
OpenMM 4: A Reusable, Extensible, Hardware Independent
Library for High Performance Molecular Simulation

Peter Eastman1, Mark S. Friedrichs1, John D. Chodera2, Randall J. Radmer3, Christopher M.
Bruns4, Joy P. Ku1, Kyle A. Beauchamp5, Thomas J. Lane6, Lee-Ping Wang6, Diwakar
Shukla6, Tony Tye7, Mike Houston7, Timo Stich8, Christoph Klein9, Michael R. Shirts9, and
Vijay S. Pande6,10

1Department of Bioengineering, Stanford University, Stanford, CA 94035
2California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA 94720
3SLAC National Accelerator Laboratory, Menlo Park, CA 94025
4Howard Hughes Medical Institute, Janelia Farm Research Campus, Ashburn, VA 20147
5Biophysics Program, Stanford University, Stanford, CA 94035
6Department of Chemistry, Stanford University, Stanford, CA 94035
7Advanced Micro Devices, Sunnyvale, CA 94088
8NVIDIA GmbH, Wuerselen, Germany
9Department of Chemical Engineering, University of Virginia, Charlottesville, VA 22904
10Department of Computer Science, Stanford University, Stanford, CA 94035

Abstract
OpenMM is a software toolkit for performing molecular simulations on a range of high performance
computing architectures. It is based on a layered architecture: the lower layers function as a reusable
library that can be invoked by any application, while the upper layers form a complete environment
for running molecular simulations. The library API hides all hardware-specific dependencies and
optimizations from the users and developers of simulation programs: they can be run without
modification on any hardware on which the API has been implemented. The current implementations
of OpenMM include support for graphics processing units using the OpenCL and CUDA frameworks.
In addition, OpenMM was designed to be extensible, so new hardware architectures can be
accommodated and new functionality (e.g., energy terms and integrators) can be easily added.

1 Introduction
Molecular mechanics simulation is a powerful and widely used technique for studying the
behavior of biological macromolecules. Many software applications exist for performing these
simulations. Although these applications are powerful and feature rich, nearly all of them share
some important limitations:

1. They are not designed for reusability. They are intended to be self-contained
applications, and the code in them can only be used as part of those applications. If
someone wishes to add molecular simulation features to a new application, it is very
difficult to adapt any of the existing codes to the purpose.

2. Many of them have very limited extensibility. Molecular simulation is an active field
of research, and new methods are constantly being developed. Implementing those
new methods in most of the widely used applications is very challenging. It requires

NIH Public Access
Author Manuscript
J Chem Theory Comput. Author manuscript; available in PMC 2014 January 08.

Published in final edited form as:
J Chem Theory Comput. 2013 January 8; 9(1): 461–469. doi:10.1021/ct300857j.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text

a deep understanding of the internals of the application code. The process is poorly
documented, and is impeded by the fact that the code was not originally designed with
extensibility in mind.

3. Many of the most widely used codes are not available under open source licenses.
This further limits the ability of researchers to extend or reuse them. For example,
AMBER1, CHARMM2, NAMD3, and Desmond4 are all covered by proprietary
licenses that restrict users’ ability to reuse the code for other purposes, or to modify
it and share those modifications with others.

These limitations can create bottlenecks for the molecular simulation community. For a
researcher developing new algorithms, prototyping their ideas inside an existing simulation
code is typically unnecessarily difficult and time consuming. Once an algorithm is shown to
work, it may take years to become available in all the major applications. Moreover, it is
frequently impractical (and in many cases, not permitted by the license) for anyone but the
core developers of an application to add the new feature and make it available to the community.
Even after one application adds the feature, that does not bring any other application closer to
having it; their architectures are different enough that most features must be implemented
independently for every application.

In this paper, we describe OpenMM, a molecular simulation code designed to address these
challenges. It is architected from the ground up to be extensible and reusable, while still
permitting very high performance. At its core, it is not just an application; it is a library that
can be easily used by any application. It is based around a modular plugin architecture allowing
new features to be added without modifying the OpenMM library itself. Finally, it is available
under a permissive open source license allowing it to be used for any purpose, including
commercial applications.

1.1 Goals
OpenMM was designed with the following goals in mind:

1. Simplicity and ease of use—OpenMM aims to make it very easy for programmers to
add molecular simulation features to their applications. This means having a simple application
programming interface (API) that is easy to learn and understand, and that requires minimal
code to use. It also means that OpenMM should be easy to use correctly. The API should
minimize the opportunities for programmers to make mistakes and guide them toward making
good choices.

2. Hardware independence—Molecular simulations are commonly run on many types of
hardware, including conventional processors, supercomputing clusters, graphics processing
units (GPUs)5–8, and dedicated special purpose processors.9 Technology continues to change
quickly, and it is difficult to predict what hardware platforms will be important to support as
little as five years in the future.

OpenMM acts as a hardware abstraction layer, similar to LAPACK for linear algebra or
OpenGL for graphics. It provides a hardware independent API for users to call from their
programs. Implementations of that API can be written for many different types of hardware,
and any program that uses OpenMM can run efficiently and without modification on any of
those hardware platforms—even ones that did not exist yet when the program was written.

3. Extensibility—OpenMM provides a large number of simulation features (molecular force
fields, integration methods, etc.), but it cannot hope to include every possible feature any user
might want. Instead, it is designed to be extensible so users can add new features without

Eastman et al. Page 2

J Chem Theory Comput. Author manuscript; available in PMC 2014 January 08.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text

modifying the OpenMM library itself. This allows users to implement the features they need
and, if they wish, distribute them to the molecular simulation community. Any program that
uses OpenMM can easily add support for those features without needing to reimplement them.

4. Performance—Whatever other benefits a simulation code offers, it will not become
widely used if its performance is not competitive with other applications. OpenMM is designed
to permit efficient implementation on a wide variety of hardware platforms. This requires
careful thought in the design of the API to avoid making assumptions about data locality, the
latency of operations, or other features that vary between platforms. Otherwise, one could easily
create an API that was impossible to implement efficiently on certain types of hardware.
OpenMM strives to avoid these pitfalls. It includes very fast GPU implementations of all its
standard features, giving users instant access to high performance simulation code.

1.2 Architecture and Features
OpenMM is based on a modular architecture. It consists of the following major components:

1. The core OpenMM library. This defines the API for working with OpenMM. This
should be thought of as an interface: it defines what calculations may be done, but
does not itself perform those calculations. It is written in C++, and also includes
versions of the API for C, Fortran, and Python.

