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Photon Shot Noise Limits on Optical Detection of Neuronal Spikes and
Estimation of Spike Timing
Brian A. Wilt,† James E. Fitzgerald,† and Mark J. Schnitzer†‡*
†James H. Clark Center and ‡Howard Hughes Medical Institute, CNC Program, Stanford University, Stanford, California
ABSTRACT Optical approaches for tracking neural dynamics are of widespread interest, but a theoretical framework quanti-
fying the physical limits of these techniques has been lacking. We formulate such a framework by using signal detection and
estimation theory to obtain physical bounds on the detection of neural spikes and the estimation of their occurrence times as
set by photon counting statistics (shot noise). These bounds are succinctly expressed via a discriminability index that depends
on the kinetics of the optical indicator and the relative fluxes of signal and background photons. This approach facilitates quan-
titative evaluations of different indicators, detector technologies, and data analyses. Our treatment also provides optimal filtering
techniques for optical detection of spikes. We compare various types of Ca2þ indicators and show that background photons are
a chief impediment to voltage sensing. Thus, voltage indicators that change color in response to membrane depolarization may
offer a key advantage over those that change intensity. We also examine fluorescence resonance energy transfer indicators and
identify the regimes in which the widely used ratiometric analysis of signals is substantially suboptimal. Overall, by showing how
different optical factors interact to affect signal quality, our treatment offers a valuable guide to experimental design and provides
measures of confidence to assess optically extracted traces of neural activity.
INTRODUCTION
Neuroscientists are keenly interested in the use of fluores-
cent Ca2þ indicators for optical studies that track concur-
rently the dynamics of large populations of individual
neurons (1). Such studies rely on neurons’ voltage-gated
Ca2þ channels, and detection of single action potentials is
sometimes feasible (2–7). Yet, all optical techniques for
detecting neural spikes are fundamentally limited by the
statistics of photon emission and detection. The photomulti-
plier tubes commonly used in laser-scanning microscopy
and advanced camera technologies that reduce electronic
noise regularly permit imaging studies that approach the
photon shot noise limit. In the live brain, this limit is often
unattainable due to other sources of signal corruption,
such as brain motion, but the shot noise limit still sets
a performance bound on spike detection. Thus, it is crucial
to understand the physical limits of optical methods to opti-
mize experimental design, compare and improve imaging
techniques, develop data analysis methods, and assess the
reliability of empirical results (1,8).

Several studies have explored the signal-to-noise ratio
(SNR) of fluorescent neural activity indicators (8–10), but
the quantitative links between neural spike detection and
optical properties of the indicator and instrumentation
remain poorly defined. Metrics used to evaluate indicators
and experiments vary widely (11–16), from single optical
parameters (11,13) to heuristic combinations of indicator
brightness, signal amplitude, and signal duration (12,14,16).
These metrics do not capture the relationships among the
indicator, microscope performance, and the statistics of
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spike detection. Few publications describe spike detection
as the statistical comparison of signal amplitudes to fluctu-
ations of the background photon flux (9,14,16,17) or
consider the accompanying issues regarding spike timing
estimation (16,18). Thus, basic but important questions
regarding how many photons are needed to reliably detect
spikes and estimate their timing have remained unanswered.
Filling this gap in the theoretical literature will resolve
issues central to experimental work, such as how much
improvement is needed to render optical voltage indicators
capable of reporting single spikes in live mammalian brains.

Here we establish optical limits on the detection of neural
spikes and estimation of spike timing using the statistical
tools of signal detection theory and estimation theory. We
use signal detection theory to frame spike identification as
a binary classification problem and quantify the ability to
distinguish action potentials from background and noise.
Signal detection theory sets the optimal performance on
this classification task and yields not only the optical detec-
tion limits but also optimal filtering methods that attain
these limits. To study the inference of spike timing we
use estimation theory, which provides statistical tools for
describing the accuracy of quantitative measurements. The
Chapman-Robbins lower bound from this theory (19,20)
sets the minimum (error) variance of any unbiased means
of estimating a parameter from noisy data, which we apply
to the estimation of spike times.

When shot-noise-limited data are available, our treatment
providesmetrics to assess if algorithms to extract spikes from
optical data are optimal. We illustrate this for dual-color
studies using fluorescence resonant energy transfer (FRET)
indicators. Most spike detection routines examine the ratio
of the two color channels (21,22). However, one channel
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of low signal quality can corrupt the ratiometric analysis
despite a high quality second channel. Our theory identifies
the regimes in which ratiometric analysis approaches opti-
mality and provides superior methods when it does not.
RESULTS

Statistical analysis of neuronal spike detection

We first quantify how identification of neural spikes in
optical recordings is limited by photon shot noise. Ourmodel
for a spike’s optical waveform is based on fluorescent Ca2þ

indicators, but our framework also applies to voltage indica-
tors. The typical Ca2þ transient in response to an action
potential is a rapid rise in [Ca2þ] followed by an approxi-
mately exponential decay back to baseline (23). The decay
time reflects the cell’s Ca2þ extrusion and buffering
processes as well as Ca2þ unbinding from the indicator. To
simplify our description of the indicator, we approximate
intracellular [Ca2þ] and the fluorescence signal as being
linearly related. This ignores indicator saturation and is
a good approximation when the intracellular [Ca2þ] is
much less than the indicator’s Ca2þ binding constant. This
approach is commonly used for neurons with temporally
sparse patterns of spiking (24). We further assume fluores-
cence signals from distinct spikes add linearly and do not
depend on the cell’s spiking history or absolute [Ca2þ].
Neither all neuron types nor all Ca2þ indicators obey these
assumptions (8).

