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Abstract

Endothelial cells (EC) form the inner lining of blood vessels and are positioned between circulating lymphocytes and tissues.
Hypotheses have formed that EC may act as antigen presenting cells based on the intimate interactions with T cells, which
are seen in diseases like multiple sclerosis, cerebral malaria (CM) and viral neuropathologies. Here, we investigated how
human brain microvascular EC (HBEC) interact with and support the proliferation of T cells. We found HBEC to express MHC
II, CD40 and ICOSL, key molecules for antigen presentation and co-stimulation and to take up fluorescently labeled antigens
via macropinocytosis. In co-cultures, we showed that HBEC support and promote the proliferation of CD4+ and CD8+ T cells,
which both are key in CM pathogenesis, particularly following T cell receptor activation and co-stimulation. Our findings
provide novel evidence that HBEC can trigger T cell activation, thereby providing a novel mechanism for
neuroimmunological complications of infectious diseases.
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Introduction

The induction of adaptive cellular immunity is a function of

professional antigen presenting cells (APCs) such as dendritic cells,

which provide signal 1 (peptide-major histocompatibility complex

(MHC)), signal 2 (co-stimulatory molecules), and signal 3

(instructive cytokines) to naive T lymphocytes upon antigen

encounter [1].

Endothelial cells (EC) form the inner lining of blood vessels and

are positioned between circulating lymphocytes and peripheral

tissues. As such, EC are the first cells with which T cells come into

direct contact in the circulation. The hypothesis that EC may be

able to act as APC is based upon the intimate interactions between

EC in microvessels and T cells during transendothelial migration

to lymph nodes or peripheral tissues. That is, EC may acquire

antigenic proteins and present them on MHC class I and II

molecules at their apical surface. The vascular EC that separate

the blood stream from the brain parenchyma is referred to as the

blood brain barrier (BBB). The BBB provides both anatomical and

physiological protection for the central nervous system, regulating

the entry of many substances and blood borne cells into the

nervous tissue. There is increasing evidence of interactions

between T cells and brain endothelium in diseases such as

multiple sclerosis, cerebral malaria (CM) and viral neuropathol-

ogies. Of particular note, the diameter of microvessels, where the

pathology is seen during CM, is smaller than the size of activated

lymphocytes; therefore the latter physically ‘‘brush’’ the EC

surface and can thus interact very closely. Additionally, during

CM, both T cells and monocytes are arrested in brain microvessels

[2] and we recently demonstrated that brain EC can display

antigens from infected erythrocytes on their surface, thereby

possibly initiating immune responses [3].

MHC expression, which is the primary requirement for APC

activity has been demonstrated on EC with both MHC I and II

upregulated following cytokine treatment [4–6]. Moreover, EC may

also qualify as APCs due to the secretion of cytokines, particularly

GM-CSF [7,8]. Some studies using MHC matched donors supports

the model that cultured human EC are able to present antigen and

thus re-activate primed CD4+ T cells [9–11]. However, EC are

specifically able to re-stimulate T cells, but not to prime naı̈ve T cells,

which is a hallmark of ‘‘professional’’ APCs such as dendritic cells

[12–14]. Additional studies using co-cultures of MHC-mismatched

EC and T cells resulted in the activation of both CD4+ and CD8+ T

cells suggesting that EC are able to present alloantigens [15,16].

The body of evidence supporting the role of EC as APC

(reviewed in [17]) led us to investigate the capacity of brain

microvascular EC to act as APC and modulate T cell activation

and proliferation. Here we confirm and expand on previous data

[18] and show that immortalised human brain microvascular

hCMEC/D3 endothelial cells (HBEC) express MHC II and the
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co-stimulatory molecules CD40 and ICOSL following cytokine

stimulation. We also demonstrate that HBEC were able to take up

fluorescently labeled antigens via macropinocytosis and clathrin

coated pits. Moreover in our peripheral blood mononuclear cell

(PBMC)/HBEC co-cultures, HBEC support and promote the

proliferation of both CD4+ and CD8+ T cells suggesting that the

brain endothelium is able to process and present antigens to

allogeneic T cells. Finally, we were able to demonstrate that the

interaction between T cells and HBEC occurs in a 2-way fashion

as the expression of MHC II on HBEC was significantly increased

following co-culture with PBMC. Combined, our data indicates

that EC can act as semi-professional APC, which has important

implications for the presentation of antigens to T cells, resulting in

the activation of the effector T cell response in neuroinfectious

diseases, particularly CM.

