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Abstract

Background: Accurate evaluation of gene expression requires normalization relative to the expression of reliable reference
genes. Expression levels of “classical” reference genes can differ, however, across experimental conditions. Although
quantitative real-time PCR (qRT-PCR) has been used extensively to decipher gene function in the sweetpotato whitefly
Bemisia tabaci, a world-wide pest in many agricultural systems, the stability of its reference genes has rarely been validated.

Results: In this study, 15 candidate reference genes from B. tabaci were evaluated using two Excel-based algorithms geNorm
and Normfinder under a diverse set of biotic and abiotic conditions. At least two reference genes were selected to normalize
gene expressions in B. tabaci under experimental conditions. Specifically, for biotic conditions including host plant,
acquisition of a plant virus, developmental stage, tissue (body region of the adult), and whitefly biotype, ribosomal protein
L29 was the most stable reference gene. In contrast, the expression of elongation factor 1 alpha, peptidylprolyl isomerase A,
NADH dehydrogenase, succinate dehydrogenase complex subunit A and heat shock protein 40 were consistently stable across
various abiotic conditions including photoperiod, temperature, and insecticide susceptibility.

Conclusion: Our finding is the first step toward establishing a standardized quantitative real-time PCR procedure following
the MIQE (Minimum Information for publication of Quantitative real time PCR Experiments) guideline in an agriculturally
important insect pest, and provides a solid foundation for future RNA interference based functional study in B. tabaci.
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the expression levels of these reference genes can differ under
environmental conditions [9]. Based on previous studies, it is
evident that the existence of a single universal reference gene
suited for all experimental conditions is highly unlikely [5,10-12].
Therefore, selection of reliable reference genes that are consis-

Introduction

In recent years, quantitative real-time PCR (qRT-PCR) has
been widely utilized for gene expression analysis because of its
sensitivity, accuracy, reproducibility, and most importantly,
quantitativeness [1—4]. There is no argument that qRT-PCR 1is
a powerful tool for gene expression analysis, data analysis, and
subsequent interpretation. However, interpretation can be chal-

tently expressed under specific experimental conditions is critical
for the interpretation of qRT-PCR results. Currently, two Excel-
based software tools including geNorm (http://medgen.ugent.be/
~jvdesomp/genorm/) [10] and Normfinder (http://www.mdl.dk/
publications normfinder.htm) [13], are widely used for evaluating the
performance of reference genes. The geNorm program was used to
calculate the mean pair-wise variation between an individual gene
and all other tested candidate reference genes and the results were
shown as expression stability (M). Normfinder is an algorithm for
estimation of reference genes among a set of candidates. It ranks
the candidate genes based on their expression stability.

The sweetpotato whitefly Bemisia tabaci (Gennadius) (Hemiptera:

lenging due to variation caused by pipetting error and different
extraction techniques, transcription and amplification efficiencies
among different samples [2,5-7]. Therefore, controlling for
internal differences and reducing errors between samples requires
the use of reliable reference genes for normalization in gene
expression analysis [8].

Traditionally, housekeeping genes including 18S ribosomal
RNA, glyceraldehyde-3-phosphate dehydrogenase, elongation
factor, ubiquitin-conjugating enzyme, alpha microtubules protein,

and beta microtubule protein have been used extensively as
endogenous controls for the normalization of qRT-PCR data, but
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Aleyrodidae) is one of the most destructive insect pests worldwide
[14-15]. This whitefly damages many crops by direct feeding and
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by vectoring 114 plant viruses [16]. Bemusia tabaci has long been
thought to comprise morphologically indistinguishable biotypes
that often differ in host range, fecundity, insecticide resistance,
transmission competency for begomoviruses, and the symbionts
they harbor [14,16,17]. Recent studies suggest that most of these
biotypes represent genetically distinct cryptic species [18-19],
among which the B biotype of the Middle East-Minor Asia 1 and
the Q) biotype of the Mediterranean group are the most invasive
and destructive [20]. Although B. tabact was first recorded in China
in the late 1940s, crop damage caused by this insect did not
become serious until the introduction of the B biotype in the 1990s
[21]. The Q biotype of B. tabaci was first detected in Yunnan
Province, China in 2003 [22]. Since then, the Q biotype has
gradually displaced the established B populations and has become
the dominant B. tabaci in most of China [23].