We express the mean fluorescence signal, S(t), after
a spike at t ¼ 0 as

SðtÞ ¼ F0 þ Ae�t=t qðtÞ: (1)

F0 represents a time-independent background fluorescence
rate and is the sum of: the rate of autofluorescence from

unlabeled cellular structures; the rate of fluorescence from
improperly targeted indicator molecules such as those in
the extracellular space; and the rate of fluorescence from
properly targeted indicators when the neuron is at its resting
[Ca2þ]. Thus, F0 specifies the rate of detected photons in the
absence of a neural spike. A and t represent the signal wave-
form’s amplitude and decay time constant, respectively. The
unit step function q(t) equals zero if its argument is negative
and is one otherwise.

We further assume the detected photon signals are digi-
tized at sampling rate n, so each time bin has duration 1/n.
When there is no action potential, the mean background
photon flux, B, is the integral of the first term in Eq. 1
over one time bin (shown below for the nth time bin):

B ¼
Zn=n

ðn�1Þ=n

F0 dt ¼ F0

n
: (2)

B is the mean of a Poisson process that combines fluores-
cence excitation, emission, and detection. When there is
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a spike, the mean photon flux of the signal plus background,
Sn, is the time integral of both terms in Eq. 1:

Sn ¼
Zn=n

ðn�1Þ=n

SðtÞdt ¼ F0

n
þ At

�
e1=ðtnÞ � 1

�
e�n=ðtnÞ: (3)

Sn is also the mean of a Poisson process, which unlike B

depends on n because the signal is time-varying.

We now consider how to use N successive samples from
the detector, F ¼ (F1, F2, ., FN), to detect spikes. In the
shot-noise-limited regime, F is distributed according to
Poisson statistics. We use this distribution to express two
mutually exclusive hypotheses regarding the occurrence of
a spike: the null hypothesis, H(0), which posits the absence
of a spike; and the alternative, H(1), which posits that a spike
occurred at time zero. Given a specific set of photon
measurements, F ¼ f, we compute the probability of attain-
ing f under each hypothesis by multiplying the independent
detection probabilities for each time bin,

pF
�
fjHð0Þ� ¼

YN
n¼ 1

Poisson
�
B
� ¼

YN
n¼ 1

e�BB
fn=fn! (4)

� ð1Þ� YN � � YN �Sn f n
pF fjH ¼
n¼ 1

Poisson Sn ¼
n¼ 1

e Sn =fn! : (5)

We now use signal detection theory to optimally classify f as
(0) (1)
an instantiation of either H or H . This rests on interpret-

ing pF(fjH(i)) as the likelihood of hypothesis H(i) being true
given observation f. Dividing Eq. 5 by Eq. 4 and taking the
natural logarithm, the log-likelihood ratio is

LðfÞ ¼ log
pF
�
fjHð1Þ�

pFðfjHð0ÞÞ ¼
XN
n¼ 1

fn log
Sn

B
�
XN
n¼ 1

�
Sn � B

�
: (6)

Intuitively, if L(f) is greater than zero, it is more likely
a spike occurred; if L(f) is less than zero, it is more likely
there was no spike. Formally, one uses a decision rule,

dðfÞ ¼
�
Hð1Þ if LðfÞ > log C
Hð0Þ if LðfÞ < log C

; (7)

to classify whether f is an instantiation of a spike or not. The
cutoff between the two hypotheses, log C, is set by choosing
a cost function, Cij, which quantifies both the penalties for
incorrect choices of H(i) when H(j) is true (for i s j) and
the benefits of correct choices (i ¼ j). For example, if one
wanted to avoid false positives but could tolerate false nega-
tives, one would choose C01 < C10. One then minimizes the
mean expected cost given the prior odds of each hypothesis.
The cutoff between the two hypotheses that results is

log C ¼ log

�
p0

p1

ðC10 � C00Þ
ðC01 � C11Þ

�
; (8)
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where pi is the prior probability of hypothesis H(i) (25).
Further, by using the log-likelihood ratio to classify f, we
can assess the statistical significance of each assignment
(i.e., we can compute a p-value).

To examine which measurements are classified as spikes,
we now make two approximations to Eq. 6:

First, we assume the total number of detected photons is
sufficiently large to approximate the probability distribution
of the log-likelihood ratio as a Gaussian function. This is
a standard approximation to Poisson counting statistics.
Importantly, the Gaussian distribution differs between the
set of measurements in which there was a spike and the
set in which there was not.