Materials and Methods

Ethics Statement
The blood samples used in this study are from anonymous

donors from the Australian Red Cross Blood Bank. Protocol was

approved by the University of Sydney Human Ethics Committee

(Approval #10218).

Cells and cell culture
Immortalised human brain microvascular hCMEC/D3 endo-

thelial cells (HBEC) [18] were cultured in EBM-2 medium (Lonza

CC-3156). Cells were grown on plates pre-coated with rat tail

collagen type I (BD Biosciences). Cytokine activation of HBEC

was performed by treating the cells with 10 ng/ml TNF or 50 ng/

ml IFNc (Peprotech) for 18 h.

Human PBMC preparation
PBMC were separated either from leukopacks or from

heparinized venous blood by conventional Ficoll gradient and

brought to 26106/ml in complete medium. PBMC were frozen in

10% DMSO in FCS and stored in liquid nitrogen. PBMC were

thawed and washed twice in cold medium before use in assays.

T cell isolation and CFSE staining
CD4+ and CD8+ T cells were isolated from freshly thawed

PBMCs using an EasysepH (Stemcell Technologies) negative

selection kit according to the manufacturer’s instructions. For

labeling both isolated T cells and whole PBMCs with Carboxy-

fluorescein succinimidyl ester (CFSE; Invitrogen), cells (at a density

of 107 cells/ml) were incubated for 10 min at 37uC in 5 mM CFSE

in serum free RPMI. The labelling reaction was stopped by the

addition of serum. Cells were then washed 3 times prior to use. For

the quantification of cell proliferation, cells were analysed by flow

cytometry with a reduction in CFSE MFI indicative of cell division.

Flow cytometry
For multicolor flow cytometric analysis, HBEC were incubated in

the presence of fluorochrome-conjugated mAbs against CD105

(SN6), CD106 (STA), CD80 (2D10.4), CD86 (IT2.2), CD40 (5C3),

HLA-DR/MHC II (LN3) and CD275 (MIH12) (all from

eBioscience), CD54 (5.6E; Beckman Coulter) and b2-microglobu-

lin/MHC I (TÜ99; BD Biosciences) as per manufacturer’s instruc-

tions.

Antigen uptake analysis
The ability of HBEC to take up fluorescently labeled protein

was assessed using flow cytometry after the cells were incubated

with either 1 mg/ml Fluorescein isothiocyanate (FITC)-Ovalbu-

min (OVA) or Lucifer Yellow (Invitrogen) at 37uC for 45 min and

washed three times with PBS. Results are expressed as the

percentage increase in mean fluorescence intensity (MFI), which

subtracts any fluorescence detected by nonspecific surface binding

after incubation on ice. The percentage increase in MFI is

calculated as follows; % increase in MFI = [(uptake at 37uC)/

(uptake at 4uC)6100]. To selectively inhibit macropinocytosis and

other actin-dependent mechanisms, HBEC were pre-incubated for

15 min at 37uC with cytochalasin D (CCD; 10 mM; Sigma).

Conjugation assays
The ability of HBEC to form long-lasting conjugates with T

cells was assessed using an in vitro conjugation assay. Briefly, CD4+

and CD8+ T cells were isolated from PBMC using EasySepH.

Isolated T cells and trypsinated HBEC were then labeled with the

membrane-labeling agents, PKH26 (red) and PKH67 (green)

respectively (Sigma). 16105 T cells and 16105 HBEC were co-

incubated for 30 min at 37uC prior to flow cytometric analysis.

Conjugates were deemed to be positive for both PKH26 and

PKH27.