To examine the temporal and spatial changes of gene
expression in B. {abact, f-actin and o-tubulin are the most frequently
used endogenous reference genes in qRT-PCR analyses [24-27].
These genes were selected without the companion validation study
to evaluate their suitability under specific experimental conditions.
Previous studies have demonstrated that the expression of f-actin
can be significantly influenced by tissue type [12]. Bustin and his
colleagues proposed a MIQE guideline (Minimum Information for
publication of Quantitative real time PCR Experiments) [28] to
standardize qRT-PCR analysis; reference gene selection is an
integral part of their recommendations. In this study, 15
housekeeping genes from a parallel B. tabaci transcriptome study
[29] were selected as candidate reference genes. The overall goal
of this research is to develop a standardized qRT-PCR analysis in
B. tabaci following the MIQE guideline. Specifically, we evaluate
the stability and performance of the above mentioned candidate
reference genes under different experimental conditions including
five biotic factors (host, acquisition of a plant virus, developmental
stage, tissue, and whitefly biotype) and three abiotic factors
(photoperiod, temperature, and insecticide exposure). The choice
and number of reference genes needed under various conditions
are investigated and recommended.

Materials and Methods

Ethics Statement

Bemisia tabact B biotype strains used in this study were initially
collected in the field at Bejjing in 2000, and have been maintained
in a greenhouse at the Institute of Vegetables and Flowers,
Chinese Academy of Agricultural Sciences. The species in the
genus Aleyrodidacare common agricultural pests and are not
included in the “List of Protected Animals in China”. No specific
permits were required for the described field studies.

Candidate Reference Genes

Housekeeping genes from a previous B. ftabaci transcriptomic
study [29] were selected as candidate reference genes including 8-
actin (Actin), 185 rRNA (18S), heat shock protein (HSP20, HSP40,
HSP70, HSP90), y-tubulin, 60S ribosomal protein L29 (RPL29), succinate
detyydrogenase complex  subumit A (SDHA), flavoprotein, glyceraldehyde
phosphate delydrogenase (GAPDH), elongation factor 1 alpha (EF-10),
peptidylprolyl isomeraseA (PPIA), NADH dehydrogenase (NADH), Mpyosin
light chain (Myosin L), and adenosine triphosphate enzyme (AT Pase).
Primer 5.0 (http://www.premierbiosoft.com/) was used to design
primers for qRT-PCR analysis. The validity of these candidate
reference genes were evaluated under selected biotic and abiotic
conditions described in the following sections.
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Biotic Conditions

Host plant. Bemusia tabact B biotype was maintained on three
different host plants including cabbage, tomato, and cucumber [30].
A total of 180 3-day-old adults were collected, snap frozen in liquid
nitrogen, and stored at —80°C before qRT-PCR analysis.

Acquisition of a plant virus. Tomato plants infected with
Tomato yellow leaf curl virus (I'YLCV) were obtained by Agrobacterium
tumefaciens-mediated noculation using a cloned TYLCV genome
(GenBank accession ID: AM282874) [31]. Plants were inoculated with
the virus at the 3-true-leaf stage. Viral infection of tomato plants was
confirmed by the development of characteristic leaf curl symptoms
and was further validated by molecular analysis [32]. Viruliferous B.
labact were obtained by caging non-viruliferous B. labact adults with
TYLCV-infected tomato plant for a 72 h acquisition access period
[33]. Non-viruliferous B. tabact were obtained by caging non-
viruliferous B. tabact adults with healthy tomato plants for 72 h. A
total of 180 3-day-old adult whiteflies from both virus-infected and
virus-free tomato plants, respectively, were snap frozen and stored as
described earlier.

Developmental stage. Three developmental stages (egg,
pupa, and adult) were collected from B. tabaci B biotype maintained
on healthy cabbage plants. A total of 900 eggs, 900 pupae, and 300
adults were snap frozen and stored as described earlier.