Second, we assume the background, F0, is much greater
than the fluorescence increment during a spike, A=F0 �
1. This is presently true for nearly all voltage indicators
and most Ca2þ indicators; moreover, as we show later,
when this approximation is invalid, spike detection becomes
straightforward from the perspective of signal detection
theory. With A=F0 � 1, the dominant contribution to the
shot noise comes from the background photon flux, so the
standard deviation of L(f ) is independent of whether or
not there is a spike, s

ð1Þ
L zs

ð0Þ
L zsL, where s

ðiÞ
L denotes the

standard deviation of the distribution of the log-likelihood
ratio about its mean, m

ðiÞ
L , under hypothesis H(i) (see Section

S1 in the Supporting Material).
A

B C

FIGURE 1 Signal detection theory. (A) Distribution of log-likelihood ratios, in

pL(fjH(0)), for d 0 ¼ 1 and d 0 ¼ 3 and two different detection thresholds. (B and C

between the true positive rate versus the false positive rate for different values

Gaussians of equal variance, d 0 completely characterizes the ROC curve. For

(C) The area under the ROC curve is a metric of spike detectability that is indepe

ability of an ideal observer correctly identifying the spike in a choice between

d 0 depends on the transient amplitude, DF/F, and F0t, the mean number of ba

plotted for d 0 ¼ 1–5, 10, 15, 20, and 25. Discriminability improves for increase
These two approximations allow us to introduce a dis-
criminability index, d 0 ¼ ðmð1Þ

L � m
ð0Þ
L Þ=sL, that is often

used in signal detection theory to describe systems with
Gaussian fluctuations (25) (Fig. 1 A).

Varying the decision cutoff yields a curve known as
the receiver operating characteristic (ROC) (25), which
describes the tradeoff between detection sensitivity and
susceptibility to noise (Fig. 1 B). The area under the ROC
curve is a measure of detection fidelity that is independent
of the cutoff (Fig. 1 C): this area equals the probability of
an ideal observer correctly identifying the spike in a choice
between a pair of measurements, one of which contains a
spike and one of which does not (25). Importantly, d 0 indexes
the receiver operating characteristic for spike detection (25)
(Fig. 1, B and C, and see Section S2 in the Supporting
Material). If the sampling rate is sufficiently high
that tn > 1, then

d 0z
DF

F

ffiffiffiffiffiffiffi
F0t

2

r
; (9)

whereDF/Fz A=F0 is the amplitude of the optical transient
(Fig. 1 D, and see Section S1 in the Supporting Material).
The value of d 0 provides a simple metric of the difficulty
of spike detection. Shot noise fluctuations in the background
photon flux influence d 0 via the dependence of DF/F on F0.
Note that in our treatment DF/F is not an intrinsic property
D

cases with a spike (green curve), pL(fjH(1)), and without a spike (red curve),

) The receiver operating characteristic (ROC) curve describes the trade off

of the detection threshold. (B) In the approximation these distributions are

d 0 R 5, the ROC curve is visually indistinguishable from the panel axes.

ndent of the user’s choice of detection threshold. This area equals the prob-

a pair of instantiations of each hypothesis. (D) Contour plot showing how

ckground photons collected over an interval of t in duration. Contours are

d F0 at fixed DF/F, due to the rise in signal photons.
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of the indicator and the neuron’s resting [Ca2þ] but also
depends on tissue autofluorescence and indicator labeling
patterns. Any means of reducing background labeling thus
directly benefits spike discriminability.

We verified Eq. 9 by simulating the detection of spikes in
isolation (Fig. 2 A) and within spike trains (Fig. 2 B). We
calculated the detection rate, PD , and the false positive
A

B

FIGURE 2 Simulations of spike detection. (A) Probability distributions of log

presence (green) and absence (red) of a neural spike, based on simulations of n

(Solid lines) Theoretically predicted Gaussian distributions. (Histograms) measu

two are due to the use of leading-order approximations in the theory and can be

Material). (B) Simulated optical traces and detected spikes for several values of

the mean photon count. (Green spikes) The true spike train. (Orange spikes) cor

errors in frame timing. (Gray spikes) False positives. (Gray trace) For a moving

there is (H(1)) and is not (H(0)) a spike. (Dashed black line) Spike detection thres

8). (Purple) Threshold crossings. Spikes were detected using an iterative, greedy

maximum in each iteration. At low d 0, few spikes are detected with this choice o

n ¼ 20 Hz, spike rate l¼ 0.5 Hz. The cutoff is given by log C¼ log ((n/l)� 1).

and 0.999, respectively, whereas the expected number of false positives is 0.0092

positive probability, PF, as a function of d
0 calculated using Eqs. S17 and S18 in t

low values of d 0, the false positive probability rises with d 0, because at d 0 ¼ 0 th

d 0 values nearly all spikes are detected, and the false positive rate nearly vanish

Biophysical Journal 104(1) 51–62
rate, PF, as a function of d 0 (see Section S2 in the
Supporting Material) and used the equal-cost condition
(C10 ¼ C01, C00 ¼ C11) to set the threshold for spike detec-
tion (Fig. 2 C). Although straightforward, this condition has
some interesting consequences. For example, for d 0 ¼ 1 we
did not detect any spikes. Because of the low a priori prob-
ability of a time bin containing a spike, any drop in detection
C

-likelihood ratios, Eq. 6, taken over all possible photon measurements in the

eural spiking with shot-noise-limited optical detection at d 0 ¼ 1 or d 0 ¼ 3.

red distributions from the simulation. The slight disagreements between the

remedied by including higher-order terms (see Section S1 in the Supporting

d 0. (Blue lines) Optical traces shown in units of the standard deviation from

rectly estimated spikes. (Spikes in non orange hues) Spikes estimated with

window of nine time bins, the log-likelihood ratio for the hypotheses that

hold, log C, given equal costs for false positives and false negatives (see Eq.

algorithm that assigned a spike to the instance of the log-likelihood ratio’s

f threshold (see panel C). Simulation parameters: DF/F ¼ 0.05, t ¼ 0.15 s,

For d 0 ¼ 1, 3, 5, and 7, the probability of detection is 7.8� 10�4, 0.61, 0.96,

, 1.9, 0.36, and 0.017, respectively. (C) Detection probability, PD, and false

he Supporting Material and the same equal-cost condition as in panel B. For

ere are very few spikes detected and thus very few false positives. At large

es.
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threshold to improve sensitivity would be more than offset
by a rise in false positives.