In vitro T cell proliferation assays
HBEC were cultured to confluence in 24 well tissue culture

plates (Corning). Cells were either left under resting conditions or

stimulated with a combination of 10 ng/ml TNF and 50 ng/ml

IFNc for 18 h. 16105 CFSE-labeled PBMCs were added per well

with the following conditions; PBMC alone, 0.3 mg/ml aCD3

(eBioscience; Clone HIT3a) or 0.3 mg/ml aCD3+1 mg/ml

aCD28 (eBioscience; Clone CD28.2). The co-cultures were

incubated for 6 days at 37uC. After 6 days in culture the non-

adherent cells were then collected for staining and flow cytometric

analysis. Non-adherent cells were stained with PE conjugated anti-

human CD4 (eBioscience; Clone OKT4) and PE-Cy5 anti-human

CD8a (Biolegend; Clone HIT8a) prior to multi-colour flow

cytometric analysis. T cell proliferation was then quantitated with

the parameters set to a log scale. A forward scatter vs FL1 was used

to gate on the PBMC population that was positive for CFSE. This

gated population was then used to differentiate between CD4+ T

cells and CD8+ T cells. CFSE histograms depict the number of

events (y-axis) and the fluorescence intensity (x-axis) with

proliferating cells displaying a progressive 2-fold loss in fluores-

cence intensity following cell division, indicative of proliferating

cells. To determine whether cell contact is necessary for EC to

support T cell proliferation, the use of transwells was employed.

16105 PBMC/well were placed in 0.4 mm transwells (Costar) and

co-culture with HBEC performed as outlined above.

MHC II expression on HBEC following co-culture
To assess the expression of MHC II on HBEC following co-

culture with PBMC, HBEC were removed by trypsinisation

following 6 d of co-culture. HBEC were then stained with anti-

human MHC II (HLA-DR; eBioscience). For flow cytometric

analysis CFSE positive cells (PBMC) were excluded by gating to

ensure MHC II analysis was conducted on HBEC only.

Results

HBEC express key molecules for antigen presentation
and T cell activation

For this study we employed a particular line of immortalized

human microvascular EC (HBEC; hCMEC/D3) that recapitulates

many of the key characteristics of primary brain EC and thus has

Brain Endothelium and T Cell Proliferation
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been validated as an excellent model of the BBB for in vitro studies

[18–20].

A number of adhesion molecules known to be expressed by

brain endothelium are involved, under inflammatory conditions,

in the migration of activated leukocytes across the BBB. Flow

cytometric analysis of HBEC cells not only confirmed the strong

basal expression of ICAM-1, but also demonstrated a marked up-

regulation following stimulation with TNF and/or IFNc (Fig. 1).

Endoglin (CD105), an EC marker predominantly expressed by

proliferating EC was expressed at high levels basally, with no

regulation in expression seen following pro-inflammatory cytokine

stimulation (Fig. 1). Similarly, MHC I (b2-microglobulin) was

expressed at high levels basally on HBEC with no increase

observed following cytokine stimulation (Fig. 1). This is in contrast

to previous results whereby MHC I expression has been shown to

be upregulated by stimulation with IFNa, -b or –c [21]. Despite

this, our results provide evidence that HBEC, like most cell types,

possess the minimal requirement for antigen presentation to CD8+

T cells. In contrast to MHC I, despite the low basal expression of

MHC II on HBEC cells, its expression was greatly increased upon

the addition of IFNc or TNF+IFNc (Fig. 1), highlighting a

potential role for these cells in antigen presentation to CD4+ T

cells. Previous analysis of MHC II on EC has proved difficult in

vivo, with constitutive expression only detected in post-capillary

venules [22]. Whilst the expression of the co-stimulatory molecules

CD80/CD86 (B7-1/B7-2) was not detected on resting or cytokine-

stimulated HBEC cells, the co-stimulatory molecule, CD40 was

detected following stimulation with IFNc or TNF+IFNc (Fig. 1),

indicating that like MHC II the expression is regulated by IFNc.