2. A set of “platforms” that implement the API on particular types of hardware. Three
platforms are included with OpenMM: reference, OpenCL, and CUDA. Others may
be added by user-supplied plugins.

3. An “application layer” that provides routines for loading and saving files, building
molecular descriptions from force fields, etc. It allows OpenMM to be used as a full
application, not just a library.

4. Plugins that implement additional features.

Each of these components is described in more detail below.

The most recent version of OpenMM at the time of this writing is 4.1.1, and the descriptions
contained below correspond to this version. Many of these features were present in earlier
versions, but some important features were added only recently. Most importantly, the
application layer was first introduced in version 4.0, and custom integrators were added in 4.1.
The AMOEBA force field was first added in version 3.0. Custom forces have existed since the
very first stable release, but the set of custom force types has grown steadily over time.

2 Standard features and platforms
2.1 Core Features

The OpenMM core provides the standard covalent and noncovalent interactions used in most
biomolecular force fields. Two implicit solvent models are also included in the OpenMM core.
The covalent energy terms implemented in OpenMM include the standard harmonic bond and
angle energies and the Ryckaert-Bellemans and periodic torsion energies. The CHARMM
cross-term energy correction map, CMAP torsion, is also available.10 The CMAP torsion term
couples two dihederal angles using a tabulated potential energy surface.

The nonbonded interactions implemented in the OpenMM core include the Lennard-Jones and
Coulomb energies. These interactions may be calculated with or without a distance cutoff; if
a cutoff is applied, it is the same for both sets of interactions.

Eastman et al. Page 3

J Chem Theory Comput. Author manuscript; available in PMC 2014 January 08.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text

Lennard-Jones—The Lorentz-Bertelot combining rule is used for Lennard-Jones
interactions. If a distance cutoff and periodic boundary conditions are applied, an analytical,
isotropic long-range dispersion correction may be included that approximately represents the
Lennard-Jones energy contribution from all interactions beyond the cutoff distance.11

Coulomb interactions—The Coulomb interaction can be calculated with one of five
options:

1. No distance cutoff

2. Reaction field without periodic boundary conditions

3. Reaction field with periodic boundary conditions

4. Ewald summation12

5. Particle-mesh Ewald summation13

If no distance cutoff is applied, the standard Coulomb energy is included for each particle pair.
If a cutoff is applied, then the Coulomb energy is modeled using the reaction-field
approximation.14 This approximation is derived by assuming molecules beyond the cutoff
distance are solvent molecules and the dielectric constant is uniform.

For the Ewald summation and particle-mesh Ewald (PME) options, the user specifies the direct
space cutoff and an error tolerance. The program then determines the values of the internal
parameters, including the reciprocal space cutoff for Ewald and the mesh size for PME, required
to calculate the forces to the specified tolerance.

Implicit solvation models—Two implicit solvent forces are available in the OpenMM core:
the OBC Generalized Born model15, and the GB/VI model developed by Labute.16 The OBC
model is comprised of a polarization term to represent the electrostatic interaction between the
solute and solvent, and a surface area term to represent the free energy of solvating a neutral
molecule.

The GB/VI model includes a polarization term similar to the one in the OBC model, but with
the replacement of the exponent in the solute volume integral with the value −6 instead of −4.
In addition, the GB/VI model employs a volumetric dispersion term to account for the nonpolar
contributions to the solvation free energy.

Integrators—Five integrators are available in the OpenMM core: three fixed time step
integrators (Verlet, Langevin, and Brownian), and two variable time step integrators (Verlet
and Langevin). The Verlet and Langevin integrators implement the leap-frog versions of their
respective algorithms.

The variable time step integrators are variants of the respective fixed time step integrators that
continuously adjust the step size to keep the integration error below a user-specified
tolerance.17 This is accomplished by comparing the positions generated by Verlet integration
with those that would be generated by an explicit Euler integrator, and taking the difference
between them as a conservative estimate of the integration error. The step size is then adjusted
to make the estimated error equal the specified error tolerance.

Thermostats and Barostats—An Andersen thermostat and Monte Carlo barostat are also
provided in the OpenMM core. The thermostat couples the system to a heat bath by randomly
selecting a subset of particles at the start of each time step, then setting their velocities to new
values chosen from a Maxwell-Boltzmann distribution. This represents the effect of random
collisions between particles in the system and particles in the heat bath.18 This is only needed

Eastman et al. Page 4

J Chem Theory Comput. Author manuscript; available in PMC 2014 January 08.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text

when using a Verlet integrator, since the Langevin and Brownian integrators provide their own
temperature coupling.

The Monte Carlo barostat models the effect of constant pressure by allowing the size of the
periodic box to vary during the simulation.19–20 It does this by periodically rescaling the box,
computing the change in energy, then accepting or rejecting the change based on a Metropolis
criterion.

2.2 Platforms
In OpenMM, a “platform” is an implementation of all the computations defined by the API.
The architecture is modular so that new platforms may be added and the client code can select
at run time which platform to use for a simulation. Three platforms are included with OpenMM:

1. The Reference platform—This platform is written in C++, and serves as a reference
when writing other platforms. The emphasis is on clarity and correctness, not performance; it
intentionally avoids any optimization that would reduce the clarity of the code. This platform
is generally too slow to be useful for production simulations, but it serves two important
functions. First, it can be used as a starting point for writing other platforms, since it contains
complete implementations of all required algorithms. Second, it serves as a standard for
“correct” behavior. Results produced by other platforms can be compared to the reference
platform to verify their correctness.

2. The OpenCL platform—This platform uses the OpenCL framework21 for its
computational kernels. This allows it to run efficiently on Nvidia and AMD GPUs, as well as
on multicore CPUs. It also can parallelize computations across multiple GPUs in a single
computer. In most cases, this is the fastest platform, and it is the recommended platform for
most production simulations.

3. The CUDA platform—This platform uses Nvidia’s CUDA framework22 for running on
GPUs. Unlike the OpenCL platform, it only supports Nvidia GPUs. It also is more limited in
other respects: it cannot parallelize computations across multiple GPUs, and it does not support
as many types of custom forces (described below) as the OpenCL platform.

The CUDA platform support in OpenMM is derived from an older code base which makes it
very difficult to support many of the newer features of OpenMM. We are currently in the
process of writing a completely new CUDA-based platform modeled after the OpenCL
platform. Once it is released in a future version of OpenMM, CUDA will support all the same
features as OpenCL, as well as having significantly better performance on recent Nvidia GPUs.