To estimate the spike trains in Fig. 2 B we used an itera-
tive approach. We first initialized the estimated spike train
with zero spikes. For each time point in the entire trace,
we then evaluated the log-likelihood ratio for the occur-
rence of a spike. If this ratio ever exceeded log C, we added
a spike to the estimated train at the time for which the log-
likelihood ratio was greatest. We then iterated this pro-
cess, one spike at a time, by calculating the log-likelihood
ratio between the estimated spike train (the null hypothesis
that no more spikes are present) and the estimated train
plus one additional spike. As in the first iteration, we con-
sidered the candidate additional spike at the time when the
log-likelihood ratio was greatest. The algorithm stopped
as soon as the log-likelihood ratio failed to exceed log C
across the entire trace. In the terminology of optimization
theory, this algorithm is called ‘‘greedy’’ because it makes
the locally optimal decision at each iteration (26). This ap-
proach is simple and fast, but methods that can estimate
globally optimal spike trains would clearly be superior (26).

Equation 6 defines a linear filter that can be used to esti-
mate spike trains from optical data when spiking patterns
are temporally sparse. In this regime, spike train estimation
is well approximated by the detection of a series of isolated
spikes (27). Thus, given the waveform of Eq. 1 subject to
Poisson noise, Eq. 6 provides the optimal filter for spike
train estimation. When the background photon flux is
much greater than the signal flux, both Eq. 6 and the noted
A

C

B

Wiener filter reduce to a scaled version of what is termed
a matched filter in the signal detection literature (28).
Robustness of the discriminability index

Having characterized spike detection using d 0, we studied
this metric’s robustness to deviations from the simplest
model. We first considered spikes that initiate incommensu-
rate with the start of a time bin, as occurs in most ex-
periments. The value of d 0 decreased by <14% across all
sampling rates and by <5% at sampling rates n > 2/t (see
Section S3 in the Supporting Material). We also explored
scenarios in which the neuron is examined during only
a fraction of the data acquisition time bin. This arises in
laser-scanning microscopy, as a single cell usually occupies
a subset of a scanned line or frame. This can often be
modeled by scaling the emission rates A and F0 by the frac-
tion of the time bin that the laser dwells on the cell (see
Section S3 in the Supporting Material). We further studied
how parameter misestimation affects spike detection. Mis-
estimating t by up to 50% only has an ~11% effect on d 0 (see
Section S4 in the Supporting Material). Another study has
also reported minimal effects from misestimating t (24).

We also explored the low photon limit, for which the deri-
vation of d 0 is invalid (Fig. 3). We simulated optical traces of
spikes and then detected them using our greedy approach to
spike detection. Though the log-likelihood ratios were not
Gaussian-distributed, the area under the ROC curve was still
well predicted by the Gaussian approximation (Fig. 3, A and
FIGURE 3 Spike detection with modest photon

counts. When the number of photons collected

from signal and background sources is insufficient

to justify Gaussian approximations, the treatment

involving d 0 is not guaranteed to be valid. To ex-

plore this regime, we randomly sampled the log-

likelihood ratio distributions of Eq. 6, computed

the ROC curves, and calculated the underlying

areas. The area under the ROC curve is plotted as

a joint function of background and signal photons,

(A), or of background photons and DF/F (B).

(Dashed lines) Areas under ROC curves deter-

mined using the d 0 calculation, demonstrating the

robustness of the calculation result despite the

invalidity of the Gaussian approximation. The

contours in both plots are spaced in 0.05 increments

of area under the ROC curve. (Note that unlike in

Fig. 1 D, the x-axes are on a linear scale.) As ex-

pected, the agreement between the direct calcula-

tions and the d 0 approximation degrades as the

condition A/F0 ~ DF/F � 1 is relaxed. This leads

to a maximum disagreement of ~0.025 in the area

under the ROC curve. (C) Simulated trace plotted

using the same conventions as in Fig. 2. Simulation

parameters: DF/F ¼ 0.75, t ¼ 0.15 s, n ¼ 20 Hz,

spike rate l ¼ 0.5 Hz. Probability of detection is

0.96 and the expected number of false positives is

0.36.
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B). Further, some studies with Ca2þ indicators may achieve
signal amplitudes much greater than the background photon
flux. These cases do not fit into the d 0 framework, which
requires A=F0 �1. However, the simulations showed that
if the signal amplitude is comparable to or greater than
background fluorescence, the area under the ROC curve
can attain values >0.99 (e.g., Fig. 3).