Previously, CD40 has been demonstrated to be constitutively

expressed on primary human brain ECs, with this expression

being upregulated following cytokine stimulation [23]. The

expression of this co-stimulatory molecule on brain EC provides

key evidence for their potential role as APC as the binding of

CD40L on helper T cells to CD40 activates ‘APCs’ to upregulate

the expression of more co-stimulatory molecules, increase cytokine

expression and promote T cell differentiation [24]. Finally,

inducible co-stimulator ligand (ICOSL) expression was detected

on HBEC following TNF stimulation (Fig. 1). ICOS and its ligand,

ICOSL are members of the CD28 family of co-stimulators

mediating effector T cell differentiation [25]. Previously, ICOSL

has been detected not only basally on human umbilical vein ECs

but also upregulated by cytokine stimulation [25,26].

HBEC take up antigens using macropinocytosis and
clathrin-coated pits

A recent study from our laboratory demonstrated that during

malaria, the transfer of parasite antigens to ECs can take place [3],

however, the precise mechanisms behind this remain unclear. The

ability of our HBEC to take up soluble antigens was assessed in vitro

using fluorescently labeled antigens in a classic antigen uptake

experiment. The ability of HBEC to take up antigen via

macropinocytosis and clathrin-coated pits was assessed using

Lucifer yellow and FITC-OVA respectively. The amount of

fluorescence incorporated into the cells at 37uC was measured by

flow cytometry with nonspecific surface binding subtracted

following incubation on ice. Interestingly, HBEC were able to

take up FITC-OVA via clathrin-coated pits and macropinocytose

Lucifer yellow (Fig. 2A, C respectively). To further prove that the

uptake of antigen by HBEC was not an experimental artifact, a

specific inhibitor of macropinocytosis and other actin-dependent

mechanisms, cytochalasin D (CCD; 10 mM) was employed [27].

Indeed, following pre-incubation with CCD, both the uptake of

FITC-OVA and Lucifer yellow was significantly inhibited (Fig. 2

B, D) indicating that HBEC have the capacity to take up soluble

antigen in a similar manner as professional APC.

HBEC support the proliferation of activated T cells
As optimal T-cell activation and differentiation in vivo requires

long-lasting T–APC interaction, a classical in vitro conjugate

forming assay was adapted to assess the ability of HBEC to form

conjugates with T cells [28]. Red fluorescently labeled (PKH26)

CD4+ or CD8+ T cells were incubated in suspension with green

fluorescently labeled (PKH67) HBECs with the adherence

between HBEC and T cells examined using flow cytometry.

Figure 1. Expression of markers relevant to antigen presentation and T cell activation on HBEC. Histograms represent flow cytometry
results from unstimulated and cytokine stimulated HBEC cells 18 h following stimulation. HBEC were stimulated with either 10 ng/ml TNF (blue line),
50 ng/ml IFNg (green line), or 10 ng/ml TNF+50 ng/ml IFNg (orange line) and compared to unstimulated cells (red line). Cells were stained with mAbs
against CD54 (ICAM-1), Endoglin (CD105), MHC II (HLA-DR), ICOSL (CD275), CD40, CD80 and CD86 as per manufacturers instructions. Data are
representative of four independent experiments.
doi:10.1371/journal.pone.0052586.g001
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Conjugates were determined to be cells positive for both PKH26

and PKH67. Interestingly, both CD4+ and CD8+ T cells form

conjugates, i.e. cell doublets in suspension, with control (data not

shown) and cytokine activated HBECs, as shown by flow

cytometry (Fig. 2E, F respectively). There were higher percentages

of T cell/HBEC conjugates seen when the HBEC were cytokine

activated (3.6 vs 1.4% for CD4+ and 6.3 vs 2.1% for CD8+).