2.3 The Application Layer
The OpenMM core library is focused on the essential computational tasks of running a
molecular simulation: computing forces and energies, and integrating the equations of motion.
To actually run a simulation, however, other features are also required: loading and saving files
in various standard formats, building models based on force field descriptions, etc. That is what
the application layer does. It consists of a set of Python libraries that perform these functions,
allowing it to be used as a complete simulation application.

Strictly speaking, of course, a set of libraries does not constitute an application, and the user
is responsible for writing a true application that calls them. In practice, they are complete and
simple enough that they may collectively be thought of as an “application”, in which the user
provides a control script. This is illustrated by Listing 1. It is a complete Python script that
loads a PDB file, builds a mathematical model from it using the AMBER99SB force field and

Eastman et al. Page 5

J Chem Theory Comput. Author manuscript; available in PMC 2014 January 08.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text

TIP3P water model, does a local energy minimization, and simulates it for 1 million time steps,
saving a frame in PDB format every 1000 steps. All of this is done in only a dozen lines of
code. The script is no more complicated than the control scripts used by many other MD
applications, and its logic can be easily understood even by users with no programming
experience.

Listing 1

from simtk.pyopenmm.app import *
from simtk.openmm import *
from simtk.unit import *
pdb = PDBFile(‘5dfr_solv-cube_equil.pdb’)
ff = ForceField(‘amber99sb.xml’, ‘tip3p.xml’)
sys = ff.createSystem(pdb.topology, nonbondedMethod=PME,
nonbondedCutoff=1*nanometer, constraints=HBonds)
integ = LangevinIntegrator (300*kelvin, 1/picosecond, 0.002*picoseconds)
sim = Simulation (pdb.topology, sys, integ)
sim.context.setPositions (pdb.positions)
sim.minimizeEnergy ()
sim.reporters.append (PDBReporter (‘output.pdb’, 1000))
sim.step (1000000)

The advantage of this approach is its extreme flexibility. A user who simply wants to run
simulations can take an example script such as this and modify it in clearly documented ways
to suit their needs. More advanced users have direct access to the entire OpenMM API, as well
as the full power of the Python language and libraries. For example, Listing 2 shows a complete
simulated annealing algorithm implemented in only three lines:

Listing 2

for i in range(100):
integ.setTemperature(3*(100-i)*kelvin)
sim.step(1000)

3 Extensibility
Extensibility is a fundamental feature of OpenMM. We cannot hope to provide every possible
feature that any user might want, so it is important that other people can add those features
themselves. OpenMM is also designed to be useful for researchers developing new simulation
methods. By allowing them to easily prototype and test new ideas, it serves as a powerful tool
for algorithm development.

Extensibility is provided through two mechanisms: plugins and custom forces/integrators.

3.1 Plugins
A plugin is a piece of code that adds new features to OpenMM. Typically, each plugin is
packaged as a dynamically linked library. At run time, OpenMM can be told to load all the
plugins found in a directory and make them available to the running program.

Plugins generally fall into two categories. First, there are plugins that add new features to
OpenMM. This is illustrated by the AMOEBA plugin described below. It defines a set of new

Eastman et al. Page 6

J Chem Theory Comput. Author manuscript; available in PMC 2014 January 08.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text

forces that users can include in their simulations. Plugins can also define new thermostats,
barostats, and integrators. Programs can use features defined by plugins just as easily as those
defined by the core library. In fact, the lower levels of the architecture do not distinguish at all
between core features and those provided by plugins. All features are handled identically,
wherever they are defined.

Another type of plugin is ones that implement new platforms. In fact, the OpenCL and CUDA
platforms are actually implemented in plugins, not in the core library. Because plugins can add
new platforms, and because the choice of what platform to use is made at run time, any program
that uses OpenMM has a high level of hardware independence. If a new type of hardware
becomes available, a plugin can be written to support it, and all existing programs can take
advantage of it with no changes required.

Three plugins that provide additional features beyond those in the core library are bundled with
OpenMM: the AMOEBA force field, the free energy plugin, and the Ring Polymer Molecular
Dynamics (RPMD) plugin. An outline of each plugin is given below.

AMOEBA Plugin—AMOEBA (Atomic Multipole Optimized Energetic for Biomolecular
Applications) is a polarizable force field23–24 developed in Jay Ponder’s lab. The AMOEBA
force field was designed with the goal of obtaining chemical accuracy on the order of 2 kJ/mol
for small molecule and protein-ligand interactions. To realize this level of accuracy, both the
covalent and noncovalent interactions employed in AMOEBA differ from those employed in
more common force fields.

The bond-stretch, angle-bending and bond-angle interactions are based on the corresponding
terms in the MM3 force field25; anharmonicity is included in the bond-stretching term up to
fourth order and in the angle-bending term up to sixth order. A Wilson-Decius-Cross
interaction26 is used at sp2-hybridized trigonal centers to limit out-of-plane bending. A periodic
torsion term is included and is based on the typical Fourier expansion. In addition a Bell torsion
term27 is applied to dihederal angles involving two trigonal centers. Finally a CMAP torsion
interaction coupling two dihedral angles is also included.

The van der Waals interactions are modeled using a buffered 14-7 functional form.28 One
significant difference between the AMOEBA implementation and others is that the van der
Waals interaction site for hydrogen atoms is not at the hydrogen nucleus, but at a position on
the H-X bond, where X is the hydrogen’s covalent partner. The interaction site is typically
about 90% of the distance from the X nucleus along the H-X bond. This modification has been
shown to improve the fit to water dimer structures based on quantum mechanical calculations.

The major difference between AMOEBA and traditional force fields is in AMOEBA’s
treatment of the electrostatic interaction. There are two major differences associated with the
electrostatics: for each atom, AMOEBA includes a permanent charge, dipole and quadrupole,
in contrast to traditional force fields which typically only include a permanent charge. The
permanent electrostatic components are based on ab initio calculations performed on small
molecules. The second major difference between conventional force fields and AMOEBA in
the treatment of the electrostatic interactions is the inclusion of electronic polarization in
AMOEBA. In traditional force fields polarization is only treated in an average way. In
AMOEBA polarization is modeled as induced dipoles at each atom. The induced dipoles are
determined by the atomic polarizability and the electric field at the site. The atomic
polarizability in turn is based on Thole’s damped interaction model.29 Because the electric
field at each site includes contributions from the induced dipoles of neighboring sites, the
calculation of the induced dipoles must be iterated until the induced dipoles are self-consistent.