Tissue. A dissection needle and a stereo microscope (Leica,
DFC425) were used to obtain three body regions (head, thorax,
and abdomen) from 3-day-old B. tabac: adults (TH-S). These
sections were dissected from adults reared on cabbage plants; snap
frozen, and stored as described earlier.

Whitefly biotype. Bemisia tabact B and Q) biotype strains were
collected from Beijing, China in 2000 and 2008, respectively, and
have been maintained in a greenhouse at the Institute of
Vegetables and Flowers, Chinese Academy of Agricultural
Sciences [30].

Abiotic Conditions

Photoperiod. A total of 200 3-day-old B. tabaci adults were
placed into nine screen cages, respectively, and provisioned with
cabbage plants at the 5 to 7-true-leaf stage. These cages were kept
in growth chambers (27%0.5°C, 60+10% RH) with photoperiods
(L/D) of 24:0, 0:24, and 14:10, respectively. After 96 h, B. tabact
adults were snap frozen and stored as described earlier.

Temperature. A total of 720 3-day-old B. tabaci adults (80
whiteflies X9 replications) were collected from cabbage plant and
placed individually into 30 ml specimen tubes. The tubes were
then placed in climatic chambers at 4.0, 25.0, and 37.5°C,
respectively. After 1 h, the live adults were snap frozen and stored
as described earlier.

Insecticide susceptibility. Thiamethoxam susceptible (TH-
S) and resistant (TH-R) B. tabaci strains were established from the
same populations described previously [34]. Before sample
collection, a leaf-dip bioassay [34] was conducted to confirm that
the resistance factor [LC50 (TH-R)/LC50 (TH-S)] was over 70-
fold. A total of 180 adults from both TH-S and TH-R were
collected, snap frozen, and stored as described earlier.

Total RNA Extraction and cDNA Synthesis

Total RNA was extracted with a Trizol reagent (Invitrogen,
Carlsbad, CA, USA). RNA was quantified by measuring the
absorbance at 260 nm with a Nano Vue UV/Vis spectrophotom-
eter (GE Healthcare). The purity of RNA was assessed at an
absorbance ratio of OD260/280 and OD260/230, and the
integrity was checked with 1% agarose gel electrophoresis. Then,
1 pug of RNA was used to synthesize the first-strand ¢cDNA using
the PrimeScript®RT reagent Kit (Takara Bio, Tokyo, Japan) with
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gDNA Eraser (Perfect Real Time, TaKara, Shiga, Japan)
according to the manufacturer’s protocol. The synthesized cDNA
was stored at —20°C.

Quantitative Real-time PCR analysis

Quantitative Real-time PCR (QRT-PCR) was performed on an
ABI 7500 real-time system. The cDNA of each sample represent-
ing one biological replicate was diluted to a working concentration
of 17 ng/ul for the qRT-PCR analysis. The melt temperature was
60°C and product contained between 80 and 200 base pairs
(Table 1). The 25 pl reaction system contained 1 pl of diluted
cDNA, 11.25 ul of SYBR® Green Real-time PCR Master Mix
(TIANGEN, Corp, Beijing, China), and 0.5 pl of each primer.
The cycling parameters were as follows: 95°C for 3 min followed
by 40 cycles of 95°C for 30 s, 60°C for 30 s, and 72°C for 35 s. A
3-fold serial dilution of cDNA was used to construct a standard
curve to determine the PCR efficiency that would be used to
convert the quantification cycles (Ct-values) into the relative
quantities (relative gene expressions).

Data Analysis
Expression of reference genes was evaluated with two web-
based analysis tools: geNorm and NormFinder. geNorm was used to

Reference Gene Selection for Bemisia tabaci

calculate the M stability value as the mean pairwise variation
between an individual gene and all other tested candidate genes.
The lower the M value, the more stable the reference genes. The
value of V,/V,,; indicates the pairwise variation between two
sequential normalization factors and determines the optimal
number of reference genes required for accurate normalization.
A value below 0.15 indicates that an additional reference gene will
not significantly improve normalization. Normfinder evaluates the
overall variation of the candidate reference genes under the
experimental conditions and estimates the variation between and
within groups. For each candidate gene, Nomfinder provides a
stability value that is a direct and rapid measurement of expression
variation. This stability value enables the user to estimate the
systematic error introduced when selecting a suitable reference
gene.