We also examined the issue that real indicators do not
respond instantly to an action potential and have a finite
on-time, ton. This reduces the signal amplitude and
broadens its waveform (see Fig. S1, A and B, in the Support-
ing Material). For Ca2þ indicators, the on-time is typically
brisker than the decay, ton /t < 0.1, because the former is
usually limited by Ca2þ binding to the indicator but the
latter is limited by Ca2þ buffering, extrusion, and unbinding
from the indicator (23). In this case, d 0 is reduced by at most
~10% (see Fig. S1 B). For voltage indicators the on- and off-
times can be similar, necessitating a more careful treatment
(see Section S5 in the Supporting Material).
Spike detection with FRET indicators

Most studies that use FRET indicators analyze the ratio of
the two emission channels. This helps remove correlated
noise, such as from motion artifacts or illumination fluctua-
tions (21). But with these factors increasingly under exper-
imental control, nonratiometric analyses may yield spike
trains of higher fidelity (29).

We assume both channels are shot-noise-limited and obey
Eq. 1 but with different signal amplitudes and F0 values.
Both channels share the same t, reflecting the time course
by which a Ca2þ transient alters the indicator’s physical
conformation and thus the FRET efficiency. We derive the
noise covariance between the two channels to be zero in
Section S6 in the Supporting Material. From these starting
points, we calculated the discriminability of the log-likeli-
hood ratio for a ratiometric analysis (d 0

V) and for a direct
analysis that treats the two channels separately (d 0

W). A
Gaussian approximation to the ratio of the two Poisson-
distributed channels allowed us to determine d 0

V (see Section
S7 in the Supporting Material). We found d 0

W by adding the
d 0 for the two channels in quadrature.

This comparison revealed that although a ratiometric
analysis cannot outperform the direct analysis, in many situ-
ations a ratiometric analysis is adequate. However, asymme-
tries between the two channels, such as different collection
efficiencies or donor and acceptor fluors of different bright-
ness, exacerbate the deficits of ratiometric analyses (Fig. 4,
A and B). We verified this using simulated traces (Fig. 4 C).
Notably, our analysis reveals the ratiometric approach attains
the optimumdiscriminability if the two channels havematch-
ing signal amplitudes, irrespective of the background photon
fluxes (see Section S7 in the Supporting Material). There is
also a regime in which it is better to discard a channel
completely than to use a ratiometric analysis.
Biophysical Journal 104(1) 51–62
Our framework reveals the expected performance de-
crease associated with ratiometric analysis. For those strug-
gling in the regimes highlighted above, a direct approach
may facilitate extraction of higher quality spike trains. In
particular, one can process each channel individually using
Eq. 6 and sum the log-likelihood ratios from each channel.
We did this to compare the traces for the direct approach to
those based on a ratiometric analysis, and the superiority of
the direct approach is apparent in Fig. 4 C.
Spike time estimation

For many neurons, spike times may encode information
such as in the retina (30), hippocampus (31–33), visual
cortex (34), and auditory system (35–37). Thus, studies of
neural coding often benefit from precise determinations of
spike timing.

We use estimation theory to compute a lower bound on
the (error) variance of an unbiased estimate of a spike’s
occurrence time, t0, based on properties of the optical indi-
cator and instrumentation. We use the Chapman-Robbins
lower bound (19,20) to describe the optimal performance
of any unbiased estimator of the spike time. Unbiased esti-
mators are those that, on average, yield the true value.
Although biased estimators may sometimes be preferable,
we do not consider them here. Some readers may be familiar
with the Cramer-Rao lower bound (19). The Chapman-Rob-
bins bound is as small or smaller than the Cramer-Rao
bound when they both exist (19,20) and is applicable to
a wider class of models including the discretized measure-
ments considered here.

We model the mean photon flux of the signal plus back-
ground for a spike at time t0 as

S
ðt0Þ
n ¼

8>>><
>>>:

F0=n ; n % t0n

F0=nþ At
�
1� eðt0n�Qt0nSÞ=ðtnÞ� ; n ¼ Qt0nS

F0=nþ At
�
e1=ðtnÞ � 1

�
e�ðn=n�t0Þ=t ; n > Qt0nS

:

(10)

Here QxS denotes the smallest integer not less than x and
identifies the first frame containing signal photons. The

Chapman-Robbins lower bound assures the variance of the
estimated spike time, st̂0

2
, satisfies

s2
t̂0
Rmax

D

1

EfJjt0g
; (11)

1
��

p ðf; t þ DÞ�2 �

J ¼ Jðt0;DÞ ¼

D2

F 0

pFðf; t0Þ �1 ; (12)

where bt0 denotes the estimated spike time, E is the expecta-
tion operator over the distribution of F, and maxD represents
the maximization over the dummy variable D. We restrict D
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to a few t, because spikes found beyond the duration of the
signal transient are better interpreted as false positives than
mistimed spikes. Similarly to Eqs. 4 and 5, the probability of
a set of measurements F ¼ f is

pFðf; t0Þ¼
YN
n¼ 1

Poisson
	
S
ðt0Þ
n



¼

YN
n¼ 1

e�S
ðt0Þ
n

	
S
ðt0Þ
n


fn
=fn! : (13)

For d 0 between 2 and 10, t between 0.15 and 2 s, and
n between 8 and 40 Hz, the Chapman-Robbins lower bound
varies by two orders of magnitude. Contour plots of this
lower bound are shown in Fig. 5 A–C, for fixed values of
t, n, or d 0. Even experiments with high discriminability
and sampling rates can suffer from poor spike timing.
Importantly, the precision of spike time estimation can be
poorer or finer than the time bin 1/n and depends most
sharply on d 0 and t. Super-resolution of spike times —
i.e., timing of spike occurrences to better than the 2/n
resolution suggested by the Nyquist sampling criterion —
may be possible even when spike discriminability is low
(Fig. 5, A–C). Intuitively, such super-resolution may be
attainable by use of the prior knowledge about the shape
of the spike’s waveform (Eq. 1) for the estimation of its
timing. However, estimation theory does not guarantee the
existence of an estimator attaining the Chapman-Robbins
lower bound.