Eastman et al. Page 7

J Chem Theory Comput. Author manuscript; available in PMC 2014 January 08.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text

The iterative process must be carried out at each time step and depending on the accuracy
required can be the rate-limiting step in the calculation of the forces.

The AMOEBA plugin uses particle-mesh Ewald summation to calculate the electrostatic
nonbonded interaction for simulations with explicit solvent. For implicit solvent simulations,
the generalized Kirkwood algorithm is used.30

Free Energy Plugin—The free energy plugin allows “alchemical” free energy calculations
to be performed. In these types of calculations, subsets of particles are inserted, removed, or
transformed into other particle types in stages. The staging is performed using a parameter λ
that modulates the interactions of the particles being transformed with the rest of the system:
λ=0 results in no interactions with the rest of the system, while λ=1 recovers the standard
interaction terms. At intermediate values of λ during particle insertion or deletion, a “soft-
core” form of the interactions is employed that allows particles to overlap without generating
numerical instabilities.31 The soft-core form of the Lennard-Jones potential is given by32:

However, other choices for free energy pathways33 can be easily implemented using custom
force as described below. The free energy plugin also includes modifications to the OBC and
GB/VI implicit solvent models to allow alchemical free energy calculations. For the OBC
model, the contributions of transformed particles to the cavity energy term are scaled by λ. In
addition, for both implicit solvent models, the contribution of transformed particles to the
calculation of the Born radii is scaled by λ. Free energies can be computed by evaluating the
system energy at additional values of λ and applying the Bennett acceptance ratio (BAR)34 or
the multistate Bennett acceptance ratio (MBAR)35. Derivatives of the potential are not possible
in this framework, so thermodynamic integration (TI) cannot be used. This is not a major
obstacle for most applications, as BAR and MBAR are as efficient as or more efficient than
TI for standard free energy calculations36–37.

Ring Polymer Molecular Dynamics (RPMD) Plugin—This plugin supports running
simulations with the ring-polymer molecular dynamics (RPMD) method.38 This is a method
for incorporating limited quantum mechanical effects, such as tunneling and zero-point energy,
into a classical molecular simulation. It does this by simulating many copies of a system at
once, which are connected by harmonic springs to form a “ring polymer”. The plugin
implements the path integral Langevin equation (PILE) thermostat algorithm to efficiently
sample the static and dynamic properties of quantum systems.39

3.2 Custom Forces
Custom forces are a unique feature of OpenMM that allow a wide range of novel interactions
to be implemented with very little effort, yet with high speed of execution. The user provides
a mathematical description of the interaction in the form of a simple text string. OpenMM
parses the expression, figures out how to compute it efficiently, and then uses it exactly as if
it were a standard force. All of this is done at run time, so no compilation step is needed.

Listing 3 gives an example. It uses the CustomBondForce class to implement a Morse potential.
This class implements pairwise bonded interactions whose energy is an arbitrary function of
the inter-atomic distance r. This example specifies that the energy of each bond is given by

Eastman et al. Page 8

J Chem Theory Comput. Author manuscript; available in PMC 2014 January 08.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text

It also specifies that D, a, and r0 are per-bond parameters, so a value of each one will be
specified for each bond.

Listing 3

bonds = CustomBondForce(“D*(1-exp(a*(r0-r)))^2”)
bonds.addPerBondParameter(“D”)
bonds.addPerBondParameter(“a”)
bonds.addPerBondParameter(“r0”)

This code is very simple, but it hides a much more complicated computation. OpenMM parses
the mathematical expression, analytically differentiates it to get an expression for the force,
applies a series of optimizations to both expressions, generates OpenCL code for evaluating
both force and energy, synthesizes a complete kernel to loop over bonds and evaluate each
one, and sends this kernel to the OpenCL driver for compilation to the GPU’s native instruction
set. All of this is done at run time, and takes only a fraction of a second. The custom force can
then be used exactly like any other force, and runs at the full speed of the GPU hardware. The
details of this process are described elsewhere.40

OpenMM includes several custom force classes. In addition to the pairwise bonded force shown
above, there are custom forces that depend on the angle between three atoms, the dihedral angle
formed by four atoms, and the pairwise distance between nonbonded atoms. There also are
more complicated custom forces. These include CustomHbondForce, which can implement a
wide range of hydrogen bonding potentials, and CustomGBForce, which provides a flexible
framework for implementing Generalized Born implicit solvent models. Listing 4 shows the
essential code required to implement the OBC implicit solvent model using the
CustomGBForce. This code may look complicated, but it would take roughly 1000 lines of
code to implement the same force by more conventional means. Moreover, since it expresses
the nature of the calculation directly in terms of equations (rather than OpenCL or CUDA
code), it is generally much more transparent and easier to modify than traditional approaches.
We have used CustomGBForce to implement several other solvation models, including the
Hawkins-Cramer-Truhlar41, GBn42, and ABSINTH43 models, thus demonstrating its great
flexibility.

Listing 4

gb = CustomGBForce()
gb.addPerParticleParameter(“q”)
gb.addPerParticleParameter(“radius”)
gb.addPerParticleParameter(“scale”)
gb.addGlobalParameter(“solventDielectric”, 78.3)
gb.addGlobalParameter(“soluteDielectric”, 1.0)
gb.addComputedValue(“I”,
“““step(r+sr2-or1)*0.5*(1/L-1/U+0.25*(1/U^2-1/L^2)*(r-
sr2*sr2/r)+0.5*log(L/U)/r+C);
U=r+sr2; C=2*(1/or1-1/L)*step(sr2-r-or1);
L=max(or1, D); D=abs(r-sr2); sr2 = scale2*or2;

Eastman et al. Page 9

J Chem Theory Comput. Author manuscript; available in PMC 2014 January 08.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text

or1 = radius1-0.009; or2 = radius2-0.009”””,
CustomGBForce.ParticlePairNoExclusions)
gb.addComputedValue(“B”,
“““1/(1/or-tanh(1*psi-0.8*psi^2+4.85*psi^3)/radius);
psi=I*or; or=radius-0.009”””, CustomGBForce.SingleParticle)
gb.addEnergyTerm(“28.3919551*(radius+0.14)^2*(radius/B)^6-
0.5*138.935456*(1/soluteDielectric-1/solventDielectric)*q^2/B”,
CustomGBForce.SingleParticle)
gb.addEnergyTerm(“““−138.935456*(1/soluteDielectric-
1/solventDielectric)*q1*q2/f;
f=sqrt(r^2+B1*B2*exp(-r^2/(4*B1*B2)))”””,
CustomGBForce.ParticlePairNoExclusions)

3.3 Custom Integrators
Just as custom forces allow arbitrary new interactions to be defined, custom integrators can
implement entirely new integration algorithms. An algorithm consists of a series of steps, each
defined by a user supplied mathematical expression. A step may calculate a single value, or be
executed separately for each degree of freedom. It also may involve arbitrary, user defined
variables. This system is flexible enough to support a wide range of deterministic and stochastic
algorithms including multiple time step integrators, Metropolized integrators, Generalized
Langevin Equation based integrators, and even some simple Monte Carlo methods.