After determining that HBEC were capable of binding to both

CD4+ and CD8+ T cells, the ability of HBEC to support T cell

proliferation and present alloantigens was assessed by co-culturing

CFSE-labelled donor PBMCs with a confluent monolayer of either

resting or cytokine stimulated HBECs. In addition, the agonistic

antibodies aCD3/aCD28 were also added to the assay to mimic T

cell receptor (TCR) stimulation and co-stimulation respectively

[29]. Six days following co-culture the percentage of CD4+ and

CD8+ T cells proliferating was determined by measuring the

reduction in CFSE MFI (Fig. 3A). While the presence of soluble

aCD3 and aCD28 resulted in a modest increase in proliferating

CD8+ cells, the only significant increase in proliferation was

observed when the PBMC were co-cultured with TNF+IFNcacti-

vated HBEC and aCD3/aCD28 (Fig. 3B), indicating that HBEC

support the proliferation of CD8+ T cells, however, the CD8+ cells

must also be activated via their TCR. Interestingly, CD4+ T cell

proliferation was significantly increased in the presence of both

resting and cytokine-stimulated HBEC (Fig. 3C), however, the

CD4+ cells also must be stimulated via their TCR with aCD3 or

aCD3/aCD28 to observe the HBEC-mediated support of

proliferation. It is most likely that the modest increase in

proliferation for both CD4+ and CD8+ T cells following aCD3

stimulation is indicating that the cells were not stimulated using a

solid phase activation, i.e. plate bound aCD3.

Experiments using transwells have indicated that when the

PBMC were physically separated from the HBEC monolayer

during co-culture, the increase in proliferation over control

samples were greatly reduced (Fig. S1). This was observed for

both CD4+ and CD8+ T cells suggesting that direct interaction

Figure 2. HBEC take up fluorescently labelled antigen via actin-dependent mechanisms and form conjugates with T cells. Flow
cytometry histograms depicting level of uptake of FITC-OVA (A) and Lucifer yellow (C) by HBEC at 37uC (blue line) vs background uptake at 4uC (red
line). Data are representative of three independent experiments. Inhibition of FITC-OVA (B) and Lucifer yellow (D) uptake by HBEC cells pre-incubated
with 10 mM Cytochalasin D (CCD). C, Flow cytometry histogram depicting level of uptake of Lucifer yellow by HBEC at 37uC (blue line) vs background
uptake at 4uC (red line). Data are representative of three independent experiments Percentage increase in mean fluorescence intensity (MFI) is
calculated as follows: (MFI following uptake at 37uC/MFI following uptake at 4uC)6100. Data are pooled from three independent experiments (n = 3
per experiment) and are expressed as mean +/2 SD. ** and *** indicates statistically significant differences between control and CCD treatment as
assessed by Student t test (p, 0.001, p,0.001 respectively). Representative flow cytometry plots indicating the levels of conjugation between HBEC
and CD4+ (E) and CD8+ (F) cells. HBEC were labeled with PKH67 and isolated T cells labeled with PKH26 and equal numbers of cells were co-cultured
for 30 min prior to flow cytometric analysis.
doi:10.1371/journal.pone.0052586.g002
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between HBEC and T cells is required for HBEC-mediated

support of T cell proliferation.

MHC expression on HBEC is upregulated following co-
culture with allogeneic PBMC

To determine whether the interaction between T cells and

HBEC occurs in a two-way fashion, the expression of MHC II on

the HBEC monolayer was determined following 6 days of co-

culture with PBMCs. A significant increase in MHC II-positive

cells was observed when HBEC were co-cultured with aCD3

oraCD3/aCD28 stimulated PBMCs when compared to HBEC

cells alone (Fig. 4A, B) indicating that the donor PBMC were able

to modulate the MHC II expression on the HBEC themselves.

These conjugates likely involve interactions of ICAM-1/LFA-1

and VCAM-1/VLA-4 on EC/T cells respectively in addition to

interactions required for antigen presentation.

Discussion

In this study, we provide for the evidence that microvascular

brain EC are able to act as APCs. Our analysis of MHC and co-

stimulatory molecule expression on HBEC show for the first time

that brain EC are endowed a ‘‘professional’’ costimulatory ligand

of the B7 family, ICOSL. This in conjugation with the expression

of MHC II and CD40 following IFNc stimulation supports the

notion of the brain endothelium being able to present antigens to

and co-stimulate T cells promoting effector CD4+ T cell responses.