Using an exhaustive likelihood maximization routine, we
estimated the timing of simulated spikes across a range of
d 0 and t values. The estimated spike times were approxi-
mately distributed in a Laplace distribution centered on
the true spike time,

p
�̂
t0
��t0� ¼ e�j t̂0�t0j=b

ð2bÞ :

To determine the errors in estimated spike times, we removed
the contributions to thevariance from the uniformbackground

of the false positives and then performed a curve to fit a
Laplace distribution (Fig. 5, D and E). Although the spike
time estimates obeyed Eq. 11, for longer transients and lower
d 0 values exhaustive likelihood maximization was unable to
attain the Chapman-Robbins lower bound. The difficulty or
impossibility of finding an estimator that attains this bound
implies it should perhaps be considered the best-case for the
estimationvariance. Still, theChapman-Robbins lower bound
provides useful limits on the statistical confidence for spike
times. When estimating the time interval between two spikes,
the minimum possible variance is the sum of the minimum
variances associated with each spike.

To improve spike timing resolution, researchers are
pushing optical microscopy to higher sampling rates, for
example by using acoustooptic laser-scanning methods
(15,38–40). To examine the efficacy of such strategies, we
tested how rapid sampling improves spike timing resolution.
To take an example, the theoretically calculated Chapman-
Robbins lower bound is 20.7 ms for d 0 ¼ 5, t ¼ 0.15 s, and
n ¼ 20 Hz. Increasing the sampling rate to n ¼ 2000 Hz,
which also slightly increased d 0, improved the lower bound
to 2.8 ms. As above, the simulations did not attain the
Chapman-Robbins lower bound and revealed only modest
improvement in timing resolution from 19.9 5 1.7 ms to
16.0 5 1.3 ms at the faster sampling rate. However, more
substantial gains in spike timing resolution are attainable
using random-access laser-scanning methods to increase
the laser dwell time per cell and hence d 0 (see Section S3
in the Supporting Material) (38,39).
DISCUSSION

Microscopists are familiar with how the numerical aperture,
signal intensity, field of view, integration time, and back-
ground labeling affect photon counts, but knowledge of
how photon detection relates to spike detectability and
timing estimation has been missing. The metric of discrim-
inability, d 0, enables a quantitative treatment of these issues.
Our derivation of d 0 is valid when background photon
counts are larger than signal amplitudes and is consistent
with the SNR heuristic proposed but not derived in Yasuda
et al. (10). By relating the photon collection capacity to the
parameters governing d 0, experimentalists can compare
specific instruments, fluorescent indicators, or experimental
configurations for studies of neural spiking. Our framework
quantifies how methods that improve fluorescence excita-
tion (41,42) or detection (43) impact spike detection and
timing estimation, even though the physical principles un-
derlying these methods vary considerably.

Researchers use a variety of computational methods
to extract neural spikes from optical traces (5,16–
18,24,44,45). Provided the data are shot-noise-limited and
that our model of [Ca2þ]-related fluorescence and its noise
fluctuations remains valid, our bounds on detection perfor-
mance are applicable. However, our treatment assumes
signals from individual cells have already been isolated
from the raw data. Extracting individual cells’ dynamics
from within raw movie data can often be challenging in
its own right (7). Some cell sorting methods produce
dynamical traces that are weighted sums of the signals
from different pixels (7), and these traces will generally
not have Poisson-distributed noise fluctuations. Further,
poor optical signals may limit the sorting process, causing
an incorrect assignment of photons to cells or failure to
remove optical crosstalk between cells. Such factors could
prevent subsequent spike detection from achieving the limit
expressed via d 0.

When estimating trains of temporally sparse spikes, we
used a filtering approach based on log-likelihood ratios,
which has several advantages. Equation 6 follows directly
from Eqs. 1–5 and does not require further approximations
regarding the nature of the signal. As Eq. 6 does not assume
Gaussian noise, it applies even in the low background limit
in which use of d 0 is inappropriate. Equation 6 readily
Biophysical Journal 104(1) 51–62
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FIGURE 4 Spike detection using FRET indicators. In the shot noise limit, ratiometric treatment of FRET indicators generally makes suboptimal use of the

photon statistics for spike detection (A and B). (A) The decline in spike detectability is plotted as a joint function of the ratios of signal amplitude A(1)/A(2) and

the background brightness F0
(1)/F0

(2). When the fluorescence transients are equal in amplitudes, a direct statistical analysis does not yield any benefit.
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generalizes to FRET indicators by summing the log-likeli-
hood ratios of both color channels (Fig. 4 C) and to spike
train estimation by adjusting the null hypothesis to include
previously detected spikes. Finally, the filter of Eq. 6 is
simple to implement and truer to the statistics of optical
recordings than other forms of deconvolution. More sophis-
ticated methods exist for spike train estimation involving
supervised machine learning (16), particle filtering (17), or
nonnegative deconvolution (18), but these are more chal-
lenging to implement and not yet widely adopted. Although
Eq. 6 does not prescribe how to estimate the optical wave-
form parameters, our simulations show that successful spike
extraction does not usually hinge on accurate parameter
estimates. Pseudo-expectation maximization approaches
that alternate estimation of the spike train with estimation
of the optical parameters may facilitate spike train estima-
tion (17,18).