Listing 5 presents a simple example of using a custom integrator to implement the velocity
Verlet algorithm. It creates a new CustomIntegrator, specifies a time step of 0.001 ps, and adds
three steps to the algorithm to be calculated for each degree of freedom:

Notice that the force F appearing in the first step is different from the force appearing in the
third step, since the atom position x has changed in between. The user does not need to specify
when the force should be recomputed. OpenMM recognizes when anything changes that might
affect it and recomputes it automatically.

Listing 5

integrator = CustomIntegrator(0.001)
integrator.addComputePerDof(“v”, “v+0.5*dt*f/m”)
integrator.addComputePerDof(“x”, “x+dt*v”)
integrator.addComputePerDof(“v”, “v+0.5*dt*f/m”)

4 Integration with Applications
OpenMM was designed to be easily integrated into molecular dynamics programs. Two
examples are the embedding of OpenMM into Gromacs44 and the OpenMM AMOEBA plugin
into TINKER.45

In both cases the appropriate OpenMM routines are called within the time-step loop of each
program to calculate the energies and forces and perform the time-step integration. The setup

Eastman et al. Page 10

J Chem Theory Comput. Author manuscript; available in PMC 2014 January 08.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text

(reading of the input files, mapping the force-field parameters to the system particles, etc.) and
any run-time analysis are executed by the molecular dynamics program.

The main steps involved in embedding OpenMM into these applications are identical:

1. Map and load the parameters into the OpenMM classes using the application’s internal
data structures.

2. Modify the main molecular dynamics loop to call the OpenMM method to perform
the time-step integration; this includes the calculation of the forces.

3. Retrieve state information (energies, particle positions, velocities, and forces) as
needed.

4. Free OpenMM resources when the simulation has completed.

In both cases only the source file containing the main time-step loop of the molecular dynamics
programs required modification. The changes included one-line calls to execute the four steps
outlined above. A new source file was included that implemented these four steps. The last
three steps consist of only a few lines of code; for both cases, the setup step is the most involved.
In the case of Gromacs, the code in the new, added file used the C++ OpenMM API, whereas
the C OpenMM API was used for TINKER which is written in Fortran. By making minimal
changes to the original molecular dynamics code and isolating the OpenMM-specific code, the
risk of introducing errors into the molecular dynamics program is reduced and maintenance of
the program is much more straightforward.

5 Testing and Validation
Three types of validation of OpenMM are performed with each major release: unit tests, system
tests, and direct comparison with other applications if possible. In the following, a brief
description of each type of validation is given.

Unit tests are provided for each major force and integrator class and other auxiliary functions
(e.g., the random number generator) and can be run by users to check that the code is working
properly for their particular hardware setup. This ability is critical since GPU software and
hardware is rapidly evolving and incompatibilities or unexpected results on next generation
hardware are not uncommon. The unit tests exercise the basic functionality of each class to
probe for problems; a separate collection of unit tests for each force and integrator is available
for each of the different platforms. Most of these tests use simple model systems comprised of
a small number of particles. However for the nonbonded force and implicit solvent models,
some of the unit tests include relatively large systems with ‘extreme’ parameter values to help
isolate issues.

Whereas unit tests validate the operation of small pieces of code in isolation, system tests are
designed to test the library as a whole. They are performed on biomolecules (proteins, RNA,
and DNA) typical of what users actually simulate, and they use realistic force fields. Systems
are included that use both implicit and explicit solvent. System sizes range from 75 up to
173,181 atoms. Detailed results for these tests are provided in the OpenMM Users Guide, which
the reader should consult for more information. Here we present a summary of the most
important results.

The types of tests included in this category are listed below:

1. Checks for consistency between the energies and forces for the different platforms on
different hardware.

Eastman et al. Page 11

J Chem Theory Comput. Author manuscript; available in PMC 2014 January 08.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text

The force on each atom is computed with two different platforms, and the relative
difference is computed as 2|F1−F2|/(|F1|+|F2|). Table 1 shows the mean difference
between the Reference and OpenCL platforms, averaged over all atoms in a collection
of different systems. Because the Reference platform does all calculations in double
precision while OpenCL does most calculations in single precision, these numbers
mostly indicate the level of error in the OpenCL calculations.

2. Checks for energy-force consistency.

This is done as follows:

• Compute the potential energy V0 and force F0 = −∇V for a given
configuration.

• Perturb the coordinates in the direction of the force F0 by an amount ε: Δr
= εF0/|F0|, where ε ~ 10−2 − 10−6 nm

• Calculate the potential energy V1 at the perturbed configuration. To leading
order, this should satisfy (V1−V0)/ε ≅ |F0|.

Table 2 shows the maximum relative difference [(V1−V0)/ε−|F0|]/|F0| over a
collection of different systems for the OpenCL platform.

3. Tests of energy conservation for the Verlet integrator and thermostability for the
Langevin integrator.

A 1 ns simulation is performed. For Verlet integration, it verifies that the magnitude of
fluctuations in the total energy are below a cutoff. For Langevin integration, it verifies that the
average instantaneous temperature equals the expected value to within a tolerance. In both
cases, it also monitors all distance constrains and verifies that none is violated at any point
during the simulation.

Direct comparison between energies and forces computed using OpenMM and another
application.

For the OpenMM core functions, the comparisons are made with Gromacs. For the OpenMM
AMOEBA plugin, the comparisons are made with TINKER. Table 3 shows the average relative
difference in forces between the OpenMM Reference platform and Gromacs 4.5.3 (compiled
in single precision mode) over a collection of molecules. Numbers are not shown for PME,
since differences between how OpenMM and Gromacs handle cutoffs on nonbonded
interactions (charge groups, shifting functions, etc.) complicate the comparison and require a
more sophisticated analysis.