Additionally, with constitutively high expression of MHC I,

Figure 3. HBEC support the proliferation of CD4+ and CD8+ T cells. A, CFSE histogram plots of gated CD4+ (left panel) and CD8+ (right panel)
6 days following the start of the co-culture of HBEC and donor PBMC. For co-culture 16105 CFSE-labelled donor PBMC were co-cultured or not with a
confluent monolayer of either resting or 10 ng/ml TNF+50 ng/ml IFNc pre-stimulated HBEC cells. PBMC were either subjected to resting conditions or
stimulation with aCD3 or aCD3/CD28 mAbs. Following 6 days of culture, cells were harvested and stained with CD4 and CD8 mAbs to identify
proliferating cell populations. CFSE histograms depict the number of events (y-axis) and the fluorescence intensity (x-axis) with proliferating cells
displaying a progressive 2-fold loss in fluorescence intensity following cell division, indicative of proliferating cells. Histograms are representative of
four independent experiments with the same donor. Graphical representation of the percentage of CD4+ (B) and CD8+ (C) PBMC proliferating
following 6 days of culture either alone (white bars) or in the presence of resting (grey bars) or cytokine stimulated (black bars) HBEC as outlined
above. Data is pooled from four independent experiments with the same donor. * indicates statistically significant differences between control PBMC
and respective co-culture conditions using a non-parametric Mann-Whitney test (p,0.05).
doi:10.1371/journal.pone.0052586.g003
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HBEC, like most cell types, possess the minimal requirement for

antigen presentation to CD8+ T cells.

Antigen uptake is the first step in antigen-presenting pathways,

and pinocytosis is the major means by which cells sample soluble

protein antigen. Here we show that HBEC are able to take up

soluble antigen using both macropinocytosis and clathrin-coated

pits as pathways for antigen uptake. Whilst liver sinusoidal EC

have been demonstrated to be fully efficient APC in that they

express co-stimulatory molecules [30], take up antigen via the

mannose receptor [31] and are able to cross present exogenous

antigen [32], no previous studies have been conducted on the

ability of HBEC to take up and process antigens. The data

presented here shows for the first time that HBEC are able to take

up soluble antigen using actin-dependent mechanisms, in a

manner similar to ‘professional’ APCs.

In the co-culture assays presented here, HBEC were able to

support and promote the proliferation of TCR-stimulated CD4+

and CD8+ T cells. In these assays, an MLR occurs and the T cells

proliferate due to an MHC mismatch [33]. The demonstration of

antigen-specific activation of human T cells by EC has previously

been hampered by the requirement for MHC-matched EC and T

cells. Some studies using MHC matched donors support the model

that cultured human EC are able to present antigen and activated

CD4+ T cells [9–11]. Moreover, mouse T cell clones or T cells

from TCR-transgenic mice can be stimulated to proliferate in a

peptide-antigen-specific manner by co-culture with MHC-

matched ECs and the relevant protein antigen [14,34]. Addition-

ally, as presented in this study with our HBEC line, co-cultures of

MHC-mismatched EC and T cells result in the activation of CD4+

and CD8+ T cells demonstrating that EC are able to present

alloantigens [15,16]. In this study we have used a widely accepted

assay of allogenic T cell stimulation without well characterised

antigens in order to prepare for future experiments that will

involve defined malarial antigens. In this assay, the separation of

HBEC and T cells resulted in reduced T cell proliferation,

indicating the role of cell-cell contact in this phenomenon. The co-

stimulatory molecules CD40 and ICOSL are likely to be

mediating this effect. ICOSL, a B-7 co-stimulatory family member

was upregulated on HBECs following cytokine stimulation.

Moreover, ICOSL has been shown previously to be a major co-

stimulator in Human umbilical vein EC-mediated T cell

activation, particularly in the re-activation of effector/memory T

cells [12,26]. Another co-stimulatory molecule, CD40, was

constitutively expressed on HBEC and upregulated after IFNc
stimulation (Fig. 1). CD40 regulates the adhesion of CD4+ T cells

to brain endothelium via the interaction with its ligand, CD40L on

T cells, suggesting a potential mechanism by which activated

CD40L expressing T cells could enhance adhesion and migration

of inflammatory cells across the BBB to sites of inflammation in the

human central nervous system [23].