Notable effort has focused on creating brighter fluores-
cent indicators (3,11–13). Yet, d 0 improves only as the
square-root of the brightness for fixed DF/F z A/F0

(Eq. 9). The linear dependence of d 0 on DF/F suggests
greater gains may be possible by increasing DF/F, such
as by reducing background emissions and increasing the
signal’s dynamic range in response to Ca2þ binding.
Although DF/F is bounded above by the indicator response
in the labeled cell type, background flux from mistargeted
indicator and poor rejection of out-of-focus emissions
reduce the DF/F of the data. This is especially pertinent
with voltage indicators, due to the challenge of selectively
labeling neural membranes (46).

We illustrate these considerations using published in vivo
recordings of dendritic Ca2þ spikes from cerebellar Purkinje
neurons (6,7). Using the Ca2þ indicator Oregon Green
BAPTA-1, two-photon microscopy attains DF/F values
of ~30% (7,47), but one-photon microscopy attains DF/F
values of only ~0.5–1.5% due to lack of optical sectioning
(6,48). Yet, one-photon microscopy captures far more
photons per frame, because the pixels are sampled in parallel
rather than by laser-scanning. We compared d 0 values for the
two modalities and determined that the improved photon
collection of one-photon microscopy adequately compen-
sates for the increased background, yielding comparable
spike discriminability for both forms of microscopy. Ap-
proaches that furnish one-photon microscopy with back-
However, when the ratio of signal amplitudes differs from unity, a ratiometric a

function of the ratios of the background-normalized signal amplitudes (A(1)/F0
(1

(blue and green traces) for the donor and acceptor channels of a FRET indicator.

of 60 observations using Eq. 6 (the sum of the log-likelihood ratios for the dono

Supporting Material) to the ratio of the donor and acceptor traces (purple trace).

estimated via direct analysis of the channels (middle spike trains) or a ratiometric

with errors in frame timing. (Gray spikes) False positive spikes. (Light- and dar

channel analyses, respectively. Threshold crossing events for these two traces (h

algorithm approach to detect spikes, applying the same equal-cost condition to se

ratio values attained using the direct analysis. The strong correlations between th

lation trial was used for both calculations. In these simulations, DF/F ¼ 0.05 f
ground rejection mechanisms, such as planar illumination
(45), have the potential to improve spike discriminability,
at least at shallow tissue depths where scattering does not
substantially diminish signal quality.

As our calculations show, another key influence on the
fidelity of spike detection is the duration of the indicator’s
response. Several genetically encoded Ca2þ indicators,
such as TN-XXL (13), d3cpv (3), and members of the Cam-
eleon-Nano family (11), exhibit prolonged optical transients
(>1 s) in response to one spike, allowing these indicators to
emit far more signal photons than an indicator with compa-
rable brightness and dynamic range but brisker kinetics.
Especially when monitoring neurons with temporally sparse
firing patterns, these indicators may offer superior d 0 values
than faster indicators such as Oregon Green BAPTA-1
(OGB-1) (>100–200 ms). However, indicators with high
Ca2þ affinity may also perturb a cell’s native Ca2þ-depen-
dent processes (2,23). We found that d 0 was relatively
insensitive to the fine temporal structure of the transient
waveform, depending most sensitively on the rise time
and total number of signal photons collected above back-
ground. To retain single spike resolution, the indicator’s
transient duration can be prolonged up to roughly the recip-
rocal of the spike rate.

Although our model was developed with Ca2þ indicators
in mind, our formalism also applies to membrane voltage
indicators. Existing voltage indicators have been success-
fully applied to individual cells or axons (49–52), inverte-
brate neurons (49–51,53), tissue slices and cultured cells
(49–52,54,55), and cells exhibiting prolonged subthreshold
voltage transients (56). However, the available voltage
indicators generally fail to reliably report single action poten-
tials in the live mammalian brain (46). Voltage depolariza-
tions associated with Naþ spikes are typically ~1 ms or less,
and the associated optical signals lack the prolonged decay
times seen with Ca2þ indicators. Thus, for voltage indicators
to achieve spike discriminability comparable to Ca2þ indica-
tors, they must be brighter (>100 times), generate a larger
signal response (>10 times), or be used in a way that
affords each neuron a far higher proportion of the frame
acquisition time. This suggests possible advantages of volt-
age indicators based on changes in emission color, provided
the background could be minimized in the emission color
band used to signal a spike occurrence (Fig. 3) (57).
nalysis is inferior. (B) The decline in spike detectability is plotted as a joint
))/(A(2)/F0