6 Performance
To benchmark the performance of OpenMM, we used the dihydrofolate reductase (DHFR)
models taken from the Joint Amber/Charmm benchmark. This is a 159 residue protein with
2489 atoms. The version used for explicit solvent simulations included 7023 TIP3P water
molecules, giving a total of 23,558 atoms.

The first set of simulations used the AMBER99SB force field.46 We used three different
methods to model the effect of solvent:

1. Implicit: Solvent was represented with an OBC-GBSA implicit solvent model. Long
range interactions were cut off at 2 nm.

2. Explicit-RF: Solvent was modeled explicitly. Long range interactions were cut off at
1 nm using the reaction field method.

Eastman et al. Page 12

J Chem Theory Comput. Author manuscript; available in PMC 2014 January 08.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text

3. Explicit-PME: Solvent was modeled explicitly. Long range interactions were
calculated using the Particle-Mesh Ewald method. The direct space cutoff was set to
0.8 nm, and the Ewald error tolerance was set to 0.0005.

We also used two different sets of constraints within the protein, allowing for different time
steps:

1. H-bonds: The lengths of bonds involving hydrogen were constrained. The time step
was set to 2 fs.

2. H-angles: All bond lengths were constrained, along with angles of the form H-X-H
or H-O-X. The time step was set to 4 fs.

Water molecules were fully rigid in all cases, and the constraint error tolerance was set to
10−4. (For H-bonds constraints, the error tolerance has a negligible effect on performance. For
H-angles, reducing it to 10−5 causes a measurable but still quite small decrease in performance.)
All simulations used an NVT ensemble, with a Langevin thermostat to maintain a temperature
of 300K. The results for both the OpenCL and CUDA platforms are shown in Table 1. The
CUDA simulations were run on a single Nvidia GTX 580 GPU. For OpenCL, simulations were
run on both the GTX 580 and on an AMD Radeon HD 7970.

The OpenCL platform can parallelize an explicit solvent simulation across multiple GPUs. We
therefore repeated each of the above benchmarks using 1 to 4 Nvidia C2070 GPUs in parallel.
The results are shown in Table 2.

The scaling with number of GPUs is much less than linear. Using up to three GPUs produces
a significant speedup, but there is little benefit beyond that. For PME, using four GPUs is
actually slightly slower than using three. This is primarily due to the cost of transferring data
over the high latency PCIe bus.

To demonstrate the performance of custom forces, we repeated the Explicit-RF, H-bonds
benchmark for the OpenCL platform, but instead of using OpenMM’s built-in implementation
of Coulomb and Lennard-Jones forces, we reimplemented them using the
CustomNonbondedForce class. Running on a single Nvidia C2070 it achieves 23.0 ns/day,
compared to 25.9 ns/day for the built-in forces, a speed penalty of only 11%. This shows the
great value of custom forces: completely arbitrary functional forms, defined with only a few
lines of code, can nearly match the performance of a highly optimized, hand-written
implementation.

Benchmarks for the AMOEBA plugin were carried out for villin, a small protein with 596
atoms, and DHFR in both explicit and implicit solvent on an Nvidia GTX 580 GPU. The error
tolerance for the calculation of the induced dipoles was 0.01 and the time step was 1
femtosecond. The results are shown in Table 3.

To measure energy conservation, we performed a 10 ns simulation of ubiquitin47, a 1231 atom
protein in OBC implicit solvent. The simulation used the OpenCL Platform, a 1 fs time step,
no constraints, and no cutoff on the nonbonded interactions, and had an average temperature
of 298.6 K. A linear regression to the curve of energy versus time gives an overall drift rate of
2.5 kJ/mole/ns, or 0.00027 kT/ns/dof in the more commonly reported units. Note, however,
that these units are not very meaningful since energy drift does not actually scale linearly with
time, temperature, or system size. Furthermore, a simple linear regression is not sufficient to
fully characterize energy conservation. A thorough discussion of these issues and a more
detailed study of energy conservation in OpenMM is published elsewhere.48

Eastman et al. Page 13

J Chem Theory Comput. Author manuscript; available in PMC 2014 January 08.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text

7 Conclusions
OpenMM is a software toolkit that addresses an unmet need in the molecular simulation
community. It is designed to be modular, extensible, reusable, and hardware independent. This
combination of traits makes it uniquely valuable to several different types of users. Application
developers have instant access to a large library of robust, high performance algorithms.
Researchers developing new methods can use OpenMM’s plugin architecture and custom
forces to implement and test new algorithms. Once written, those algorithms can quickly be
incorporated into any program that uses OpenMM. For chemists and biologists interested in
running simulations, the Python based application layer is a uniquely flexible and powerful
environment offering complete control over nearly every aspect of the simulation protocol.

Acknowledgments
This work was supported by Simbios via the NIH Roadmap for Medical Research Grant U54 GM072970, and by NIH
grant R01-GM062868. JDC acknowledges support from a QB3-Berkeley Distinguished Postdoctoral Fellowship.

References
1. Case DA, Darden TA, Cheatham TEI, Simmerling CL, Wang J, Duke RE, Luo R, Merz KM, Pearlman

DA, Crowley M, Walker RC, Zhang W, Wang B, Hayik S, Roitberg A, Seabra G, Wong KF, Paesani
F, Wu X, Brozell S, Tsui V, Gohlke H, Yang L, Tan C, Mongan J, Hornak V, Cui G, Beroza P, Mathews
DH, Schafmeister C, Ross WS, Kollman PA. AMBER 9. 2006

2. Brooks BR, Brooks I, CL, Mackerell J, AD, Nilsson L, Petrella RJ, Roux B, Won Y, Archontis G,
Bartels C, Boresch S, Caflisch A, Caves L, Cui Q, Dinner AR, Feig M, Fischer S, Gao J, Hodoscek
M, Im W, Kuczera K, Lazaridis T, Ma J, Ovchinnikov V, Paci E, Pastor RW, Post CB, Pu JZ, Schaefer
M, Tidor B, Venable RM, Woodcock HL, Wu X, Yang W, York DM, Karplus M. CHARMM: The
Biomolecular Simulation Program. J Comput Chem. 2009; 30:1545–1614. [PubMed: 19444816]

3. Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kale L,
Schulten K. Scalable molecular dynamics with NAMD. J Comput Chem. 2005; 26(16):1781–1802.
[PubMed: 16222654]

4. Bowers KJ, Chow E, Xu H, Dror RO, Eastwood MP, Gregersen BA, Klepeis JL, Kolossváry I, Moraes
MA, Sacerdoti FD, Salmon JK, Shan Y, Shaw DE. Scalable Algorithms for Molecular Dynamics
Simulations on Commodity Clusters. Proceedings of the ACM/IEEE Conference on Supercomputing
(SC06). 2006

5. Anderson JA, Lorenz CD, Travesset A. General Purpose Molecular Dynamics Simulations Fully
Implemented on Graphics Processing Units. J Comput Phys. 2008; 227:5342–5359.