Results

Expression profiles of candidate reference genes

For each reference gene, a dissociation curve with a single-peak
ensured that the primer sets amplified a unique PCR product
ranging from 81 to 187 bp. The PCR efficiency was consistently
high for candidate reference genes except y-tubulin (75.3%) and

PLOS ONE | www.plosone.org

Table 1. Primers used for qRT-PCR analysis.

Gene Accession Number Primer sequences (5'to 3')" Amplicon (bp) Tm (°C)? E (%)® R

HSP20 EU934239 F-AAGAAGTCAGCGTGAAAGTCG 107 60 99.5 0.9978
R-GTACCTCCTAGTGAAAGATCGG

HSP40 EE597535 F-AGATGAGGCTCATGATGGTCAA 81 60 109.4 0.9992
R-TGAGAAGCGCATTGCATTGT

HSP70 EU934240 F-AGCACTCCGGCGTCTACG 134 60 109.6 0.9944
R-CGAACCTGGCACGGGACAC

HSP90 EU934241 F-ATCGCCAAATCTGGAACTAAAGC 135 60 100.9 0.9951
R-GTG GAGACGACTGTGACGGTG

PPIA JU470456 F-ATGTTTTGGGCTTTGGTC 148 60 96.9 0.9988
R-CGTTGCCATCTGAATGAAATAC

EF-Ta EE600682 F-TAGCCTTGTGCCAATTTCCG 110 60 103.9 0.998
R-CCTTCAGCATTACCGTCC

SDHA JU470457 F-GCGACTGATTCTTCTCCTGC 141 60 924 0.9986
R-TGGTGCCAACAGATTAGGTGC

NADH JU470455 F-ATAGTTGGCTGTAGAACCAGAGTG 96 60 935 0.9973
R-ACACGAAGGGAAGAGCACATA

y- tubulin JU470458 F-CCACAATCCATGCAAATC 117 60 753 0.9832
R-CCGAAATGGCCTCTGCTA

Myosin L EE597481 F-TTTCAGACGAGGATGTCGCA 81 60 108.0 1.0000
R-CGTCATAGATTTCGAACGCG

RPL29 EE596314 F-TCGGAAAATTACCGTGAG 144 60 101.3 0.9909
R-GAACTTGTGATCTACTCCTCTCGTG

ATPase JU470453 F-AGAGCGAGTGTTTGGGTG 138 60 98.9 0.9994
R-GACGGCGATTCGAGAAGG

185 U20401 F-CGGCTACCACATCCAAGGAA 187 60 99.5 0.9987
R-GCTGGAATTACCGCGGCT

Actin AF071908 F-TCTTCCAGCCATCCTTCTTG 174 60 95.0 0.9973
R-CGGTGATTTCCTTCTGCATT

GAPDH JU470454 F-GGACACGGAAAGCCATACCAG 166 60 77.0 0.9943
R-ACCACCGCTACCCAAAAGACC

1", F, forward primer; R, reverse primer;

“?’: Tm, Annealing temperature;

3", E, Efficiency;

“4": R?, Coefficient of determination.

doi:10.1371/journal.pone.0053006.t001
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GAPDH (77.0%) (Table 1). The raw Ct values ranged from 11.63
(189) to 31.11 (y-tubulin) with different host plants; from 12.02 (18S)
to 31.25 (HSP70) with different photoperiods; from 11.85 (189) to
30.37 (y-tubulin) with different temperatures; from 11.49 (18S) to
30.86 (HSP70) for non-viruliferous and viruliferous adults; from
12.44 (185) to 29.58 (y-tubulin) in thiamethoxam-resistant and -
susceptible adults; from 12.17 (189) to 29.58 (y-tubulin) for different
developmental stages; from 9.15 (18S) to 33.13 (y-tubulin) for
different tissues; and from 12.56 (18S) to 30.71 (y-tubulin) for B and
Q biotype adults.

