterol regulatory element-binding protein-
1c [SREBP-1c], acyl-CoA carboxylase [ACC] and fatty acid 
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synthase [FAS]), serum lipid profile, fat accumulation in the 
liver, expression of genes related to oxidative stress and the 
production of inflammatory cytokines.

In a study of bariatric surgical cases performed by Costa et 
al. [38], morbidly obese patients with severe hepatosteato-
sis were determined to have reduced expression of SIRT1 
in adipose tissue when compared to patients with mild hep-
atosteatosis.

2. Effects of SIRT1 on Insulin Secretion

Insulin resistance forms the primary mechanism underly-
ing the pathogenesis of NAFLD. Recent studies have shown 
that SIRT1 plays important roles in both insulin resistance 
and insulin regulation in diabetics (such as increasing in-
sulin secretion from pancreatic b-cells, stimulating lipolysis 
in adipose tissue and increasing glucose utilization in mus-
cle tissue) [31,32,36].

In pancreatic b-cells, SIRT1 has been shown to increase insu-
lin secretion through the repression of uncoupling protein 
2 (UCP2) [39]. It was also demonstrated that SIRT1 activa-
tion increases ATP production in b-cells and improves glu-
cose-dependent insulin secretion, which typically decreases 
with age [39,40]. A recent study demonstrated that inhib-
iting SIRT1 overexpression and NF-kB signaling decreases 
cytokine-induced pancreatic b-cell damage [41].

As a result, SIRT1 activation prevents the development of 
insulin resistance and limits the pancreatic b-cell dysfunc-
tion that develops in response to insulin resistance.

3. Effects of SIRT1 on Lipid Metabolism

The liver also plays an important role in lipid homeosta-
sis. It has been shown that SIRT1 activation increases lipol-
ysis by repressing PPARg in adipose tissue, thereby inhibit-
ing adipogenesis [42]. SIRT1 also regulates the production 
and/or secretion of insulin-sensitizing factors such as ad-
iponectin and FGF21 through the regulation of FOXO1 
and PPARg [43–45].

LXRs regulate the transfer of cholesterol from peripheral 
tissues to the liver (reverse cholesterol transport) [46,47]. 
SIRT1 activates LXRs and accelerates reverse cholesterol 
transport, thereby regulating cholesterol homeostasis [33].

4. Effects of SIRT1 in Skeletal Muscle

SIRT1 is an important regulator of energy metabolism in 
skeletal muscle. PGC-1a deacetylation by SIRT1 in skeletal 
muscle is necessary for the activation of mitochondrial fatty 
acid oxidation genes [48]. As further evidence of the impor-
tant of SIRT1 in muscle, patients with type 2 diabetes show 
reduced expression of PGC-1a and mitochondrial oxidative 
phosphorylation (OXPHOS) genes in skeletal muscle [49,50]. 
Based on these data, the SIRT1-dependent activation of 
PGC-1a is thought to contribute to an improvement in in-
sulin sensitivity in skeletal muscle. Sun et al. [51] showed 
that SIRT1 improves insulin sensitivity in skeletal myotubes 
through transcriptional repression of the protein tyrosine 
phosphatase 1B (PTP1B) gene. PTP1B is a key insulin re-
ceptor phosphatase, and PTP1B-deficient mice have been 

shown to be more insulin-sensitive and more resistant to di-
et-induced obesity compared to controls [52].

5. Other Effects of SIRT1

Recent studies have begun to address the relationship be-
tween sirtuins and age-related metabolic and cardiovascu-
lar diseases, antiinflammatory properties, anticarcinogen-
ic effects, effects on oxidative stress and the cell cycle and 
anti-aging effects.