6. Friedrichs MS, Eastman P, Vaidyanathan V, Houston M, LeGrand S, Beberg AL, Ensign DL, Bruns
CM, Pande VS. Accelerating molecular dynamic simulation on graphics processing units. J Comput
Chem. 2009; 30(6):864–872. [PubMed: 19191337]

7. Stone JE, Phillips JC, Freddolino PL, Hardy DJ, Trabuco LG, Schulten K. Accelerating molecular
modeling applications with graphics processors. J Comput Chem. 2007; 28(16):2618–2640. [PubMed:
17894371]

8. van Meel JA, Arnold A, Frenkel D, Portegies Zwart SF, Belleman RG. Harvesting graphics power for
MD simulations. Mol Simul. 2008; 34(3):259–266.

9. Shaw, DE.; Deneroff, MM.; Dror, RO.; Kuskin, JS.; Larson, RH.; Salmon, JK.; Young, C.; Batson,
B.; Bowers, KJ.; Chao, JC.; Eastwood, MP.; Gagliardo, J.; Grossman, JP.; Ho, CR.; Ierardi, DJ.; Istv,
#225.; Kolossvnry; Klepeis, JL.; Layman, T.; McLeavey, C.; Moraes, MA.; Mueller, R.; Priest, EC.;
Shan, Y.; Spengler, J.; Theobald, M.; Towles, B.; Wang, SC. Anton a special-purpose machine for
molecular dynamics simulationIn. Proceedings of the 34th annual international symposium on
Computer architecture; San Diego, California, USA: ACM; 2007. p. 1-12.

10. Alexander D, MacKerell J. Empirical Force Fields for Biological Macromolecules: Overview and
Issues. J Comput Chem. 2004; 25(13):1584–1604. [PubMed: 15264253]

Eastman et al. Page 14

J Chem Theory Comput. Author manuscript; available in PMC 2014 January 08.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text

11. Shirts MR, Mobley DL, Chodera JD, Pande VS. Accurate and Efficient Corrections for Missing
Dispersion Interactions in Molecular Simulations. J Phys Chem B. 2007; 111(45):13052–13063.
[PubMed: 17949030]

12. Toukmaji AY, Board JA Jr. Ewald summation techniques in perspective: a survey. Comput Phys
Commun. 1996; 95:73–92.

13. Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG. A smooth particle mesh Ewald
method. J Chem Phys. 1995; 103(19):8577–8593.

14. Tironi IG, Sperb R, Smith PE, van Gunsteren WF. A generalized reaction field method for molecular
dynamics simulations. J Chem Phys. 1995; 102(13):5451–5459.

15. Onufriev A, Bashford D, Case DA. Exploring protein native states and large-scale conformational
changes with a modified generalized born model. Proteins. 2004; 55(22):383–394. [PubMed:
15048829]

16. Labute P. The generalized Born/volume integral implicit solvent model: Estimation of the free energy
of hydration using London dispersion instead of atomic surface area. J Comput Chem. 2008; 29(10):
1693–1698. [PubMed: 18307169]

17. Press, WH.; Teukolsky, SA.; Vetterling, WT.; Flannery, BP. Numerical Recipes in C++. 2. Cambridge
University Press; 2003.

18. Andersen HC. Molecular dynamics simulations at constant pressure and/or temperature. J Chem Phys.
1980; 72(4):2384–2393.

19. Chow KH, Ferguson DM. Isothermal-isobaric molecular dynamics simulations with Monte Carlo
volume sampling. Comput Phys Commun. 1995; 91:283–289.

20. Åqvist J, Wennerström P, Nervall M, Bjelic S, Brandsdal BO. Molecular dynamics simulations of
water and biomolecules with a Monte Carlo constant pressure algorithm. Chem Phys Let. 2004;
384:288–294.

21. Aaftab, M. The OpenCL Specification, version 1.0. The Khronos Group; Beaverton, OR: 2008.

22. CUDA Toolkit, version 4.1. NVIDIA; Santa Clara, CA: 2012.

23. Ren P, Ponder JW. A Consistent Treatment of Inter- and Intramolecular Polarization in Molecular
Mechanics Calculations. J Comput Chem. 2002; 23:1497–1506. [PubMed: 12395419]

24. Ren P, Ponder JW. Polarizable Atomic Multipole Water Model for Molecular Mechanics Simulation.
J Phys Chem B. 2003; 107:5933–5947.

25. Allinger NL, Yuh YH, Lii JH. Molecular mechanics. The MM3 force field for hydrocarbons. J Am
Chem Soc. 1989; 111(23):8551–8566.

26. Wilson, EB., Jr; Decius, JC.; Cross, PC. Molecular Vibrations: The Theory of Infrared and Raman
Vibrational Spectra. McGraw-Hill; New York: 1955.

27. Bell RP. Bond Torsion in the Vibrations of the Benzene Molecule. Trans Faraday Soc. 1945; 41:293–
295.

28. Halgren TA. The representation of van der Waals (vdW) interactions in molecular mechanics force
fields: potential form, combination rules, and vdW parameters. J Am Chem Soc. 1992; 114(20):7827–
7843.

29. Thole BT. Molecular polarizabilities calculated with a modified dipole interaction. Chem Phys. 1981;
59(3):341–350.

30. Schnieders MJ, Ponder JW. Polarizable Atomic Multipole Solutes in a Generalized Kirkwood
Continuum. J Chem Theory Comput. 2007; 3:2083–2097.

31. Beutlera TC, Marka AE, Schaikb RCv, Gerberc PR, Gunsteren WFv. Avoiding singularities and
numerical instabilities in free energy calculations based on molecular simulations. Chem Phys Let.
1994; 222(6):529–539.

32. Shirts MR, Pande VS. Solvation free energies of amino acid side chain analogs for common molecular
mechanics water models. J Chem Phys. 2005; 132:134508. [PubMed: 15847482]

33. Pham TT, Shirts MR. Identifying low variance pathways for free energy calculations of molecular
transformations in solution phase. J Chem Phys. 2011; 135(3)

34. Bennett CH. Efficient estimation of free energy differences from Monte Carlo data. J Comput Phys.
1976; 22(2):245–268.