This increase in HBEC MHC II expression has relevance for

CM pathogenesis as MHC II expression on isolated mouse brain

EC has been associated with the genetic susceptibility to CM [35].

Moreover, more recently the HLA ligand, HLA-C1 along with its

cognate natural killer (NK) cell immunoglobulin-like receptor were

shown to be significantly associated with the development of CM

Figure 4. PBMC modulate MHC II expression on HBEC following co-culture. A, Histogram plots of HBEC depicting expression of MHC II
(HLA-DR) 6 days following the start of the co-culture with donor PBMC. 16105 CFSE-labelled donor PBMC were co-cultured with a confluent
monolayer of either resting (left panels) or 10 ng/ml TNF+50 ng/ml IFNc pre-stimulated (right panels) HBEC cells. PBMC were either subjected to
resting conditions or stimulation with aCD3 or aCD3/CD28 mAbs (top, middle lower panels respectively). Histograms are representative of four
independent experiments with the same donor. B, Percentage of MHC II+ HBEC in resting (white bars) vs TNF/IFNc stimulated (black bars) HBEC. Data
is pooled from four independent experiments with the same donor. * indicates statistically significant differences between control HBEC and
respective co-culture conditions using a non-parametric Mann-Whitney test (p,0.05).
doi:10.1371/journal.pone.0052586.g004
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in humans [36]. EC, at least from lymph nodes, can be modulators

of immune responses as they express multiple peripheral tissue

antigens, independent of the autoimmune regulator, AIRE [37],

and can even induce anergy [38]. This, together with our

observation of malarial antigen transfer to brain EC surfaces [3],

opens more possibilities for endothelial-mediated immunopatho-

logical mechanisms in CM. The findings described here are not

only a major interest for understanding CM pathogenesis but also

other neuroinfections involving disruption of endothelial cell

barriers such as neurocysticercosis and toxoplasmosis [39,40].

In summary, we have shown that human brain endothelium

cells express molecules important for T cell stimulation and

activation including CD40, MHC II and ICOSL. They readily

can take up fluorescently labeled antigens via clathrin-coated pits

and macropinocytosis. Moreover, these cells are able to bind to

and promote the proliferation of allogeneic T cells in vitro. Data

presented here supports the hypothesis that HBEC are able to act

as APC. This is particularly pertinent in neuroinfections such as

CM where the diameter of microvessels is smaller than the size of

lymphocytes; the lymphocytes are in constant physical contact

with the EC surface. Additionally, in the brains of both mice and

human with CM, leukocytes (monocytes and T cells) become

arrested in brain microvessels [2] providing further means for

intimate EC/T cell interactions. It has long been established that

CM is a T cell-dependent disease [41,42], with both CD4+ and

CD8+ T cells playing key roles in CM pathogenesis [43,44].

Moreover, this cell-cell contact plays an important role in brain

endothelial activation [45], as assessed notably by a dramatic

increase in plasma levels endothelial microparticles at the time of

CM [46]. The data presented here, in combination with our

recent demonstration that HBEC can transfer antigens from

malarial-infected red blood cells onto their surface, thereby

becoming a target for the immune response, provide key evidence

for HBEC to act as antigen presenting cells with the presentation

of malaria antigens by brain EC to T cells and the potential

activation of cytotoxic mechanisms providing a new explanation

for CM pathogenesis.

Supporting Information

Figure S1 Separation of HBEC and PBMC results in a

reduction in both CD4+ and CD8+ T cell proliferation. Graphical

representation of fold increase in proliferation of aCD3/CD28

stimulated CD4+ and CD8+ T cells co-cultured with TNF/IFNc
stimulated HBEC over unstimulated (control) CD4+ and CD8+ T

cell proliferation. Proliferation assessed by CFSE following 6 days

of co-culture either in 24 well plates (black bars) or in 0.4 mm

transwells (white bars).

(TIF)
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