Stability of candidate reference gene expression

geNorm. The geNorm program was used to calculate the
average expression stability values (M stability values) and to plot
the influence of different factors using pairwise comparisons. The
least stable genes have the highest M values and were successively
excluded. The program also indicated the minimum number of
reference genes for accurate normalization in B. flabaci by the
pairwise variation value. Values (V2/3) under 0.15 shows that no
additional genes are required for the normalization (Figure S1 and
S2).

For different hosts, reference genes with A values<0.5 are
ranked (from highest to lowest stability) in the order of PPIA+EFI-
o > HSP90 > HSP40 > RPL29 (Figure 1). For virus status (with or
without TYLCV), RPL29, HSP90, and HSP40 are the most suited
reference genes. For developmental stage, the ranking of reference
gene stability among those with M values < 0.5 i1s HSPY9O+NADH
> [8S > y-tubulin > RPL29 > EFI-o > HSP20 > HSP40 >
SDHA. For different B. tabaci tissues, HSP20, HSP40, HSP90, PPIA,
RPL29, and EFI-o are relatively stable. For whitefly biotype,
reference genes with M values < 0.5 are ranked (from highest to
lowest stability) in the order of HSP40+NADH > SDHA > HSP90
> EFI1-0 > ATPase > PPIA > y-tubulin > RPL29 > HSP2(0. Based
on data obtained with five biotic factors, the ideal reference genes
according to geNorm are RPL29, HSP40, and HSP90.

y-tubulin

Reference Gene Selection for Bemisia tabaci

For photoperiod, the M values are <0.5 for all candidate
reference genes (Figure 2). For temperature, reference genes with
M values <0.5 are ranked (from highest to lowest stability) in the
order of EFI-0+NADH > SDHA > RPL29 > PPIA > HSP10 >
ATPase > 18S > GAPDH > y-tubulin. For pesticide resistance,
reference genes with A/ values<<0.5 are ranked (from highest to
lowest stability) in the order of PPIA+—
NADH> HSP20>HSP40>HSP90> 185> EFI-0>SDHA.  Based
on data obtained from three abiotic factors, the ideal reference
genes are EFI-o, PPIA, NADH, SDHA, and HSP40.

Normfinder. Normfinder indicated that RPL29, GAPDH, and
NADH are the most stable reference genes for host plants, tissues,
biotypes, respectively (Table 2). Specifically, for developmental
stages and viruliferous/non-viruliferous B. tabaci, SDHA is the most
stable reference gene. A similar trend is observed under selected
abiotic factors, in which HSP20, HSP40, and EFI-o are ranked as
the most stable reference genes for photoperiod, temperature, and
msecticide susceptibility, respectively (Table 3).

Discussion

Because it is highly sensitive, specific, accurate, and reproduc-
ible, gqRT-PCR is, in many ways, superior to conventional
methods (northern hybridization and semi-quantitative PCR),
and has become an essential tool for gene expression analysis
[13,28,35-39]. qRT-PCR analysis, however, is influenced greatly
by the selection of reference genes [10,40-41]. The endogenous
reference genes should be stable across different experimental
treatments; otherwise, a variable reference gene can compromise
the qRT-PCR analysis by introducing artificial changes or
masking true changes in target gene expression. Some commonly
used reference genes can vary substantially in response to specific
experimental conditions [11,42-43]. In this study, we used two
Excel-based algorithms geNorm and Normfinder to evaluate the
stability of 15 candidate reference genes in B. fabaci in response to
five biotic factors (host, virus, stage, tissue, and biotype) and three
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Figure 1. Reference genes selected by geNorm under various biotic conditions. The expression stability measure (M) is the mean of the
stability values of the remaining genes. The least stable genes have the highest M values. The genes listed here are considered stable based on a
cutoff M value of less than 0.5. Each circle with a distinct color represents a different set of biotic condition. Genes located within one circle are stable
under a specific biotic condition, and genes shared with multiple circles are stable across those conditions.