Eastman et al. Page 15

J Chem Theory Comput. Author manuscript; available in PMC 2014 January 08.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text

35. Shirts MR, Chodera JD. Statistically optimal analysis of samples from multiple equilibrium states. J
Chem Phys. 2008; 129(12)

36. Shirts MR, Pande VS. Comparison of efficiency and bias of free energies computed by exponential
averaging, the Bennett acceptance ratio, and thermodynamic integration. J Chem Phys. 2005; 122
(14)

37. Paliwal H, Shirts MR. A Benchmark Test Set for Alchemical Free Energy Transformations and Its
Use to Quantify Error in Common Free Energy Methods. J Chem Theory Comput. 2011; 7(12):4115–
4134.

38. Craig IR, Manolopoulos DE. Quantum statistics and classical mechanics: Real time correlation
functions from ring polymer molecular dynamics. J Chem Phys. 2004; 121(8):3368–3373. [PubMed:
15303899]

39. Ceriotti M, Parrinello M, Markland TE, Manolopoulos DE. Efficient stochastic thermostatting of path
integral molecular dynamics. J Chem Phys. 2010; 133(12)

40. Eastman, P.; Pande, V. Accelerating Development and Execution Speed with Just-in-Time GPU Code
Generation. In: Hwu, W-m, editor. GPU Computing Gems Jade Edition. Morgan Kaufmann; 2011.
p. 399-407.

41. Hawkins GD, Cramer CJ, Truhlar DG. Pairwise solute descreening of solute charges from a dielectric
medium. Chem Phys Let. 1995; 246(1–2):122–129.

42. Mongan J, Simmerling C, McCammon JA, Case DA, Onufriev A. Generalized Born model with a
simple, robust molecular volume correction. J Chem Theory Comput. 2007; 3(1):156–169. [PubMed:
21072141]

43. Vitalis A, Pappu RV. ABSINTH: A New Continuum Solvation Model for Simulations of Polypeptides
in Aqueous Solutions. J Comput Chem. 2008; 30(5):673–699. [PubMed: 18506808]

44. Hess B, Kutzner C, van der Spoel D, Lindahl E. GROMACS 4: Algorithms for Highly Efficient,
Load-Balanced, and Scalable Molecular Simulation. J Chem Theory Comput. 2008; 4:435–447.

45. Ponder, JW. TINKER - Software Tools for Molecular Design, version 6.0. 2011.

46. Hornak V, Abel R, Okur A, Strockbine B, Roitberg A, Simmerling C. Comparison of multiple Amber
force fields and development of improved protein backbone parameters. Proteins. 2006; 65:712–725.
[PubMed: 16981200]

47. Vijay-Kumar S, Bugg CE, Cook WJ. Structure of ubiquitin refined at 1.8 A resolution. J Mol Biol.
1987; 194(3):531–544. [PubMed: 3041007]

48. Eastman P, Pande VS. Energy Conservation and Simulation Accuracy. Submitted for publication.
2012

Eastman et al. Page 16

J Chem Theory Comput. Author manuscript; available in PMC 2014 January 08.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text

Eastman et al. Page 17

Table 1

Force Mean Relative Difference

Harmonic bonds 1.98·10−5

Harmonic angles 1.15·10−5

Periodic torsions 1.51·10−5

Ryckaert-Bellemans torsions 3.88·10−6

Nonbonded (no cutoff) 9.59·10−7

Nonbonded (PME) 3.68·10−6

OBC implicit solvent 3.04·10−6

J Chem Theory Comput. Author manuscript; available in PMC 2014 January 08.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text

Eastman et al. Page 18

Table 2

Force Max Relative Difference

Harmonic bonds 7.51·10−3

Harmonic angles 4.19·10−3

Periodic torsions 1.44·10−2

Ryckaert-Bellemans torsions 2.89·10−3

Nonbonded (no cutoff) 1.10·10−3

Nonbonded (PME) 3.89·10−3

OBC implicit solvent 6.18·10−4

J Chem Theory Comput. Author manuscript; available in PMC 2014 January 08.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text

Eastman et al. Page 19

Table 3

Force Mean Relative Difference

Harmonic bonds 1.66·10−4

Harmonic angles 6.35·10−5

Periodic torsions 3.70·10−5

Nonbonded (no cutoff) 6.13·10−7

OBC implicit solvent 3.82·10−6

J Chem Theory Comput. Author manuscript; available in PMC 2014 January 08.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text

Eastman et al. Page 20

Table 1

Performance of benchmark simulations run on a single Nvidia GTX 580 or AMD Radeon HD 7970 GPU. Results
are in ns/day.

CUDA OpenCL (Nvidia) OpenCL (AMD)

Implicit, H-bonds 127 127 134

Implicit, H-angles 213 176 133

Explicit-RF, H-bonds 28.8 39.5 33.2

Explicit-RF, H-angles 54.5 70.9 50.1

Explicit-PME, H-bonds 18.5 25.1 24.1

Explicit-PME, H-angles 35.5 46.0 37.0

J Chem Theory Comput. Author manuscript; available in PMC 2014 January 08.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text

Eastman et al. Page 21

Table 2

Performance of benchmark simulations run on 1 to 4 Nvidia C2070 GPUs. Results are in ns/day.

1 GPU 2 GPUs 3 GPUs 4 GPUs

Explicit-RF, H-bonds 25.9 (1.0) 40.2 (1.55) 48.5 (1.87) 52.3 (2.02)

Explicit-RF, H-angles 47.6 (1.0) 69.4 (1.46) 80.8 (1.70) 87.9 (1.85)

Explicit-PME, H-bonds 16.5 (1.0) 27.1 (1.64) 30.1 (1.83) 29.8 (1.81)

Explicit-PME, H-angles 30.9 (1.0) 49.7 (1.61) 55.5 (1.80) 54.9 (1.78)

The value in parentheses is the speedup relative to a single GPU.

J Chem Theory Comput. Author manuscript; available in PMC 2014 January 08.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text

Eastman et al. Page 22

Table 3

Performance of AMOEBA benchmarks on an Nvidia GTX 580 GPU.

Explicit solvent:

Atoms ns/day

villin 3182 2.68

DHFR 23558 0.493

Implicit solvent:

Atoms ns/day

villin 596 7.12

DHFR 2489 1.53

J Chem Theory Comput. Author manuscript; available in PMC 2014 January 08.