(2)) and the background brightness. (C) Simulated pairs of traces

Here, we calculate the log-likelihood ratio of a spike with a moving window

r and acceptor traces) and a Gaussian approximation (Eqs. S49–S51 in the

The true spike train is shown (green, top spike trains) above the spike trains

analysis (bottom spike trains). (Spikes in non orange hues) Spikes estimated

k-gray traces) Log-likelihood ratio of a spike for the ratiometric and direct

ighlighted in purple and blue, respectively) were analyzed using the greedy

t the detection threshold for both methods. Note the superior log-likelihood

e ratiometric and direct channel calculations occur because the same simu-

or both channels, t ¼ 1.0 s, n ¼ 20 Hz, spike rate l ¼ 0.5 Hz.
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FIGURE 5 Chapman-Robbins lower bounds on the estimation of spike times. The ability to accurately estimate a spike’s time is governed by the

discriminability, d 0, the sampling rate, n, and the duration of the signal transient, t. For fixed d 0, spike timing precision improves with shorter optical tran-

sients and higher sampling rates. The Chapman-Robbins lower bound can be either lower or higher than the sampling rate and exhibits strong dependence

on discriminability d 0 and transient duration. (A) Comparison of three optical indicators with different decay kinetics. A fast optical indicator (t ~ 0.15 s)

such as Oregon Green BAPTA-1 (OGB-1) can localize spikes to ~30 ms, even in regimes with modest SNR regimes (d 0 ~ 3). Slower indicators with time

constants resembling those of GCaMP3 (~0.5 s) exhibit poorer spike timing characteristics. In regimes with modest SNR, even slower indicators with

kinetics resembling those of d3cpv or TN-XXL (1.5 s) allow spike localization with ~100 ms resolution. (B) Comparison of estimation bounds at three

different sampling rates. Increasing the sampling rate modestly improves spike timing resolution. (C) Increasing discriminability also significantly

improves spike timing resolution. (A–C, white dashed line) Boundary of the regime of temporal super-resolution. (D) Simulations of spike timing reso-

lution. Using a brute-force maximum likelihood method for determining the spike time, we obtained histograms of the spike time error for two indicators

with distinct temporal dynamics. Note the different time scales on the two panels. For visual clarity, histograms are shown normalized to a common peak

value. (E) Plots of simulated spike timing resolution and the theoretically calculated Chapman-Robbins lower bound. The simulations generally do not

attain the Chapman-Robbins lower bound, especially for situations with low SNR and slow temporal dynamics. Simulations in panels D and E were

done using n ¼ 20 Hz.
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When reporting the properties of fluorescent activity indi-
cators, researchers can facilitate quantitative comparisons
by carefully describing the imaging context. Assessments
of indicator performance using laser line scans over a single
cell or detection at fixed points in space inflate d 0 by the
square-root of the laser dwell time. For example, if a cell
occupies 1% of an image frame, d 0 can be inflated by a factor
of 10 by fixing the laser beam over the cell. Similarly,
pipette loading of the dye to high levels or constructing
unusually low background levels also overstate indicator
performance as compared to state-of-the-art studies of large
numbers of individual neurons. Unfortunately, the bright-
ness contributions from extinction coefficients, expression
patterns, and labeling densities are sometimes reported
ambiguously, making it difficult to predict d 0 in novel exper-
imental situations. For voltage indicators this ambiguity is
compounded by the challenges of reliable membrane target-
ing (46).

In addition to examining spike detection, our study intro-
duces limits on spike time estimation based on optically re-
corded neural activity. Computational methods for spike
train inference should be evaluated jointly on their capabil-
ities for spike detection and timing estimation. The
Chapman-Robbins lower bound on timing errors is distinct
from d 0 and strongly depends on transient duration for fixed
d 0. Intuitively, for a given d 0 value, a brisk transient makes
timing estimation easier than a prolonged one. More surpris-
ingly, faster sampling rates in our simulations yielded only
modestly improved spike timing precision. The substan-
tially improved timing estimates achieved using acousto-
optic random-access laser-scanning microscopy (15) seem
to stem from the increased dwell times over the chosen
subset of cells, which increases spike discriminability,
rather than faster sampling rates.

Even with modest SNR and sampling rates, one can
resolve spike times with greater precision than suggested
by the naı̈ve Nyquist criterion. Many spike train estimation
routines assign spikes at discrete times, but it may be pref-
erable to treat spike times as continuous variables. Our
calculations bound the statistical confidence of spike times,
and researchers should ideally report confidence intervals
alongside spike trains. Importantly, the Chapman-Robbins
lower bound is only valid for unbiased estimators, and we
did not examine how parameter misestimation impacts spike
time estimation.

Future work might extend our results in several ways. Our
treatment considered only isolated spikes. Spike detection
with temporally overlapping spike waveforms should be
rigorously examined, including with indicator saturation
effects that reduce signals from a rapid succession of action
potentials. This is not easily described in the framework pre-
sented here, but could be analyzed by inclusion of additional
parameters. Our reliance on d 0 is only suitable for binary
classification problems, so spikes that may have been de-
tected at times not coincident with, but within time t, of an
actual spike are not considered detected in our classification.
A more complete treatment might ameliorate this deficiency.
Finally, the ideas presented here may be applicable to the
inference of time-varying spike rates from fluorescence data.
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