doi:10.1371/journal.pone.0053006.g001
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Figure 2. Reference genes selected by geNorm under various abiotic conditions. The expression stability measure (M) is the mean of the
stability values of the remaining genes. The least stable genes have the highest M values. The genes listed here are considered stable based on a
cutoff M value of less than 0.5. Each circle with a distinct color represents a different set of biotic condition. Genes located within one circle are stable
under a specific abiotic condition, and genes shared with multiple circles are stable across those conditions.
doi:10.1371/journal.pone.0053006.g002

abiotic factors (photoperiod, temperature, and insecticide suscep- because their expression is highly variable under certain condi-
tibility). tions. Our results indicate that the stability of reference gene

A major conclusion of this study is that many of the candidate expression must be validated for each experimental condition
genes in B. tabaci should not be used as the default reference genes under investigation. The ranking of these reference genes differs

Table 2. Ranking of candidate reference genes in response to biotic factors.

Rank Host TYLCV Developmental stages Tissue Biotype

Gene sv' Gene sV Gene sV Gene sV Gene sV

1 RPL29 0.197 SDHA 0.207 SDHA 0.212 GAPDH 0.116 NADH 0.150

2 HSP90 0318 RPL29 0.394 HSP90 0.332 EF-1a 0.203 HSP40 0.172

3 SDHA 0.351 HSP90 0.394 EF-Ta 0.359 RPL29 0.295 HSP90 0.178

4 NADH 0418 y-tubulin 0.457 RPL29 0.378 HSP70 0.323 RPL29 0.263

5 EF-Ta 0.457 18s 0.502 NADH 0.393 ATPase 0.340 EF-Ta 0.344

6 PPIA 0.491 HSP40 0.592 HSP20 0.525 SDHA 0.363 ATPase 0.425

7 ATPase 0.568 PPIA 0.593 HSP40 0.599 HSP20 0.559 HSP20 0.489

8 HSP40 0.604 NADH 0.633 18s 0.605 HSP40 0.675 y-tubulin 0.536

9 y-tubulin 0.638 HSP20 0.672 ATPase 0.605 HSP90 0.807 PPIA 0.585

10 GAPDH 0.672 EF-Ta 0.797 GAPDH 0.706 PPIA 0.858 Myosin L 0.812

1" HSP20 0.681 ATPase 0.875 PPIA 0.759 Actin 0.979 18s 0.841

12 185 0.710 HSP70 1.221 Myosin L 0.901 NADH 1.244 Actin 0.945

13 Actin 1.186 Actin 1.233 y-tubulin 0.936 18s 1318 GAPDH 1.125

14 Myosin L 1.216 Myosin L 1310 Actin 1.101 Myosin L 1.512 SDHA 1.455

15 HSP70 1.240 GAPDH 1.587 HSP70 1.252 y-tubulin 2121 HSP70 1.563

“"; Stability Value was evaluated by Normfinder.

doi:10.1371/journal.pone.0053006.t002
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Table 4. Recommended reference genes for various
experimental conditions.

Table 3. Ranking of candidate reference genes in response to
abiotic factors.
Insecticide

Rank Photoperiod Temperature Susceptibility’

Gene sv? Gene sV Gene sV
1 HSP90 0.069 HSP40 0.263 EF-To. 0.162
2 HSP20 0.093 HSP90 0.353 ATPase 0.269
3 ATPase 0.162 EF-To 0.375 SDHA 0.279
4 HSP40 0.181 PPIA 0.425 HSP90 0.335
5 RPL29 0.244 NADH 0.429 PPIA 0.364
6 HSP70 0.262 SDHA 0.451 HSP20 0.447
7 EF-To 0.292 RPL29 0.473 RPL29 0.453
8 SDHA 0.293 y-tubulin 0.569 18s 0.502
9 NADH 0.306 18s 0.587 Actin 0.514
10 y-tubulin 0.341 ATPase 0.589 NADH 0.590
11 PPIA 0.379 GAPDH 0.684 HSP40 0.607
12 Actin 0.385 Myosin L~ 0.917 y-tubulin - 0.680
13 GAPDH 0.463 Actin 1.306 HSP70 0.767
14 Myosin L 0.605 HSP20 1.804 GAPDH 1.461
15 18s 0.893 HSP70 3.981 Myosin L 1.484
1", Thiamethoxam-resistant and -susceptible whiteflies.
2 Stability Value was evaluated by Normfinder.
doi:10.1371/journal.pone.0053006.t003

somewhat for geNorm and Normfinder, because these programs have
different algorithms and different sensitivities toward co-regulated
reference genes. Despite the discrepancies, both programs
identified a similar set of reference genes suited for the respective
experimental conditions.