Epidemiological evidence gathered from NAFLD patients 
demonstrates that both cardiovascular disease risk and mor-
tality are significantly increased when compared to a normal 
population [53–55]. Recent studies have shown the cardio-
protective potential of SIRT1 activation. The cause of these 
effects may include vascular relaxation (both by increasing 
endothelial nitric oxide synthase activity and by potassium 
channel-mediated vasorelaxation), inhibition of thrombo-
cyte aggregation or increasing cardiac myocontractility (by 
PGC-1a regulation) [56–60]. In addition, individuals with a 
single nucleotide polymorphism in the SIRT1 gene exhib-
it a lower incidence of cardiovascular mortality, myocardi-
al infarction, myocardial ischemia, stroke, arterial surgery 
and intermittent claudication [61].

One of the important stages in the pathophysiology of 
NAFLD is the inflammatory process, which is considered the 
“second hit” after steatosis and results in the development 
of NASH. One important effect of SIRT1 activation, which 
was discovered recently, is its anti-inflammatory effect. An 
important aspect of this effect is performed through regula-
tion of NF-kB (a master transcription factor involved in the 
regulation of proinflammatory cytokines and a key part of 
NAFLD pathogenesis) [29]. Recent studies have shown that 
SIRT1 also deacetylates and suppresses the transcription-
al activity of activator protein-1 (AP-1), leading to a down-
regulation of cyclooxygenase-2 (COX-2) gene expression 
[62]. In addition, the expression of multiple proinflamma-
tory mediators, such as intracellular adhesion molecule 1 
(ICAM1), MCP1, RANTES (also known as CCL5), macro-
phage colony stimulating factor (M-CSF), granulocyte-mac-
rophage CSF (GM-CSF), G-CSF, and transforming growth 
factor-b (TGF-b), is reduced by the SIRT1 activator resve-
ratrol [63]. It has been demonstrated that SIRT1 activation 
protects cells from TNFa-induced insulin resistance. Thus, 
SIRT1 activity results in antiinflammatory effects through its 
regulation of multiple inflammatory pathways [64].

Another characteristic of SIRT1 activation, discovered in 
the last few years, is its effects on tumorigenesis. The antip-
roliferative, proapoptotic and tumor suppressing effects of 
SIRT1 activation have been elucidated by studies performed 
in rats [65,66]. Additionally, use of SIRT1 in cancer chemo-
therapy, based on its chemopreventive effects, has been con-
sidered [67]. Resveratrol has been shown to have anti-carci-
nogenic effects both in vitro and in vivo [68,69].SIRT1 has 
been shown to indirectly reduce the cellular oxidative stress 
burden through deacetylation of FOXO3 (deacetylation of 
FOXO3 leads to upregulation of catalase and MnSOD) [70].

SIRT1 has also been shown to control the cell cycle, cell dif-
ferentiation, cell proliferation and cell senescence by its reg-
ulation of the FOXO and p53 proteins [30].
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Conclusions

A sedentary lifestyle and variations in dietary habits has sig-
nificantly increased the frequency of metabolic syndrome 
and its hepatic component, NAFLD, and the number of 
patients with this condition continues to rise. The most 
important etiologic factor of NAFLD is insulin resistance. 
Currently, there is no validated evidence-based treatment al-
gorithm, and patients are currently treated with recommen-
dations for caloric limitation and increased physical activity.

In recent years, the positive effects of SIRT1 activation have 
been shown in the metabolic activities related to NAFLD 
pathophysiology. These activities include glycemic regula-
tion, lipid homeostasis, insulin secretion and sensitivity, in-
flammatory processes, oxidative stress, endothelial dysfunc-
tion, mitochondrial biogenesis and b-oxidation, cellular 
senescence, autophagy/apoptosis and skeletal and heart 
muscle function. From these results, we believe that SIRT1 
activation has potential as a therapeutic target to prevent 
both the progression and development of NAFLD. Recent 
studies have demonstrated the positive effects of SIRT1 ac-
tivation on these metabolic activities after induction by res-
veratrol, a natural polyphenol. In addition, SIRT1 activa-
tors that are 1000 times more efficient than resveratrol are 
currently being developed and studied. Current policy re-
quires that therapeutic efficiency and security profile eval-
uations in randomized controlled studies be performed for 
new pharmaceutical agents.
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