The ideal reference genes in response to biotic factors were
RPL29, HSP40, and HSP90 according to geNorm and RPL29 based
on Nomfinder, respectively. Combing these results, RPL29 is a
consensus reference gene that is reliable across a range of biotic
conditions (T'able 4), and this is consistent with the performance of
the other ribosomal protein 132, a widely used single normaliser in
gene expression studies [11,43-47]. Despite subtle ranking
differences between geNorm and Normfinder, the ideal reference
genes in response to abiotic factors were determined to be EFI-o,
PPIA, NADH, SDHA, and HSP40 (Table 4). EF-1o has rarely been
used as a normaliser in the past but has recently been selected as a
suitable reference gene in salmon [48], humans [47,49], Orthop-
tera [46,50], and Hymenoptera [43]. PPIA was considered
sufficiently stable for normalization in this study, which is
consistent with a previous report in human cervical tissues [47].

Another conclusion of our study is that some genes that have been
consistently used for the normalization study showed high levels of
variation in response to certain treatments. Previously, 78S has been
considered an ideal reference gene because the expression level of
rRNA appears to vary considerably less than mRNA [51]. In this
study, the raw Ct values of 78S ranged from 9.92 to 15.94
depending on insect body region and host plants, suggesting that the
expression of /85 can be highly variable and consequently, it could
not be used as a reference gene under certain experimental
conditions. This result is consistent with some earlier studies on 78S
RNA[11,42]. Another commonly used reference gene, actin, encodes
a major component of the protein scaffold that supports the cell and
determines its shape. The expression of actin is moderately abundant
in most cell types, and actin has been used extensively as a reference

PLOS ONE | www.plosone.org

Experimental Conditions Recommended Reference Genes

Biotic Factors

Host HSP90 RPL29 EF-Ta

TYLCV HSP90 RPL29

Developmental stages NADH HSP90 RPL29

Tissue RPL29 EF-Ta

Biotype NADH HSP90 EF-Ta
Abiotic Factors

Photoperiod HSP40 HSP90 PPIA

Temperature EF-1a NADH SDHA

Thiamethoxam PPIA EF-Ta HSP20

susceptibility

doi:10.1371/journal.pone.0053006.t004

gene in B. tabaci and in many other insects including the desert locust
[46], European honey bee [45], and two species of Collembola [52].
In our study actin was not stable among different tissues (body
regions) and hosts; disqualifying actin as a suitable reference gene
under these conditions.

In recent years, more researchers have adopted a multiple
reference gene approach to analyze gene expression [38,53]. Our
results demonstrated that the expression of several reference genes
from B. tabaci were consistently stable across selected experimental
conditions. However, the best-suited reference genes can be
different in response to diverse biotic and abiotic factors (Table 4).
Our finding is the very first step toward establishing a standardized
qRT-PCR procedure following the MIQE (Minimal Information
required for Publication of Quantitative Real-Time PCR)
guideline in an agriculturally important insect pest. More
importantly, this study provides a solid foundation for future
RNAi-based functional study in B. tabact.

Supporting Information

Figure S1 Optimal number of reference genes required
for accurate normalization of gene expression under
biotic conditions. Based on geNorm analysis, average pairwise
variations are calculated between the normalization factors NF,
and NF,,; to indicate whether inclusion of an extra reference gene
increases the stability of the normalization factor. Values<<0.15
indicate that additional genes are not required for the normali-
zation of gene expression.
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abiotic conditions. Based on geNorm analysis, average pairwise
variations are calculated between the normalization factors NF,
and NF,,; to indicate whether inclusion of an extra reference gene
adds to the stability of the normalization factor. Values<<0.15
indicate that additional genes are not required for the normali-
zation of gene expression.
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